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Linearized flow past a submerged obstacle with an elastic sheet resting on the flow surface
are studied in the limit that the bending length is small compared to the obstacle depth,
in two and three dimensions. Gravitational effects are included in the two-dimensional
geometry, but absent in the three-dimensional geometry; the Froude number is chosen
so that gravitational and elastic restoring forces are comparable in size. In each of these
problems, the waves are exponentially small in the asymptotic limit, and can be computed
using exponential asymptotic methods. In the two-dimensional problem, flow past a
submerged step is considered. It is found that the relative strengths of the gravitational
and elastic restoring forces produce two distinct classes of elastic sheet behaviour. In one
parameter regime, constant-amplitude elastic waves and gravity waves extend indefinitely
upstream and downstream from the obstacle. In the other parameter regime, all waves
decay exponentially away from the obstacle. The equivalent nonlinear two-dimensional
geometry is then studied; this asymptotic analysis predicts the existence of a third
intermediate regime in which waves persist indefinitely in only one direction, depending on
whether the submerged step rises or falls. In the three-dimensional geometry, it is predicted
that the elastic waves extend ahead of the submerged source, decaying algebraically in
space. The form of these elastic waves is computed, and validated by comparison with
numerical computations of the elastic sheet behaviour.

Key words: elastic waves, wave-structure interactions, channel flow

1. Introduction

Hydroelastic waves are waves that propagate due to flexural elasticity in a sheet or
membrane that is resting on a fluid region. Early motivation for studying hydroelastic
waves arose due to the use of elastic sheets as a convenient model for ice sheets floating on
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bodies of water (Squire et al. 1988; Squire 2007). There have been a number of studies that
considered moving bodies exerting pressure on an ice surface, including Davys, Hosking &
Sneyd (1985), Takizawa (1985), Schulkes, Hosking & Sneyd (1987), Milinazzo, Shinbrot
& Evans (1995), Squire et al. (1996), Părău & Dias (2002), Părău & Vanden-Broeck (2011)
and Dinvay, Kalisch & Părău (2019), as well as free and forced waves in ice sheets in
Guyenne & Părău (2014, 2017). Motivated by recently proposed applications such as the
use of piezoelectric membranes on the surface of a flow to harvest energy in Domino
et al. (2018), a number of recent laboratory experiments have studied the behaviour of
hydroelastic waves on smaller scales; see Akcabay & Young (2012) and Ono-dit-Biot et al.
(2019). Many of these theoretical and experimental studies considered both gravitational
and elastic restoring forces on the elastic sheet, producing wave behaviour known as
flexural-gravity waves.

A number of studies of waves that form on elastic sheets resting on flow over submerged
obstacles have been performed in linear regimes. Sturova (2014, 2015a,b) studied flow
under finite or semi-infinite elastic plates past a submerged body in two dimensions using
Green’s function methods. The behaviour of a finite elastic plate was studied for flow over
an obstacle in finite depth by Tkacheva (2015). A linearized perturbation expression for the
behaviour of an elastic sheet above a point source in infinite depth was obtained in Savin &
Savin (2013). Linearized geometries have also been studied using computational studies,
such as the analysis in Shishmarev, Khabakhpasheva & Korobkin (2019), which examined
the elastic sheet strain caused by flow past a submerged dipole in a three-dimensional
channel using numerical Fourier methods.

Nonlinear models have been used to study solitary or periodic hydroelastic waves in both
two and three dimensions. See, for example, the computational and asymptotic studies by
Forbes (1986, 1988), Marchenko & Shrira (1991), Balmforth & Craster (1999), Părău &
Dias (2002), Milewski, Vanden-Broeck & Wang (2011), Vanden-Broeck & Părău (2011),
Guyenne & Părău (2012, 2015), Wang, Vanden-Broeck & Milewski (2013), Gao, Wang
& Vanden-Broeck (2016), Gao, Vanden-Broeck & Wang (2018) and Trichtchenko et al.
(2018). This is not an exhaustive list of research in this area; for a more comprehensive
review, see Părău & Vanden-Broeck (2019). Many of these studies use a nonlinear model
for the elastic sheet deformation to express the surface wave behaviour in terms of an
integrable equation such as the nonlinear Schrödinger equation, which possesses soliton
or periodic wave solutions.

The behaviour of nonlinear flexural-gravity waves on flow past submerged obstacles
in two dimensions was considered by Stepanyants & Sturova (2021), who derived a
nonlinear Schrödinger equation for weakly nonlinear perturbations above a submerged
dipole, and by Semenov (2021), who studied fully nonlinear waves using a conformal
mapping method developed in Forbes (1982), Forbes & Schwartz (1982) and King &
Bloor (1987, 1989, 1990). The problem was formulated by applying a conformal map
taking the flow region, with an unknown free-surface position, into a known domain.
The resultant problem is expressed in terms of a boundary integral that can be solved
numerically.

Similar analyses have been performed on related geometries, including waves on
internal flow interfaces under an elastic sheet by Wang et al. (2014), finite-depth shear flow
under an elastic sheet by Wang, Guan & Vanden-Broeck (2020), flow in a fluid separated
by an internal elastic sheet by Părău (2018), and flow contained between two elastic sheets
by Blyth, Părău & Vanden-Broeck (2011). When studying nonlinear geometries, care must
be taken in choosing an appropriate model for the elastic sheet; Milewski & Wang (2013)
investigated the effect of different elastic sheet models on nonlinear surface waves, and
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Exponential asymptotics for elastic-gravity waves

demonstrated that the choice of elastic sheet model can have a significant impact on the
observed behaviour in nonlinear problems.

Elastic waves have also been the subject of experimental studies by Domino et al.
(2018), Ono-dit-Biot et al. (2019) and Akcabay & Young (2012). Notably, Ono-dit-Biot
et al. (2019) demonstrated that elastic waves in three dimensions exhibit qualitative
behaviour similar to that of capillary waves, such as those computed in Lustri, Pethiyagoda
& Chapman (2019). The scaling regimes considered in this paper are comparable to
laboratory set-ups such as that in Ono-dit-Biot et al. (2019), which considers the waves
that form on flexible elastic membranes suspended over an inviscid fluid. Motivated
by this similarity, this paper aims to apply the exponential asymptotic techniques used
in two-dimensional gravity-capillary waves in Trinh & Chapman (2013a,b), and in
three-dimensional capillary waves in Lustri et al. (2019), to calculate the behaviour of
hydroelastic waves.

1.1. Paper outline
We first study flexural-gravity waves in a linearized geometry generated by flow over
a submerged step with small height, with elastic and gravity effects scaled by a small
parameter, governing the rigidity of the elastic sheet and the Froude number (or the
ratio between inertial and gravitational effects). This study is motivated by previous
analyses of gravity-capillary waves by Trinh & Chapman (2013a,b), which showed that the
interaction between gravitational and capillary restoring forces produces a rich variety of
wave behaviour compared to capillary waves in isolation. In Chapman & Vanden-Broeck
(2002), which studied capillary waves in two dimensions in the small surface tension
limit, it was found using exponential asymptotic methods that capillary waves propagate
with constant amplitude away from the disturbance. Similar methods were used to study
gravity-capillary waves in linear (Trinh & Chapman 2013a) and nonlinear (Trinh &
Chapman 2013b) geometries. Even in linear geometries, these studies demonstrated that
there exist interactions between gravitational and capillary effects that affect the surface
wave behaviour. Subsequent studies on elastic waves in the absence of gravity by Lustri,
Koens & Pethiyagoda (2020) found that elastic wave behaviour in the absence of gravity
is similar to the behaviour of the capillary waves studied in Chapman & Vanden-Broeck
(2002).

This formulation will allow for direct comparison with the methods of Trinh & Chapman
(2013a), which demonstrated interaction effects between gravity and capillary waves in
a similar scaling limit (small surface tension and small Froude number); they found
that the wave behaviour changed depending on the parameter regime. In one regime,
downstream gravity waves and upstream capillary waves propagate indefinitely without
decay. In the other regime, the two waves decay exponentially in space away from the
submerged obstacle. The purpose of this study is to determine whether a similar variety
of wave behaviour is obtained by the inclusion of gravity effects into the elastic sheet
geometry studied in Lustri et al. (2020) – we will identify a similar bifurcation structure
in flexural-gravity waves. Finally, we will discuss the challenges required to extend
this analysis to the nonlinear case, as in Trinh & Chapman (2013b), and obtain some
preliminary asymptotic results.

In the second part of this study, we investigate the behaviour of hydroelastic waves in
three dimensions, and compare these results with the three-dimensional capillary wave
analysis in Lustri et al. (2019). We study waves on the surface of linearized flow past
a submerged point source, in the limit that the elastic rigidity is small. This geometry
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requires a more complicated asymptotic analysis than the two-dimensional geometry, and
we therefore consider only a regime in which gravitational effects may be neglected. This
analysis provides a first step to a full three-dimensional flexural-gravity wave analysis; we
will discuss the challenges involved in such an analysis in the conclusion of this paper. We
will determine that the hydroelastic waves do possess important similarities with capillary
waves from Lustri et al. (2019). The waves are absent immediately behind the obstacle, but
appear as special curves on the free surface known as ‘Stokes curves’ are crossed into the
upstream region.

In both of these problems, the surface waves are exponentially small in the asymptotic
parameter given by the ratio between the elastic bending length and the obstacle depth.
This makes the waves impossible to compute using classical asymptotic power series
methods. Instead, we use exponential asymptotic methods to obtain the surface wave
behaviour. Important early examples of exponential asymptotics being used to study
free-surface flow over submerged obstacles are found in Chapman & Vanden-Broeck
(2002, 2006), which study exponentially small capillary and gravity waves, respectively,
in regimes that make use of the full nonlinear dynamic boundary condition. These results
were extended to linearized and nonlinear gravity-capillary waves in two dimensions
by Trinh & Chapman (2013a,b), as well as gravity and capillary waves in linearized
three-dimensional geometries by Lustri & Chapman (2013, 2014) and Lustri et al. (2019).
Recently, flexural waves through an elastic sheet in the absence of gravitational effects
were studied in Lustri et al. (2020), using the full nonlinear boundary condition. The
present study extends directly on this body of work, exploring elastic wave effects in more
detail.

The layout of this paper is as follows. We begin by introducing several models that
are used in existing literature to describe the behaviour of elastic sheets, and show that
these models are consistent in the linearized limit considered in the present study. We
then introduce briefly the exponential asymptotic method that will be used to study
flexural waves generated in elastic sheets. The remainder of the paper is divided into
two parts. In the first part, we calculate the behaviour of flexural-gravity waves in a
linearized two-dimensional geometry, and extend our analysis to make predictions about
more complicated nonlinear geometries. In the second part, we calculate the behaviour
of hydroelastic waves in a linearized three-dimensional geometry. The paper ends with
conclusions and a discussion of the results, including an outline of the challenges
expected in extending these results to nonlinear geometries, or introducing gravity into
the three-dimensional geometry.

1.2. Waves on elastic sheets

1.2.1. Two-dimensional geometries
Elastic sheets in two dimensions have often been studied using the Cosserat model, such
that the pressure jump across the sheet is related to the curvature through

p = D
(
κss + 1

2κ
3
)
, (1.1)

where p is the pressure, s is an arc length parameter, and κ is the signed curvature, positive
if the centre of curvature lies in the fluid region. The flexural rigidity coefficient D is given
by D = Eh3/(12(1 − ν2)), where E is the Young’s modulus, h is the plate thickness, and
ν is the Poisson ratio.

By linearizing two-dimensional flows and searching for waves of the form
exp(i(kx − ωt)), it is possible to calculate the dispersion relation for flexural-gravity waves
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in the linear limit for flow on finite depth L; see, for example, the discussion in Gao et al.
(2018). The dispersion relation is given by

ω2 =
(

gk + Dk5

ρ

)
tanh(Lk), (1.2)

where ω is the angular frequency, k is the wavenumber, D is the flexural rigidity, and ρ is
the fluid density. If the depth is taken to be large, so that tanh(Lk) → 1, then it is possible
to determine a useful length scale for flexural-gravity waves. The phase velocity c = ω/k
in this regime is given by

c2 = g
k

+ Dk3

ρ
. (1.3)

The phase velocity has a minimum value cmin at k = kcrit, where the group velocity and
phase velocity are equal. These values are given by

kcrit =
( ρg

3D

)1/4
, cmin = 4

(
Dg3

3ρ

)1/4

. (1.4a,b)

If the waves are on a steady flow past an obstacle, then waves can form only if the flow
velocity U exceeds cmin. If U > cmin, then the dispersion relation (1.3) gives two solutions
for the wavenumber. The larger solution (k > kcrit) describes downstream gravity waves,
and the smaller solution (k < kcrit) describes upstream flexural waves. From the form of
kcrit in (1.4a,b), we see that the characteristic length scale at which the waves transition
from the elastic regime to the gravity regime is proportional to lD = (D/(ρg))1/4, where
lD is known as the ‘bending length’.

The elastic sheets used in Ono-dit-Biot et al. (2019) have values of D in the range
D ≈ 6 × 10−6–2 × 10−8 N m−2. If such an elastic sheet is suspended above water, such
that g ≈ 10 m s−2 and ρ ≈ 103 kg m−3, then the elastic bending length lies in the range
lD ≈ 0.5 × 10−3–1 × 10−3 m. In DiMarco et al. (1993), ice sheets were calculated to have
values of D lying in the range D ≈ 6 × 109–9 × 109 N m−2. Using the same approximate
values for g and ρ, we find that the bending length of these ice sheets is lD ≈ 28–30 m.

Section 2 of this study first considers linearized waves in a finite-depth channel
containing a step with upstream depth L. The step height in the mapped potential plane
after non-dimensionalization by L, denoted w = φ + iψ , is given by δ. We assume that
0 < δ � 1, producing a linearized regime. This assumption is equivalent to linearizing
around small step height, or setting the ratio between the step height and channel depth –
which is O(δ) as δ → 0 – to be asymptotically small.

After linearizing about the small step height, we then introduce a second small
parameter into the problem, which describes the bending length to channel depth ratio
lD/L. Using the physical parameters for elastic sheets defined above, if an elastic sheet is
suspended above a fluid with depth 1 cm, then it has lD/L ≈ 0.05–0.2. If an ice sheet is
suspended above a channel of depth 100 m, then it has lD/L ≈ 0.3. Motivated by examples
such as these, we are interested in studying problems in the asymptotic limit that lD/L is
small.

In order to capture interactions between gravitational and elastic effects, we also set
the Froude number, denoted F, to be small, with the relative scale chosen such that
gravitational and elastic restoring effects are comparable in size. We define a new small
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parameter ε such that

F2 = U
gL

= βε,

(
lD
L

)4

= D
ρgL4 = βτε4, (1.5a,b)

where β and τ are chosen so that we can adjust the relationship between the Froude
number F and the bending length to channel ratio lD/L. This particular form for the small
parameter ε is selected so that the subsequent analysis is analogous to that of Trinh &
Chapman (2013a), and the scaling of each quantity relative to ε is chosen so that both
gravitational and elastic effects are described by our asymptotic results.

Note that the linearization step occurs before ε is defined. This implies that 0 < δ �
ε � 1 in the linearized problem, as we consider a full expansion of ε but only the
leading-order equations for δ. This regime allows us to establish the feasibility of the
method. In § 2.5, we will study nonlinear flow over a step that is not an asymptotically
small parameter. The problem formulation in this geometry will contain only the small
parameter ε, and the analysis will therefore be applicable to regimes where 0 < ε � 1.
Much of the linearized analysis in § 2 is performed in a manner that generalizes to the
nonlinear problem.

1.2.2. Three-dimensional geometries
A number of models have been used to describe elastic sheets resting on a fluid in three
dimensions. The simplest linear elastic model for three dimensions is the biharmonic
model. The pressure on the elastic sheet is derived using linearized beam theory, giving

p = DΔ2η, (1.6)

where η is the free-surface height, and Δ is the biharmonic operator. This model has been
used in Squire et al. (1996) and Squire (2007) to study the deformation of an elastic sheet
resting on a fluid. Nonlinear approaches have been considered in the literature, such as
a model based on the Cosserat theory of elastic shells, presented in Milewski & Wang
(2013), Guyenne & Părău (2014) and Trichtchenko et al. (2018). This model is given in
Milewski & Wang (2013) by

p = D
(

2
∂

∂x
[S(ηyηxy − ηxηyy)] + 2

∂

∂y
[S(ηxηxy − ηyηxx)] + ∂2

∂x2 [S(1 + η2
y)]

− 2
∂2

∂x ∂y
[Sηxηy] + ∂2

∂y2 [S(1 + ηx)
2] + 5

2
∂

∂x
[S2(1 + |∇η|2)3/2ηx]

+ 5
2
∂

∂y
[S2(1 + |∇η|2)3/2ηy]

)
, (1.7)

where

S = (1 + η2
x)ηyy + (1 + η2

y)ηxx − 2ηxηyηxy

(1 + |∇η|2)5/2 . (1.8)

In our study of hydroelastic waves in three dimensions, we will apply the scaling η = δη̃,
where 0 < δ � 1 and δ measures the strength of the submerged source. The Cosserat
model in (1.7) reduces to the biharmonic model in (1.6) under this linearization. Hence
we will use the biharmonic model directly in our analysis of hydroelastic waves in three
dimensions, noting that it describes behaviour produced by the commonly used nonlinear
Cosserat model in the linearized regime.
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Exponential asymptotics for elastic-gravity waves

In the analysis of the three-dimensional problem, we will introduce a small parameter
ε such that ε3 = D/(ρU2L3), where U is the upstream flow velocity, and L is a
representative length scale in the problem. The asymptotic analysis is performed on the
linearized three-dimensional problem in the limit that ε is small. The regime in which the
small-ε analysis performed on the linearized geometry is valid is given by 0 < δ � ε � 1.

1.3. Exponential asymptotics
In order to study the behaviour of hydroelastic waves, we will adapt the methodology of
Trinh & Chapman (2013a) for the problem of two-dimensional flexural-gravity waves,
and Lustri et al. (2020) for the study of purely elastic waves in a three-dimensional
setting. These studies considered waves on a free surface due to gravity or capillary
effects that were exponentially small in the small Froude number and surface tension
limits, respectively. In the present study, we will be performing an exponential asymptotic
analysis in the limit that ε → 0, where ε is defined in (1.5a,b). In this case, it governs
both gravitational and elastic effects. The limit corresponds to geometries with small
Froude number, as seen previously in the exponential asymptotic study of gravity waves
in Chapman & Vanden-Broeck (2006), and the ratio between the elastic bending length
and the obstacle depth being small. These problems have the common property that they
are singularly perturbed in the small parameter ε, which appears in front of the leading
derivative terms in the Bernoulli equation, shown after rescaling in (2.5). In singularly
perturbed problems such as these, oscillatory behaviour in the solution, such as surface
waves, has amplitude that is exponentially small in the asymptotic limit.

Solutions of singularly perturbed differential equations containing multiple exponential
terms in the complex plane typically contain curves along which the behaviour of a
subdominant exponential changes rapidly. These curves were first identified in Stokes
(1864) and are known as ‘Stokes curves’. This rapid change causes exponentially small
oscillations to appear in the solution, such as the elastic waves considered in the present
study. Asymptotic techniques have been developed for studying this exponentially small
behaviour, collectively known as ‘exponential asymptotics’. A broad summary of these
techniques may be found in Boyd (1999). This investigation will apply the technique
developed by Olde Daalhuis et al. (1995) and extended by Chapman, King & Adams
(1998), which utilizes the rapid variation near Stokes curves in order to study exponentially
small behaviour in solutions of ordinary and partial differential equations in Chapman &
Mortimer (2005).

The first step in this technique is to express the solution to the differential equation
system as asymptotic power series in the independent variable w, such as

q(w) ∼
∞∑

n=0

εn q(n)(w) and θ(w) ∼
∞∑

n=0

εn θ(n)(w) as ε → 0. (1.9a,b)

The series is typically divergent for singularly perturbed problems, and will not describe
the behaviour of the surface waves, no matter how many series terms q(n) and θ(n) are
calculated. This is because the waves are exponentially small in the asymptotic limit, and
therefore smaller than any algebraic power of ε. Instead, we minimize the error of the
divergent series approximation by truncating the series after a particular finite number of
terms. To truncate the series optimally, we follow the heuristic described in Boyd (1999)
and truncate the series after its smallest term. The optimal truncation point, denoted Nopt,
typically becomes large in the asymptotic limit, hence identifying the asymptotic form
of the ‘late-order terms’ of the series (that is, the form of q(n) and θ(n) in the limit that
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n → ∞) is sufficient to determine the smallest term in the series, and thus truncate the
series optimally (see Chapman et al. 1998).

Dingle (1973) identified that successive terms in a divergent asymptotic series expansion
generated by singularly perturbed equations like (2.5) are typically obtained by repeated
differentiation of earlier terms in the series. This can be seen in the series recurrence
relation (2.18), in which the series terms q(n−1) and θ(n−4) are differentiated once and
four times, respectively. This repeated differentiation will cause singularities in earlier
terms to grow in strength as n increases, and therefore persist into later terms. As these
singularities are differentiated repeatedly, the series terms typically diverge as the ratio
between a factorial and the increasing power of a function χ that is zero at the singularity,
ensuring that the late-order terms are also singular at this point. Chapman et al. (1998)
proposed that the terms of a divergent asymptotic series generated in this fashion have
asymptotic behaviour given by the sum of factorial-over-power ansatz expressions, each
associated with a different early-order singularity. For our two-dimensional problems, the
proposed factorial-over-power behaviour is given by

q(n) ∼ QΓ (n + γ )

χn+γ and θ(n) ∼ Θ Γ (n + γ )

χn+γ as n → ∞, (1.10a,b)

where Γ is the gamma function defined in Abramowitz & Stegun (1972), Q, Θ , γ
and χ are functions of w that do not depend on n, and χ = 0 at singularities of early
series terms. The global behaviour of the functions Q, Θ , γ and χ may be found by
substituting this ansatz directly into the equations governing the terms of the asymptotic
series, and matching to a rescaled local expansion of the solution in the neighbourhood of
the singularity.

The late-order-term behaviour given in (1.10a,b) is related to applying a WKB (or
Liouville–Green) ansatz of the form A(w) exp(−χ(w)/ε) to the equations for q and θ
linearized about the truncated expansion. It is clear from this expression that χ , or the
‘singulant’, determines the scaling of the exponentially small terms. The rapid change
in exponentially small behaviour, or ‘Stokes switching’, occurs across curves where the
switching exponential is maximally subdominant compared to the leading-order behaviour
(see Dingle 1973). These curves satisfy the condition that the singulant is purely real and
positive, giving the following condition that may be used to determine the possible location
of Stokes lines:

Re(χ) > 0, Im(χ) = 0. (1.11a,b)

Asymptotic solutions also contain important curves known as anti-Stokes lines. These
are curves that divide the complex plane into regions in which a particular exponential
contribution is asymptotically small, and regions in which the exponential contribution is
asymptotically large. From the WKB ansatz of the exponential contribution, it can be seen
that anti-Stokes curves satisfy

Re(χ) = 0. (1.12)

Truncating the infinite series (1.9a,b) optimally after N terms gives

q(w) =
Nopt−1∑

n=0

εn q(n)(w)+ RN(w) and θ(w) =
Nopt−1∑

n=0

εn θ(n)(w)+ SN(w) as ε → 0,

(1.13a,b)
where RN and SN are the exponentially small remainder terms for q and θ obtained after
truncation. Note that these expressions are equalities, rather than asymptotic relations.
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(b)(a)
Elastic sheet: y = ξ(x)
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A

Elastic sheet: ψ = 0

E

D
CB

ψ

ψ = 0

ψ = –π

φ

F

A

Figure 1. Mapping of a fluid domain underneath an elastic sheet to a fixed known region of the complex
potential plane. The elastic sheet is shown as a dashed line, and the rigid base is shown as an unbroken line.
Steady flow follows streamlines, which are curves in the potential plane with constant ψ . The free surface
maps to the top streamline, typically labelled ψ = 0, while the lower boundary typically maps to ψ = −π;
consequently, the flow region is known completely. The fluid velocity is singular at the points labelled B and
C, shown as black circles. (a) Physical fluid domain, z = x + iy. (b) Complex potential domain, w = φ + iψ .

Therefore, RN and SN represent the difference between the true solution and the optimally
truncated series.

The final step of the method described in Olde Daalhuis et al. (1995) requires
substituting the truncated series expression back into the original problem to produce
an equation for the remainder term. This remainder equation is then solved in the
neighbourhood of Stokes curves, which are found using the condition in (1.11a,b).
Condition (1.11a,b) is not strictly required for this step, as the location of the Stokes curves
can be obtained directly from the remainder equations using late-order terms. We will use
this condition, as it allows for the Stokes curves to be identified once χ has been calculated,
rather than later in the analysis. This analysis shows that the exponentially small remainder
that switches across the Stokes line generated by the truncated divergent series (1.13a,b)
generally takes the form

RN ∼ SQ e−χ/ε and SN ∼ SΘ e−χ/ε as ε → 0, (1.14a,b)

where S is a function of w that is essentially constant away from the Stokes curve, but
varies rapidly in the neighbourhood of the Stokes curve. This emphasizes the important
role played by the singulant in determining the behaviour of the oscillations. Importantly,
if χ ′ is purely imaginary, then these terms correspond to exponentially small oscillations
as ε → 0 that do not decay exponentially in space. If Q and Θ do not decay, as is the case
for the oscillations in the present study, then these terms produce a train of waves with
constant amplitude.

2. Two-dimensional elastic-gravity waves

2.1. Formulation
We consider a two-dimensional incompressible, irrotational, inviscid flow through a
channel of finite depth over a submerged step. The upstream channel depth is given by
L, and the upstream flow velocity is given by U. An elastic sheet with flexural rigidity
D rests on the surface of the flow. The position of the elastic sheet is denoted as ξ(x). A
schematic of this flow behaviour is shown in figure 1. We now non-dimensionalize the
lengths of the system by the upstream depth L, and the velocities by the upstream flow
velocity U.
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C.J. Lustri

The fluid potential satisfies Laplace’s equation

∇2φ = 0. (2.1)

As the flow is steady, we apply a kinematic boundary condition on all boundaries,

∂φ

∂n
= 0, (2.2)

where n is the unit normal direction. On the free surface, we have the dynamic boundary
condition, obtained from the Bernoulli equation,

F2

2
(|∇φ2| − 1)+ y + D

ρgL4

(
κss + 1

2
κ3
)

= 0 on y = ξ(x), (2.3)

where κ is the curvature, defined to be positive if the centre of curvature lies within the
fluid, s is the arc length along the surface after non-dimensionalization, ρ is the density of
the fluid, g is the acceleration due to gravity, F is the Froude number defined in (1.5a,b),
and D is the flexural rigidity of the plate. The upstream flow is uniform with velocity U,
such that

(φx, φy) → (1, 0) as x → −∞. (2.4)

Using the quantities defined in (1.5a,b), we may rewrite (2.3) as

βε

2
(|∇φ|2 − 1)+ y + βτε4

(
κss + 1

2
κ3
)

= 0 on y = ξ(x), (2.5)

where ε is a small parameter, and β and τ determine the ratio between the Froude number
F and the elastic length ratio lD/L. We note that the τ = 0 problem corresponds to pure
gravity waves, studied in Chapman & Vanden-Broeck (2006), while β → 0 and τ = 1/β
corresponds to pure elastic waves, studied in Lustri et al. (2020). In § 2.3, we will find our
results to be consistent with these prior studies.

Differentiating (2.5) with respect to s gives

βεq
dq
ds

+ dy
ds

+ βτε4
(
κsss + 3

2
κsκ

2
)

= 0 on y = ξ(x). (2.6)

We define a complex potential w = φ + iψ , where φ is the fluid potential, and ψ is the
streamfunction. This maps the fluid region to an infinite strip bounded by ψ = −π and
ψ = 0. Noting that

κ = dθ
ds
,

dy
ds

= sin θ,
d
ds

= q
d

dφ
, (2.7a–c)

we write the Bernoulli condition (2.6) in terms of φ:

βεq2 dq
dφ

+ sin θ + βτε4

[
q
(

dq
dφ

)3 dθ
dφ

+ 4q2 dq
dφ

dθ
dφ

d2q
dφ2 + 7q

(
dq
dφ

)2 d2θ

dφ2

+ 4q3 d2q
dφ2

d2θ

dφ2 + q3 dθ
dφ

d3θ

dφ3 + q4 d4θ

dφ4 + 3
2

q3 dq
dφ

(
dθ
dφ

)3

+ 3
2

q4
(

dθ
dφ

)2 d2θ

dφ

]
=0.

(2.8)
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Exponential asymptotics for elastic-gravity waves

(b)(a)

ξ = –b ξ = –1

E

D F
DCB

A
ECB

F

A

Elastic sheet

Elastic sheet

ψ = 0

ψ = –π

ψ

φ

η

ηξ

Figure 2. This schematic illustrates the effect of the mapping w 	→ ζ between (a) the fluid potential domain
w = φ + iψ , and (b) the mapped domain ζ = ξ + iη. The mapping takes the fluid region to the entire upper
half mapped plane. The elastic sheet ψ = 0 maps to the line ξ > 0, and the submerged boundary ψ = −π

maps to the line ξ < 0. The elastic sheet is shown as a dashed line, and the rigid base is shown as an unbroken
line. The singularities map to points that will be labelled ξ = −b and ξ = −1.

We also define the complex velocity dw/dz = u − iv, written as q e−iθ . In this formulation,
q is the flow velocity at a point, and θ is the angle that the streamlines make with the
horizontal axis. Analytically continuing (2.8) allows us to replace φ with the complex
potential w in (2.8) to obtain the analytically continued free-surface condition

βεq2 dq
dw

+ sin θ + βτε4

[
q
(

dq
dw

)3 dθ
dw

+ 4q2 dq
dw

dθ
dw

d2q
dw2 + 7q

(
dq
dw

)2 d2θ

dw2

+ 4q3 d2q
dw2

d2θ

dw2 + q3 dθ
dw

d3θ

dw3 +q4 d4θ

dw4 + 3
2

q3 dq
dw

(
dθ
dw

)3

+ 3
2

q4
(

dθ
dw

)2 d2θ

dw

]
=0.

(2.9)

We apply a conformal map ζ = e−w in order to map the fluid region from a strip in the
complex potential plane to the upper half ζ -plane. This map is illustrated in figure 2. We
also define ζ = ξ + iη, where ξ and η are real quantities. Notably, the free surface maps to
ξ > 0 and the base of the flow region maps to ξ < 0. In the mapped plane, we can apply
Cauchy’s theorem to obtain

log q = − 1
π

−
∫ ∞

−∞
θ(ξ ′)
ξ ′ − ξ

dξ ′. (2.10)

Analytically continuing this expression into the upper half-plane gives

q − iθ = − 1
π

∫ ∞

−∞
θ(ξ ′)
ξ ′ − ζ

dξ ′. (2.11)

We will define the base of the flow as a step, where θ = π/2 for −(1 + δ) < ζ < −1, and
θ = 0 for ζ < −(1 + δ) and −1 < ζ < 0. Hence

q − iθ = 1
2

log
(
ζ + b
ζ + 1

)
− 1

π

∫ ∞

0

θ(ξ ′)
ξ ′ − ζ

dξ ′. (2.12)

We note that the strip in the complex potential plane may also be analytically continued
into the lower half ζ -plane, which will produce complex conjugate behaviour. The full
behaviour of the elastic sheet can be obtained by taking the sum of both the upper and

950 A6-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

80
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.806


C.J. Lustri

lower half-plane contributions. We will not perform the lower half-plane calculations
explicitly, but will instead add the appropriate complex conjugate contribution to the
results of the upper half-plane analysis.

This completes the governing equations. We treat (2.9) and (2.12) as the equations
governing the analytically continued free surface. We will subsequently express the
Bernoulli equation in terms of the mapped variable ζ , but we will hold off until after
the linearization step.

2.2. Linearization
We can linearize around the free stream for small step height. We set b = 1 + δ (assuming
0 < δ � ε) and set q = 1 + δq̂ and θ = δθ̂ . The linearized fluid equation is now given by

q̂ − iθ̂ = 1
2(ζ + 1)

− 1
π

∫ ∞

0

θ̂ (ξ ′)
ξ ′ − ζ

dξ ′. (2.13)

The linearized Bernoulli equation is given by

βε
dq̂
dw

+ θ̂ + βτε4 d4θ̂

dw4 = 0. (2.14)

We could apply the mapping ζ = e−w to the Bernoulli equation, but the analysis is more
straightforward in the complex potential plane. We have now fixed the problem so that
the boundary follows a known curve (ζ > 0 in the mapped plane, ψ = 0 in the complex
potential plane). The linearization step is not necessary; we could apply this exponential
asymptotic analysis to the fully nonlinear problem. In this case, the existence of both
upstream and downstream waves on the free boundary mean that it is difficult to verify the
results computationally. Progress on studying these systems has been made in the context
of gravity-capillary waves in Jamshidi & Trinh (2020), but this remains a challenging
numerical problem. We will discuss briefly the asymptotics of nonlinear geometries in
§ 2.5.

2.3. Exponential asymptotics
We write the series expression in the limit that ε → 0,

q̂ ∼
∞∑

n=0

εnq(n), θ̂ ∼
∞∑

n=0

εnθ(n). (2.15a,b)

Note that including both gravity and elastic waves means that the form of the late-order
terms requires powers of ε rather than ε3, unlike in Lustri et al. (2020). Note that retaining
the full power series in ε in a system that has been linearized in δ implies that we are
considering the regime 0 < δ � ε � 1.

The leading-order behaviour of the flow on the complex free surface is found by direct
substitution, giving

q(0) = 1
2(ζ + 1)

= 1
2(e−w + 1)

, θ(0) = 0. (2.16a,b)

The leading-order behaviour is singular at w = ±(2M + 1)πi, for M ∈ Z. The
singularities that matter are located at M = ±1. We will concentrate on the contributions
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Exponential asymptotics for elastic-gravity waves

due to the singularity at w = πi, adding the corresponding contributions afterwards.
At higher orders, we obtain recurrence expressions for the complexified free surface

q(n) − iθ(n) = − 1
π

∫ ∞

0

θ(n)(ξ ′)
ξ ′ − ζ

dξ ′, (2.17)

β
dq(n−1)

dw
+ θ(n) + βτ

d4θ(n−4)

dw4 = 0. (2.18)

We are most interested in the form of the late-order terms, so we apply the late-order
ansatz as n → ∞ from (1.10a,b). In the first equation from (2.17), we neglect the integral
expression, as it must be exponentially subdominant to the remaining terms in the
expression. This simplification was used in Chapman & Vanden-Broeck (2002, 2006),
and discussed in detail for the case of gravity waves past a ship in Trinh, Chapman
& Vanden-Broeck (2011). A similar justification can be made here. At leading order as
n → ∞, we find Q = iΘ , and

1 − iβ
dχ
dw

+ βτ

(
dχ
dw

)4

= 0. (2.19)

We can determine the form of the exponentially small contributions by solving the
singulant equation (2.19). We recall that χ = 0 at w = πi. This expression has four
solutions, of the form

χ = kj(w + iπ), (2.20)

where kj for j = 1, . . . , 4 depends on β and τ , but not ζ . We denote the specific singulants
as χj for j = 1, . . . , 4.

Continuing to the next order, corresponding to O(q(n−1)) as n → ∞, gives Q and Θ
constant. To denote this clearly, we write Θ = Λ and Q = iΛ, where Λ is constant in
w, although it does depend on β and τ . This term must be determined by comparing
the late-order terms with the inner problem in the neighbourhood of the singularity at
ζ = −iπ. We perform this inner analysis in § A.1, and find that the prefactors are given by

Λj =
k8

j

(
kjA5 + k2

j A6 + k3
j A7 − 1

βτ
A8

)
2
βτ

− 6k4
j

, (2.21)

where Aj = i jβ j−3(β3 + (4 − j)τ ) for j = 5, . . . , 8. The index choice is related to the
analysis in § A.1.

Knowing thatΘ and Q are constants, we can determine the value of γ that is required for
the late-order terms to be consistent with the leading-order behaviour near the singularity.
The singularity in the leading order has strength 1, and this will increase by 1 at each
iteration. Hence the strength of the singularity in the series term q(n) will be n + 1,
indicating that γ = 1. Consequently, we have fully determined the late-order asymptotic
series terms (1.10a,b).

Using the methods of Olde Daalhuis et al. (1995) and Chapman et al. (1998), shown
in detail in Trinh & Chapman (2013a,b), we may determine the behaviour of the surface
waves that correspond with each of the four solutions of (2.20). This analysis is presented
in § A.2, and gives the exponentially small wave contribution from χj, which we denote as
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Re(kj)

Im(kj) Im(kj)

τβ

τβ

k1
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k4

k3
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k2

k3, k4 k3, k4

Re(kj)

k1

k2

k4

k3

Figure 3. Real and imaginary components of k1 (red) and k2 (black), k3 (blue) and k4 (magenta) for (a,c)
τ = 1, and (b,d) β = 1. Dashed lines indicate multiple solutions kj taking identical values. In (a,c), there is a
critical value of β above which Re(k1,2) = 0. In (b,d), there is a critical value of τ below which Re(k1,2) = 0.

θexp,j, as

θexp,j ∼ 2 Re

[(
1

1 − 4τ ik3
j

)
2πkjΛj

βε
exp(−kj(w + iπ)/ε)

]
, (2.22)

with a similar expression for qexp,j. The real part is obtained by taking the sum of the
upper and lower half ζ -plane contributions, which are complex conjugate values. We have
therefore calculated the form of the waves, and can determine the regions in which they
are present by studying the Stokes phenomenon in the system.

From the value of χ in (2.20) and the form of the exponential oscillations (1.14a,b), it
is apparent that non-decaying wave behaviour can exist only if kj takes a purely imaginary
value. In figures 3(a,c), we illustrate the solutions for τ = 1 over a range of β, while in
figures 3(b,d), we illustrate the solutions for β = 1 over a range of τ . For fixed τ , there
exists some critical β, denoted βc(τ ), such that there are two values of kj with no real
component for β > βc(τ ), and there are no values of kj that are purely imaginary if β
is less than this critical value. Conversely, for fixed β, there exists a critical value of τ ,
denoted τc(β), such that there are two values of kj with no real component for τ < τc(β),
and no purely imaginary values of kj if τ exceeds this critical value. Hence non-decaying
wave behaviour exists in the solution only if β > βc(τ ), or equivalently, τ < τc(β). The
wave behaviour in the β–τ parameter space is illustrated in figure 4.

As (2.19) is a quartic equation, the four solutions may be computed exactly. We denote
the solutions according to their asymptotic behaviour in the limit that τ → 0 for fixed β,
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Exponential asymptotics for elastic-gravity waves

1 2 3 4 5 6
τ

βc(τ)

β

4

3

2

1

0

Non-decaying waves in both directions

Downstream: gravity

Upstream: elastic

All surface waves

decay in space

Figure 4. Illustration of the wave behaviour as β and τ are varied. In the unshaded region, corresponding to
β < βc, all of the surface waves decay spatially away from the obstacle. In the shaded region, corresponding to
β > βc, the surface behaviour contains non-decaying waves in the downstream and upstream directions, driven
by gravitational and elastic restoring forces, respectively.

which corresponds to the gravity wave limit. The four solutions have the behaviour

k1 = − i
β

+ O(τ 1/6), k2 = − i
τ 1/3 + i

3β
+ O(τ 1/6),

k3,4 = − i ± √
3

2τ 1/3 + i
3β

+ O(τ 1/6).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.23a–c)

For each of these values of kj, we denote the corresponding singulant as χj. The
exponentially small waves given by the solution χ1 tend to known gravitational wave
behaviour from Chapman & Vanden-Broeck (2006) in this limit, while the amplitude of
the remaining waves tends to zero.

The three wave contributions associated with χ2, χ3 and χ4 correspond to three elastic
wave contributions, and are equivalent in the limit that β → 0 and τ → 1/β to those found
in Lustri et al. (2019). One of these wave contributions, corresponding to the singulant χ2,
produces waves that do not decay in space away from the obstacle in this limit, while the
remaining wave contributions decay exponentially in space. This is consistent with the
behaviour identified in Lustri et al. (2019).

The exact form of these solutions may be determined using a computational algebra
package, allowing us to determine the critical values of β and τ exactly. This bifurcation
corresponds to a branch point in the exact solutions at 27β3

c − 256tc = 0, or

3βc = 28/3τ 1/3
c . (2.24)

This curve in the β–τ parameter space divides solutions with non-decaying oscillations
corresponding to gravity waves (corresponding to the solution k1) and elastic waves
(corresponding to the solution k2), and solutions in which all four of the wave contributions
decay. This result corresponds to setting the flow velocity U to be equal to cmin in (1.4a,b).
It is not surprising that we recover the critical speed from the infinite-depth problem, as
the linearization step requires the obstacle depth to be small compared to the channel
depth. These results are therefore consistent with the phase velocity behaviour (1.3). It is
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impossible in this regime to choose parameters such that only one of the upstream elastic
waves or downstream gravitational waves decays, while the other has constant amplitude.
The solution either contains both non-decaying surface wave contributions, or neither. We
will see later that this is not necessarily true for nonlinear geometries.

When non-decaying waves are present, and therefore kj is imaginary, the surface
behaviour can be computed by integrating (2.22) with respect to x. Noting that φ = x
to leading order in δ,Λj is real when kj is imaginary, and recalling that the wave amplitude
is scaled by δ, we can obtain a wave amplitude satisfying

amplitude ∼ 2πΛjδ

β(1 − 4τ ikj)
exp(−|kj|π/ε) as ε → 0. (2.25)

From the leading-order behaviour q(0) in (2.16a,b), it can be determined that the
non-dimensional step height is δ/2 to leading order in ε. Hence we are able to determine
a relationship between the wave amplitude and the step height in the linearized regime.

From this expression, the amplitude can be expressed in terms of the upstream flow
speed and the step height, rather than δ and ε. The step height is δ/2 in the limit that ε → 0.
The upstream flow speed can be incorporated using (1.4a,b) and (1.5a,b) to give U/cmin =
31/4/(4τε3), which can be solved for ε. This allows the amplitude expression in (2.25)
to be written in terms of physical properties of the flow geometry, and used to determine
quantities such as the wave energy, which scales with the square of the amplitude.

2.4. Stokes structure
The Stokes structure of the analytically continued free surface is presented in figures 5(a)
and 5(b) for β > βc and β < βc, respectively. Schematics representing the physical flow
behaviour are shown in figures 5(c) and 5(d) for β > βc and β < βc, respectively.

Figure 5(a) shows the Stokes structure on the analytically continued free surface for
β > βc. Here, elastic and gravity wave contributions are switched on across a Stokes
curve that extends vertically from the singularity at w = −iπ, corresponding to χ1 and
χ2, respectively. The gravity waves extend downstream from the Stokes curve, while the
elastic waves extend upstream. As k1 and k2 are imaginary, the waves do not decay in
space, but rather persist with constant amplitude.

Two other Stokes curves are present on the analytically continued free surface,
corresponding to χ3 and χ4. These contributions cause rapidly decaying waves to appear
downstream and upstream from the obstacle, respectively. In this case, the direction of
propagation is determined by the sign of Re(k3) and Re(k4). As Re(k3) > 0, the waves
must appear on the downstream side of the Stokes curve, as they would grow exponentially
in the upstream direction. Conversely, as Re(k3) < 0, the waves must appear only in the
upstream direction, where they decay exponentially in space.

A schematic of the physical behaviour of this system is shown in figure 5(c), which
depicts constant-amplitude gravity and elastic waves in the downstream and upstream
directions, respectively. The decaying waves are exponentially small compared to the
constant-amplitude waves as ε → 0 even at the point in the surface where they first appear,
so they are not depicted in the schematic. In this schematic, the gravitational waves are
represented with a larger amplitude than the elastic waves. From figures 3(a,c), we see
that 0 > Im(k1) > Im(k2) in the region β > βc. From the form of the exponentially small
terms in (2.22), this implies that the gravity waves associated with χ1 must have a greater
amplitude than the elastic waves associated with χ2.
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(a) (b)

(c) (d)
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sheet
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Im(w)
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x
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x

Im(w)

Re(w)
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w = –iπ w = –iπ

χ2: elastic waves

χ2: elastic waves

χ4: decaying waves

χ1: gravity waves

χ1: gravity waves
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χ1χ1,2,3,4: decaying waves

χ3: decaying waves χ4: decaying waves

χ2: decaying waves
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χ1: decaying waves

Figure 5. Schematics of the analytically continued free surface are presented in (a,b). Stokes curves are
shown as blue lines that originate at the leading-order singularity, shown as a black circle at w = −iπ. The
points where the Stokes curve intersect the free surface are depicted as blue circles. If the waves are constant
amplitude, then the blue circles are filled. If the waves decay in space, then the circles are unfilled. The regions
in which the wave contributions are present are indicated by arrows above the schematics. The cases for β > βc
and β < βc are shown in (a,b), respectively. In (a), the free surface contains constant-amplitude upstream
elastic waves and downstream gravity waves, which are both switched on across the Stokes curve that follows
Re(w) = 0. The surface intersects two other Stokes curves, which switch on decaying free-surface waves. In
(b), the free surface contains only decaying waves in the far field. This physical behaviour is shown in (c,d) for
β > βc and β < βc, respectively. In (c), the constant-amplitude upstream and downstream waves are depicted.
The decaying waves are exponentially small compared to the constant-amplitude waves as ε → 0, and therefore
not shown. In (d), all four wave contributions are shown, and it can be seen that they decay in space.

Figure 5(b) shows the Stokes structure on the analytically continued free surface for
β < βc. As Re(kj) < 0 for j = 1, 3, the waves associated with χ1 and χ3 must decay
downstream from the corresponding Stokes curve. Conversely, as Re(kj) > 0 for j =
2, 4, the associated waves must decay upstream from the corresponding Stokes curve.
A schematic of this physical configuration is shown in figure 5(d). All four wave
contributions decay exponentially in space, meaning that the surface far upstream and
downstream from the obstacle must be flat, with no waves present.

2.5. Nonlinear problem
We note that an exponential asymptotic analysis of gravity-capillary waves in nonlinear
regimes in Trinh & Chapman (2013b) revealed a complicated wave structure, including
second-generation Stokes switching (see Chapman & Mortimer 2005), which was caused
by interactions between gravity and capillary effects. We will outline the steps required in
order to analyse flexural-gravity waves in a nonlinear regime, and determine the singulant
equation for general flow over topography. We will then consider the singulant behaviour
for flow over a step in a nonlinear regime. This geometry again corresponds to figure 1,
although the step height is no longer small.
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The formulation of this problem without linearization is largely analogous to the
previous analysis, except that the analytically continued nonlinear dynamic boundary
condition is given by (2.9). The remaining steps follow essentially the same format. We
obtain a system of recurrence equations for the series terms that is similar to (2.17)–(2.18),
which can be solved to determine the algebraic series terms for the flow behaviour. The
leading-order behaviour of the flow is given by

θ(0) = 0, q(0) =
(

e−w + b
e−w + 1

)1/2

. (2.26a,b)

We now pose a late-order ansatz identical to (1.10a,b) and apply this to the recurrence
relation. Matching the resultant expression in the limit that n → ∞ gives a singulant
equation at leading order:

1 − β(q(0))3
dχ
dw

+ βτ(q(0))4
(

dχ
dw

)4

= 0, χ(−iπ) = 0. (2.27a,b)

This is a nonlinear differential equation that depends on the leading-order flow behaviour.
Even without solving this differential equation, we are able to make some observations
regarding the upstream and downstream flow behaviour. We denote q(0) in the limit
that w → ∞ as qdown, corresponding to the velocity far downstream from the obstacle.
Similarly, we denote upstream flow velocity, corresponding q(0) in the limit w → −∞, as
qup.

The nonlinear system has different critical values of β and τ for upstream and
downstream waves. The downstream critical values are given by

3q8/3
downβc,down = 28/3τ

1/3
c,down, (2.28)

while the upstream critical values are given by

3q8/3
up βc,up = 28/3τ 1/3

c,up, (2.29)

where the subscripts indicate whether the critical value describes the upstream or
downstream region. For the step geometry in figure 1, we have qdown = b1/2, while
qup = 1. This gives

βc,up =
(

256
27

τc,up

)1/3

, βc,down =
(

256
27b4 τc,down

)1/3

. (2.30a,b)

There are three possible elastic sheet behaviours. If β < βc,down, then all waves on the free
surface must decay in space away from the step. If β > βc,up, then the surface can contain
non-decaying gravitational waves downstream from the step, and non-decaying elastic
waves upstream from the step. These configurations were both possible in the linearized
problem. However, if βc,down < β < βc,up, then any downstream gravitational waves have
non-decaying amplitude, while all elastic effects must decay in space away from the step.
The parameter regimes are illustrated for a step with b = 2 in figure 6(a).

950 A6-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

80
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.806
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Gravity waves: see (c)

All waves decay
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τ

Elastic and gravity waves

Elastic waves: see (d)

All waves decay
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β
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Elastic waves

y

x

y

x

Decaying waves Decaying wavesGravity waves

Figure 6. Possible wave behaviour as β and τ are varied, for (a) an upwards step with b = 2, and (b) a
downwards step with b = 2. In (a,b), there are three regions. In the unshaded region, all elastic and gravitational
wave contributions must decay in space away from the step. In the dark-shaded region, both elastic and
gravitational waves can propagate indefinitely with constant amplitude. In (a), the lightly shaded region
corresponds to βc,down < β < βc,up, and the surface can support non-decaying waves only in the downstream
region, driven by gravity. Any upstream elastic waves must decay in space. In (b), the lightly shaded region
corresponds to βc,up < β < βc,down, and the surface can support non-decaying waves only in the upstream
region, driven by elastic forces. Panels (c,d) depict the one-sided wave profiles for (a,b), respectively. In (c), the
schematic shows an upwards step that produces downstream gravity waves with constant amplitude, while the
upstream waves decay. In (d), the schematic shows a downwards step that produces upstream elastic waves with
constant amplitude, while the downstream gravity waves decay. Neither of these two behaviours is possible in
the linearized system.

It is also possible to consider a downwards step, such that θ0 = 0 for −b < ζ < −1. In
this case, the leading-order solution is given by

θ(0) = 0, q(0) =
(

e−w + 1
e−w + b

)1/2

. (2.31a,b)

The new critical values are instead given by

βc,up =
(

256
27

τc,up

)1/3

, βc,down =
(

256b4

27
τc,down

)1/3

. (2.32a,b)

If β < βc,up, then all waves on the free surface must decay in space away from the step. If
β > βc,down, then the flow exceeds both critical values of β, and can support non-decaying
gravitational waves downstream from the step, and non-decaying elastic waves upstream
from the step. If βc,up < β < βc,down, then any downstream gravitational waves must
decay in space, while non-decaying elastic effects are possible. The parameter regimes
are illustrated for a downwards step with b = 2 in figure 6(b).

This behaviour is consistent with the dispersion relation for finite-depth flow (1.2). We
denote the upstream depth of the channel as Lu and the downstream depth as Ld; for an
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upwards step, Ld < Lu. This means that the minimum value for the phase velocity, cmin,
differs on either side of the step. As L increases, it can be seen from the dispersion relation
(1.2) that the minimum value of the phase speed for flexural-gravity waves also increases.
In figure 6(a), we see that the geometry permits an intermediate region in which there
are only downstream gravity waves. This corresponds to the case where the flow velocity
exceeds cmin in the downstream region, but is lower than the higher value of cmin obtained
in the upstream region. The converse is true for downstream steps, where Lu < Ld; in
this case, the minimum phase velocity for waves is greater in the downstream region than
the upstream region, leading to flow geometries described in figure 6(b) that contain only
upstream waves.

This is not a full analysis of the nonlinear problem. We would need to study χ in
order to identify the position of Stokes curves in the problem, and therefore determine
the location at which the waves appear. This requires determining the solution to (2.27a,b),
which would likely necessitate a computational study. Nonlinear problems can also contain
more complicated switching behaviour, such as second-generation Stokes switching; see
Body, King & Tew (2005) and Chapman & Mortimer (2005). This was found to exist
in some nonlinear gravity-capillary wave regimes in Trinh & Chapman (2013b). Any
conclusions reached for the nonlinear system would require validation against numerical
simulations, but the presence of surface waves in both directions far from the step makes it
challenging to obtain sensible boundary conditions for the flow behaviour. For a detailed
description of the numerical challenges involved in studying these systems, and substantial
progress in overcoming these obstacles, see the numerical analysis of two-dimensional
gravity-capillary waves in Jamshidi & Trinh (2020). A full analysis of the nonlinear
problem is therefore beyond the scope of the present study.

An important difference between the analysis of the linear problem and any full
nonlinear analysis is that the wavelength of the flexural-gravity waves will depend on b,
and therefore the step height. This may be seen by the inclusion of q(0) in the singulant
equation (2.27a,b). The explicit dependence can be computed by solving (2.27a,b) using
the asymptotic behaviour of q(0) in the limit that w → −∞ for upstream waves, and
w → ∞ for downstream waves. This phenomenon is predicted by the dispersion relation
(1.2), which depends explicitly on the depth of the channel, and is consistent with other
related exponential asymptotic studies such as Chapman & Vanden-Broeck (2002, 2006),
Trinh & Chapman (2013b) and Lustri et al. (2020). This wavelength selection did not
occur in the linearized problem, as the flow was linearized around an unperturbed flow
of constant depth; this constant depth determines the wavelength of the flexural-gravity
waves to leading order in δ.

3. Three-dimensional hydroelastic waves

We consider a three-dimensional incompressible, irrotational, inviscid flow of infinite
depth with a submerged point source at depth H and upstream flow velocity U. An elastic
sheet with flexural rigidity D rests on the surface of the flow. In three dimensions, we
non-dimensionalize velocity by the upstream flow velocity U, and distance by a reference
length scale L. The position of the elastic sheet is denoted as ξ(x, y). The flow therefore
has a non-dimensionalized source depth h = H/L.

A schematic of this flow geometry is shown in figure 7. A computed elastic sheet
solution for ε = 0.15, where ε3 = D/(ρU2L3), is shown in figure 8. The waves that form in
the elastic sheet persist upstream from the obstacle, in a similar fashion to capillary waves.
This scaling regime neglects gravitational effects; this decision is justified by experimental
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Exponential asymptotics for elastic-gravity waves

z = ξ (x, y)

z
y

x

Flow velocity = 1
Source

(0, 0, –h)

Figure 7. Prescribed fluid configuration for three-dimensional flow with unit non-dimensionalized velocity
past a source with non-dimensionalized depth h. The shaded region represents the position of the free surface
ξ(x, y), and the cross represents the position of the source. The flow region lies below the free surface, and
the mean flow is moving from left to right, with flow velocity U in the unscaled problem. Elastic waves form
upstream from the obstacle.

Elastic sheet position
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Figure 8. Computed three-dimensional linearized flow for ε = 0.15 past a source with unit depth, satisfying
the system given in (3.6)–(3.9). The surface along the line y = 0 is shown as a black curve, with visible ripples
ahead of the source, submerged one unit under (x, y) = (0, 0).

work such as Ono-dit-Biot et al. (2019), in which gravitational effects are present, but the
gravitational wavelength is sufficiently large that they are not apparent in the experimental
results. Hence we can predict the behaviour of the hydroelastic waves in such a set-up
without incorporating gravitational effects.

3.1. Governing equation
The flow is governed by Laplace’s equation in three dimensions,

∇2φ = 0, −∞ < z < ξ(x, y), (3.1)
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with kinematic boundary condition

ξxφx + ξyφy = φz, z = ξ(x, y). (3.2)

As discussed in § 1.2, we apply a biharmonic model to describe the behaviour of the elastic
sheet in the linear regime. This gives

1
2

(
|∇φ|2 − 1

)
+ ε3(ξxxxx + 2ξxxyy + ξyyyy) = 0, z = ξ(x, y), (3.3)

where ε3 = D/(ρU2L3). This quantity corresponds to the ratio between the Froude
number and bending length ratio presented in (1.5a,b). We are concerned with the
free-surface behaviour in the limit 0 < ε � 1, corresponding to a regime in which gravity
is neglected, and inertial effects are large compared to the elastic restoring force. Since the
flow is uniform in the far field, φx → 1. The source condition is set to

φ ∼ δ

4π
√

x2 + y2 + (z + h)2
as (x, y, z) → (0, 0,−h). (3.4)

Finally, we can prescribe that the solution satisfies a radiation condition, with waves
present directly upstream from the singularity.

We are concerned with the limit 0 < δ � ε, describing a weak source. In this case, the
flow disturbance due to the source effect is small, and the equations may be linearized in δ
about a uniform stream while retaining the full asymptotic behaviour in the small-ε limit.
We are therefore studying the combined asymptotic parameter regime 0 < δ � ε � 1.

3.2. Linearization
We linearize about uniform flow by setting

φ = x + δφ̃, ξ = δξ̃, (3.5a,b)

to give, at leading order in δ,

∇2φ̃ = 0, −∞ < z < 0, (3.6)

φ̃z − ξ̃x = 0, z = 0, (3.7)

φ̃x − ε3
(
ξ̃xxxx + 2ξ̃xxyy + ξ̃yyyy

)
= 0, z = 0, (3.8)

where the boundary conditions are now applied on the fixed surface z = 0. The far-field
conditions imply that φ̃ → 0 as x2 + y2 + z2 → ∞, while near the source, the singular
behaviour is given by

φ̃ ∼ 1

4π
√

x2 + y2 + (z + h)2
as (x, y, z) → (0, 0,−h). (3.9)
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Exponential asymptotics for elastic-gravity waves

3.3. Series expression
We first expand the fluid potential and free-surface position as power series in ε,

φ̃ ∼
∞∑

n=0

ε3nφ(n), ξ̃ ∼
∞∑

n=0

ε3nξ (n), (3.10a,b)

to give for n ≥ 0

∇2φ(n) = 0, −∞ < z < 0, (3.11)

φ(n)z − ξ (n)x = 0, z = 0, (3.12)

φ(n)x − ξ (n−1)
xxxx − 2ξ (n−1)

xxyy − ξ (n−1)
yyyy = 0, z = 0, (3.13)

with the convention that ξ (−1) = 0. The far-field behaviour tends to zero at all orders of n,
and the singularity condition (3.9) is applied to the leading-order expression, giving

φ(0) ∼ 1

4π
√

x2 + y2 + (z + h)2
as (x, y, z) → (0, 0,−h). (3.14)

The leading-order solution is given by

φ(0) = 1

4π
√

x2 + y2 + (z + h)2
− 1

4π
√

x2 + y2 + (z − h)2
, (3.15)

ξ (0) = − xh

2π( y2 + h2)
√

x2 + y2 + h2
− 1

2π( y2 + h2)
, (3.16)

where the leading-order free-surface behaviour is set to be undisturbed far behind the
source.

3.4. Late-order terms
In order to optimally truncate the asymptotic series prescribed in (3.10a,b), we
must determine the form of the late-order terms. To accomplish this, we make a
factorial-over-power ansatz with the form

φ(n) ∼ Φ(x, y, z) Γ (3n + γ )

χ(x, y, z)3n+γ and ξ (n) ∼ Ξ(x, y) Γ (3n + γ )

χ(x, y, 0)3n+γ as n → ∞,

(3.17a,b)
where γ is a constant. In order that (3.17a,b) is the power series developed in § 3.3, we
require that the singulant, χ satisfies

χ = 0 on x2 + y2 + (z ± h)2 = 0, (3.18)

where the sign chosen depends upon which of the two singularities is being considered. For
complex values of x, y and z, this defines a four-dimensional hypersurface. Irrespective of
which singularity is under consideration, this hypersurface intersects the four-dimensional
complexified free surface on the two-dimensional hypersurface satisfying x2 + y2

+ h2 = 0.
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3.4.1. Calculating the singulant
Applying the ansatz expressions in (3.17a,b) to the governing equation (3.11) and taking
the first two orders as n → ∞ gives, for z ≤ 0,

χ2
x + χ2

y + χ2
z = 0, (3.19)

2Φxχx + 2Φyχy + 2Φzχz = −(χxx + χyy + χzz), (3.20)

while the boundary conditions on z = 0 at leading order become

−χzΦ + χxΞ = 0, (3.21)

χxΦ + (χ4
x + 2χ2

x χ
2
y + χ4

y )Ξ = 0. (3.22)

The system in (3.21)–(3.22) must have non-zero solutions, which requires

χz = − χ2
x

(χ2
x + χ2

y )
2 , Ξ = − χx

χ2
x + χ2

y
Φ. (3.23a,b)

Applying (3.23a,b) to (3.19) evaluated on z = 0 gives a singulant equation for χ on the
free surface:

χ4
x +

(
χ2

x + χ2
y

)5 = 0. (3.24)

This expression is similar to the capillary wave singulant equation from Lustri et al. (2019),
with a different power in the second term. The subsequent analysis is therefore similar, and
we include an outline of the details. Because the singularity lies below the fluid surface,
we must solve (3.24) for complex x and y with the boundary condition

χ = 0 on x2 + y2 + h2 = 0. (3.25)

Solving (3.24)–(3.25) using Charpit’s method gives

χ = ±3zjh1/3s5/3(s − x)
2h2 + 5s2 , (3.26)

where zj is one of the three solutions of z3
j = 1, and s is one of the four solutions of

25(x2 + y2)s4 + 20h2xs3 + (4h2 + 25x2 + 20y2)h2s2 + 20h4xs + 4h4(h2 + y2) = 0.
(3.27)

This produces twenty-four potential late-order contributions, corresponding to the choice
of sign and zj in (3.26) and the four solutions of (3.27). Twelve of these solutions are
spurious, introduced by squaring both sides of an equation in the algebraic manipulations.
This leaves twelve solutions, which appear as six complex conjugate pairs. Three of these
pairs do not demonstrate Stokes switching, as they are exponentially large on the curve
Im(χ) = 0; they must therefore be inactive on the surface, and do not contribute to the
free-surface behaviour. This leaves three singulant pairs that produce waves on the free
surface. We will denote these as χj and χ j for j = 1, 2, 3, where the bar represents complex
conjugation.

The behaviour of χ1 is illustrated in figure 9. The surface waves are absent directly
downstream from the obstacle. The surface contains a Stokes curve that passes through
the origin. This Stokes curve causes elastic waves to be switched on upstream from the
obstacle. From direct algebraic computation, we find that χ ∼ (1 − ix)/h in the limit that
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Figure 9. The (a) real and (b) imaginary parts of the singulant χ1, corresponding to algebraically decaying
elastic waves. The Stokes curve, satisfying Re(χ1) > 0 and Im(χ1) = 0, is depicted in (b). The waves are not
present in a region downstream from the obstacle, and appear as the Stokes curve is crossed into the region
ahead of the obstacle. The equal phase lines in (b) illustrate the shape of the surface waves.
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Figure 10. The (a) real and (b) imaginary parts of the singulant χ2, corresponding to one set of exponentially
decaying elastic waves. The anti-Stokes curve satisfies Re(χ2) = 0, and is depicted as a dashed line. On the
inside of this curve (where Re(χ2) < 0), the exponential term would be large. Consequently, the remainder
must be inactive in a region containing the anti-Stokes curve. The Stokes curve, satisfying Re(χ2) > 0 and
Im(χ2) = 0, is depicted in (b). We see that the exponential must be switched on as this curve is crossed in a
direction heading away from the origin. As the real part of χ2 increases without bound as x → −∞, these waves
must decay exponentially in space, which is too rapid to have an observable physical effect. The behaviour of
χ3 can be obtained by the mapping x 	→ −x.

x → −∞. These elastic waves do not decay exponentially in space, although they will
have algebraic spatial decay due to the prefactor, calculated below.

The behaviour of χ2 is illustrated in figure 10. The surface waves are also absent directly
downstream from the obstacle. In fact, we see that this does not depend on the radiation
condition; instead, there is an anti-Stokes curve on the surface. If the surface waves were
present on this side of the Stokes curve, then they would become exponentially large on
the downstream side of the anti-Stokes curve. We therefore see that the waves are present
only on the downstream side of the Stokes curve. Importantly, Re(χ) grows monotonically
in the negative x-direction, becoming arbitrarily large as x → −∞. This means that the
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waves decay exponentially in space. We will therefore not consider these waves in the
subsequent analysis.

Finally, we find that χ3 is identical to χ2 reflected around the y-axis. This is consistent
with the two-dimensional result, seen in Lustri et al. (2019), in which the surface
contains symmetric waves emerging in both directions above the obstacle, which decay
exponentially in space.

3.4.2. Calculating the prefactor
We follow an analysis similar to previous work on gravity and capillary waves in order to
determine the prefactor expressionΦ, and henceΞ . These calculations are quite technical,
and the details are included in § B.1. The prefactor Φ is given by

Φ= s1/3
√

2
4π3/2h5/6

[
1− 5h2(2h2−s2)(s−x)

3s(2h2+5s2)

](−1)1/3(4h10−5h8s2−30h2s8−48s10)/30h8/3s16/3(2h2−s2)

,

(3.28)
where s is the solution of (3.27) corresponding to the singulant illustrated in figure 9.

Finally, to find γ , we ensure that the strength of the singularity in the late-order
behaviour φ(n) given in (3.17a,b) is consistent with the leading-order behaviour φ(0),
which has strength 1/2. It is clear from the recurrence relation (3.13) that the strength
of the singularity will increase by three between φ(n−1) and φ(n). This implies that near
the singularity at x2 + y2 + h2 = 0,

Φ Γ (γ )

χγ
→ α(x, y)

(x2 + y2 + h2)1/2
, (3.29)

where α is of order 1 in the limit. From (3.28), we see that the prefactor is also order 1
in this limit. A local analysis near the singularity (performed in (B13)) shows that 1/χ
contains a singularity with strength one at x2 + y2 + h2 = 0. Matching the order of the
expressions in (3.29) therefore gives γ = 1/2. We have therefore completely described
the late-order terms in (3.17a,b), where (3.23a,b) is used to determine the value of Ξ , and
hence the behaviour of the free-surface waves.

In § B.3, we use the late-order terms in (3.17a,b) to apply the matched asymptotic
expansion methodology of Olde Daalhuis et al. (1995). We optimally truncate the
asymptotic series and identify the Stokes curves. Finally, we use a matched asymptotic
expansion analysis on the truncation remainder to compute the exponentially small
contribution to the free-surface behaviour that appears across the Stokes lines. This
analysis in § B.3 follows steps similar to the equivalent analysis in Lustri & Chapman
(2013) and Lustri et al. (2019).

Using this method, we find that the exponentially small contributions to the fluid
potential (denoted φexp) and free-surface position (denoted ξexp) as ε → 0 are switched
in the region to the left of the Stokes curve shown in figure 9. In the region where the
exponentially small contributions are present, they are given by

φexp ∼ 2πiΦ
3
√
ε

e−χ1/ε + c.c., ξexp ∼ 2πiΞ
3
√
ε

e−χ1/ε + c.c., (3.30a,b)

where c.c. denotes the complex conjugate contribution. In particular, the expression for
ξexp contains exponentially small oscillations as ε → 0, representing the elastic ripples on
the free surface.
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Figure 11. Comparison between asymptotic predictions of the amplitude using (3.32) and numerical
calculations, for the case h = 1. The amplitude is scaled by |x|3/10 so that it tends to a constant value as

x → −∞.

We note that (3.30b) is a leading-order expression for the exponentially small waves,
with algebraic corrections to the prefactors Φ and Ξ omitted. The solution also contains
contributions from χ2 and χ3 with the same form, but these decay exponentially in
space, and are therefore exponentially smaller in amplitude as ε → 0 than the elastic
waves caused by χ1, as well as the neglected correction terms. We therefore omit these
contributions from the asymptotic expression.

3.5. Results and comparison
Along the curve y = 0 for x < 0, we have s = ih and χ = h + ix. We therefore evaluate
the free-surface position to be

ξexp ∼ − (−1)1/633/10

3h1/5
√

2πε (8h + 5ix)3/10
e−(h+ix)/ε + c.c. as ε → −∞, (3.31)

where c.c. denotes the complex conjugate contribution. In the limit that x becomes large
and negative, we find that the amplitude of the waves on y = 0 is is given by

amplitude ∼ 1
3h1/5

√
2
πε

(
3

5|x|
)3/10

e−h/ε as x → −∞, ε → 0. (3.32)

This provides us with a quantity that we may use to check the accuracy of the asymptotic
approximation. We compare the amplitude of the asymptotic results with those of
numerically calculated free-surface profiles obtained by solving the linearized system
(3.6)–(3.9). These results were obtained using an adaptation of the method described
in Lustri & Chapman (2013) and Lustri et al. (2019), which consists of expressing the
free-surface behaviour in terms of Fourier inversion integrals, and evaluating the double
integral numerically on a fixed domain.

In figure 11, we illustrate the scaled numerical amplitude (circles) against the asymptotic
prediction from (3.32), computed for h = 1 over a range of ε values. The amplitude is
scaled by |x|3/10, so that it tends to a constant as x → −∞. The numerical amplitude
is taken by determining the scaled amplitude for sufficiently large negative values of x
that the scaled amplitude does not display significant variation. There is strong agreement
between the asymptotic predictions and numerical results. For values of ε smaller than
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those depicted, it become numerically challenging to compute the wave behaviour, due to
the very small amplitude of the resulting waves.

4. Discussion and conclusions

In this paper, we studied behaviour of the waves that form on an elastic sheet resting
on an inviscid flow stream containing a submerged obstacle in several different regimes.
In each regime that we considered, the surface waves are exponentially small in the
limit of small bending stiffness, and we therefore required exponential asymptotic
techniques in order to study the wave behaviour. As these waves share many similarities
with surface-tension-driven capillary waves, we used techniques applied in Trinh &
Chapman (2013a,b) for two-dimensional gravity-capillary waves, and Lustri et al. (2019)
for three-dimensional capillary waves. Using exponential asymptotics, we identified the
regions in which the surface waves formed, and calculated a mathematical expression for
the wave behaviour. In each flow configuration, we determined that the surface waves
appeared as Stokes curves were crossed, and by understanding the behaviour of these
Stokes curves, it was possible to classify the types of waves that could appear on the
elastic sheet.

We first studied the behaviour of flexural-gravity waves on linearized flow over a
small step in two dimensions. In this regime, the elastic sheet behaviour depended on
a particular parameter βc(τ ), which related the relative sizes of the Froude number and
bending stiffness parameter. If the parameter β is less than this critical value, then the four
different wave contributions on the elastic sheet decay away from the obstacle, meaning
that both the upstream and downstream regions do not contain any waves. If β exceeds this
critical value, then constant-amplitude elastic waves propagate upstream from the obstacle,
and constant-amplitude gravity waves propagate downstream. In this regime, the sheet
behaviour also contains two decaying wave contributions, but these are small compared to
the constant-amplitude waves.

We did not perform a full exponential asymptotic analysis of the two-dimensional
nonlinear problem, but instead used the singulant behaviour and Stokes structure of the
problem to predict the types of wave that could form on the elastic sheet. Flow over
a submerged step in this case contains a third intermediate regime, in addition to the
two regimes from the linearized problem. For flow over an upward step, there are two
distinct critical values: one critical value of β that determines whether constant-amplitude
downstream gravity waves are present, and a larger critical value of β that determines
whether constant-amplitude upstream elastic waves are present. It is therefore possible to
construct flow geometries that contain constant-amplitude downstream gravity waves, but
where all upstream waves decay in space. The converse is true for a downward step: it is
possible to construct geometries that contain constant-amplitude upstream elastic waves,
but all downstream waves decay in space.

In the two-dimensional geometries considered in this study, we considered the behaviour
of systems in which gravitational and elastic effects have similar strength, while neglecting
surface tension effects. It would also be interesting to calculate the wave behaviour
while incorporating interactions between surface tension of the fluid and bending effects.
This interaction was studied experimentally in Deike, Bacri & Falcon (2013) and Deike,
Berhanu & Falcon (2017), and a similar form has been used to study compressive effects
on elastic sheets in Das, Sahoo & Meylan (2018). In this case, both capillary and elastic
waves would be expected to propagate upstream, and the behaviour in the elastic sheet
would be more straightforward to validate computationally.
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Exponential asymptotics for elastic-gravity waves

Finally, we studied hydroelastic waves that form on linearized flow in three dimensions
over a submerged obstacle. We considered a regime in which the wave behaviour is caused
solely by the elastic restoring force. Using exponential asymptotics, we calculated the wave
behaviour, and found that it is consistent with the two-dimensional case from Lustri et al.
(2020). The flow contained four wave contributions, two of which decay exponentially in
space, and one of which produced visible upstream elastic waves that decay algebraically.
We validated these calculations against numerical results. The wave patterns are visible
similar to the capillary waves from Lustri et al. (2019), although the algebraic decay rate
of the wave amplitude differs between elastic and capillary waves, and show qualitative
agreement with the experimental results of Ono-dit-Biot et al. (2019).

It is natural to consider whether this analysis can be extended to flexural-gravity waves
in three dimensions. In this case, we would replace (3.3) with

βε

2

(
|∇φ|2 − 1

)
+ ξ + βτε4(ξxxxx + 2ξxxyy + ξyyyy) = 0, z = ξ(x, y), (4.1)

where F2 = βε and σ = βτε4, as in the two-dimensional problem. For the linearized
problem, repeating the late-order analysis in a similar fashion gives

βχ4
x + (χ2

x + χy)
2[1 + βτ(χ2

x + χ2
y )

2]2 = 0, (4.2)

with the boundary condition χ = 0 on x2 + y2 + h2 = 0. This equation is challenging to
solve using analytical methods, as there are eight valid solution sheets in the analytically
continued free surface, which has x ∈ C and y ∈ C. Solving this equation directly
would likely require more complicated ray-tracing methods such as those developed for
nonlinear three-dimensional flow in Johnson-Llambias (2022), and would therefore be
unlikely to identify convenient closed-form solutions such as (3.30a,b). Nonetheless,
these computations would likely still be useful, as exponential asymptotic methods are
a convenient method for isolating particular wave behaviours and studying the waves
directly.
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Appendix A. Detailed analysis for two-dimensional geometry

A.1. Inner expansion near a singularity
Define a new variable μ such that w + iπ = εμ. To leading order as ε → 0, (2.12)
becomes

q − iθ ∼ 1
2εμ

. (A1)

Noting the form of q0, we set q̄(μ)/2ε = q(ζ ), θ̄ (μ)/2ε = θ(ζ ). We express the Bernoulli
condition in terms of μ, and use (A1) to eliminate θ and obtain an equation for q.
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To leading order as ε → 0, this gives

− iβq̄′ + 1
μ

− q̄ + βτ

(
24
μ5 − q̄′′′′

)
= 0. (A2)

Now we create the inner expansion

q̄ ∼
∞∑

n=0

An Γ (n + 1)
μn+1 as μ → ∞. (A3)

Applying this to the inner equation and matching powers of μ gives the following
recurrence relation:

1 − A0 = 0, (A4)

iβAn−1 − An = 0, n = 1, 2, 3, (A5)

iβA3 − A4 + βτ(1 − A0) = 0, (A6)

iβAn−1 − An − βτAn−4 = 0, n > 4. (A7)

Calculating the first few terms gives

A0 = 1, A1 = iβ, A2 = −β2, A3 = −iβ3, A4 = β4, A5 = iβ2(β3 − τ),

(A8a–f )

A6 = −β3(β3 − 2τ), A7 = −iβ4(β3 − 3τ), A8 = β5(β3 − 4τ). (A8g–i)

While the terms increase in complexity beyond this point, it is possible to solve (A7)
exactly, giving

An = C1

kn
1

+ C2

kn
2

+ C3

kn
3

+ C4

kn
4
, (A10)

where Cj are constants to be determined. We choose four values Aj with j > 4, such as
j = 5, 6, 7, 8, and use these values to find Cj for j = 1, 2, 3, 4. The resultant expressions
are given by

Cj =
k8

j

(
kjA5 + k2

j A6 + k3
j A7 − 1

βτ
A8

)
1
βτ

− 3k4
j

, (A11)

for j = 1, . . . , 4. Using Van Dyke’s matching principle to maintain consistency between
the behaviour of the inner expansion (A3) in the limit μ → ∞ with the late-order term
ansatz (1.10a,b) in the limit w → −iπ, it may be seen that Λj = Cj/2 for j = 1, 2, 3, 4,
where Λj is the prefactor corresponding to χj. This is not a particularly useful result,
although we do note that C3 = C4. It can also be seen by direct substitution that C1 tends
to the correct gravity wave prefactor in the limit that τ → 0.

A.2. Exponential asymptotic analysis
We truncate the divergent series after N − 1 terms, obtaining

q̂(w) =
N−1∑
n=0

εn q(n)(w)+ RN(w), θ̂ (w) =
N−1∑
n=0

εn θ(n)(w)+ SN(w), (A12a,b)

where RN(w) and SN(w) are the remainder terms after optimal truncation. Typically, the
optimal truncation point can be found using a heuristic from Boyd (1999), in which the
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Exponential asymptotics for elastic-gravity waves

series is truncated after the smallest term. Approximating series terms using the late-order
ansatz gives N ∼ |χ |/ε as ε → 0 and N → ∞. We therefore set N = |χ |/ε + α, where
0 ≤ α < 1 is chosen so that N is an integer.

Applying the truncated series to the integral equation and neglecting the integral
expression (see the discussion in Trinh et al. (2011) for more detail regarding this step)
gives RN = iSN . Applying the truncated series to the Bernoulli condition gives

iβε
dSN

dζ
+ SN + βτε4 d4SN

dζ 4 ∼ εNθN, (A13)

where the recurrence relation was used to simplify the right-hand side of this expression.
The right-hand side is exponentially small except in the neighbourhood of Stokes lines.
If we use a WKB ansatz on this problem, neglecting the right-hand side entirely,
we determine that the remainder behaviour away from the Stokes line is given by
SN ∼ AΘ(ζ) exp(−χ(ζ )/ε) as ε → 0, where A is some constant. In order to capture the
effect of Stokes switching in the neighbourhood of a Stokes line, we set

SN ∼ A(ζ )Θ(ζ ) e−χ(ζ )/ε as ε → 0, (A14)

where A is a Stokes multiplier that varies rapidly in the neighbourhood of a Stokes line,
but is essentially constant away from this neighbourhood. Applying this to (A13) and
simplifying the resultant expression gives

β
(

i + 4τk3
j

) dA
dw

∼ εN−1 Γ (N + 1)
χN+1 e−χ/ε as ε → 0. (A15)

We write the solution as a function of the independent variable χ , which gives

β

kj

(
i + 4τk3

j

) dA
dχ

∼ εN−1 Γ (N + 1)
χN+1 e−χ/ε as ε → 0. (A16)

Now we make the transformation χ = r eiθ , and consider the variation in the θ -direction.
Hence we have

d
dχ

= − i e−iθ

r
d

dθ
. (A17)

Using Stirling’s formula and the optimal truncation N = r/ε + α on the resultant
expression gives

β

kj

(
i + 4τk3

j

) dA
dθ

∼ i
√

2πr
ε3/2 exp

( r
ε
(eiθ − 1)− iθ

( r
ε

+ α
))

as ε → 0. (A18)

To investigate the rapid variation in the neighbourhood of this expression in the
neighbourhood of the Stokes line, we set θ = ε1/2ϑ , which gives

β

kj

(
i + 4τk3

j

) dA
dϑ

∼ i
√

2πr
ε

e−rϑ2/2
as ε → 0, (A19)

so that

A ∼ kj

β

(
1

1 − 4τ ik3
j

) √
2πr
ε

∫ θ
√

r/ε

−∞
e−t2/2 dt + C, (A20)
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where C is a constant. As we move from the waveless region across a Stokes line, the jump
in the Stokes switching term is given by

[S]+− ∼
(

1
1 − 4τ ik3

j

)
2πkj

βε
, (A21)

and the jump in the remainder is therefore given by

[SN]+− ∼
(

1
1 − 4τ ik3

j

)
2πkjΘ

βε
exp(−kj(w + iπ)/ε). (A22)

The corresponding complex conjugate contribution is switched across Stokes curves
generated by the singularity at w = iπ in the analytically continued free surface. Hence
the combined expression for the waves is given by twice the real part of (A22).

Appendix B. Detailed analysis for three-dimensional geometry

B.1. Prefactor equation
To find the prefactor equation, we consider the next order in (3.7)–(3.8) as n → ∞. In
order to determine the prefactors uniquely, we must expand Φ and Ξ as power series in
the limit that n → ∞, and determine a consistency condition. We write

Φ = Φ0 + 1
n
Φ1 + · · · , Ξ = Ξ0 + 1

n
Ξ1 + · · · . (B1a,b)

Applying the late-order ansatz to (3.11)–(3.13) now gives

−χzΦ1 + χxΞ1 = −Φ0,z +Ξ0,x,

χxΦ1 + (χ2
x + χ2

y )
2Ξ1 = Φ0,x + 4(χ3

x + χxχ
2
y )Ξ0,x + 4(χ3

y + χ2
x χy)Ξ0,y

+ (8χxχyχxy + (6χ2
x + 2χ2

y )χxx + (6χ2
y + 2χ2

x )χyy)Ξ0.

⎫⎪⎪⎬
⎪⎪⎭ (B2)

This system has non-trivial solutions for Φ1 and Ξ1 only when

χx(Φ0,z −Ξ0,x) = χz(Φ0,x + 4(χ3
x + χxχ

2
y )Ξ0,x + 4(χ3

y + χ2
x χy)Ξ0,y

+ (8χxχyχxy + (6χ2
x + 2χ2

y )χxx + (6χ2
y + 2χ2

x )χyy)Ξ0). (B3)

For ease of notation, we now omit the subscripts and denote Ξ0 by Ξ and Φ0 by Φ. This
therefore gives

Φz = Ξx + χz

χx
Φx + 4(χ3

x + χxχ
2
y )Ξx + 4(χ3

y + χ2
x χy)Ξy

+ (8χxχyχxy + (6χ2
x + 2χ2

y )χxx + (6χ2
y + 2χ2

x )χyy)Ξ. (B4)

In order to solve the prefactor equation (3.20), we will express the equation on the
free surface entirely in terms of x and y derivatives. This will result in an equation that
has the exact same ray structure as the singulant equation (3.24), and hence the solution
may be obtained in terms of the same characteristic variables. The equations from (B4)
give appropriate expressions for χz and Φz; however, we must still consider the second
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derivative terms that will appear in the equation. Taking derivatives of χz and rearranging
gives

χxz = − 2χxχxx

(χ2
x + χ2

y )
2 + 4χ2

x (χxχxx + χyχxy)

(χ2
x + χ2

y )
3 , (B5)

χyz = − 2χxχxy

(χ2
x + χ2

y )
2 + 4χ2

x (χxχxy + χyχyy)

(χ2
x + χ2

y )
3 , (B6)

χzz = − 2χxχxz

(χ2
x + χ2

y )
2 + 4χ2

x (χxχxz + χyχyz)

(χ2
x + χ2

y )
3 . (B7)

The final expression can be simplified using (B5)–(B6) to completely eliminate the z
dependence from χzz. Using (B5)–(B7), as well as (3.23a,b) and (B4), we write the
prefactor equation (3.20) in terms of x and y derivatives on z = 0 as

[
4χ3

x + 10χx(χ
2
x + χ2

y )
4
]
Φx +

[
10χy(χ

2
x + χ2

y )
4
]
Φy = G(x, y)Φ, (B8)

where

G(x, y)=(1−6χ2
x χ

2
y (χ

2
x −χ2

y ))χxx + 8χ3
x χy(χ

2
x − 2χ2

y )χxy + (1 − 2χ6
x + 10χ4

x χ
2
y )χyy.

(B9)
This equation may be solved using the method of characteristics, giving the ray equations
in terms of characteristic variable u as

dx
du

= 4χ3
x + 10χx(χ

2
x + χ2

y )
4,

dy
du

= 10χy(χ
2
x + χ2

y )
4,

dΦ
du

= G(x, y)Φ. (B10a–c)

The first two of these equations govern the ray paths, and are identical to the ray equations
associated with (3.24). This allows (B10a–c) to be written in terms of the associated
Charpit variables, and solved to give

Φ(s, u)=Φ(s, 0)
[

1+ 10(s6 − 2h2s4)u
3h7

](−1)1/3(4h10−5h8s2−30h2s8−48s10)/30h8/3s16/3(2h2−s2)

,

(B11)
where the characteristic variable u is the same characteristic variable as in the singulant,
given by

u = − h7(s − x)
2s5(2h2 + 5s2)

. (B12)

This process can be performed systematically using standard computational algebra
programming methods. Selecting the corresponding expression for s in terms of x and
y from (3.27) gives the solution in terms of the physical coordinates x and y. To find an
expression for Φ(s, 0), the behaviour of the system in the neighbourhood of u = 0 must
be computed and matched to this outer solution.
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B.2. Inner expansion near a singularity
To solve the inner problem, we first consider the behaviour of χ near the singularity at
x2 + y2 + (z + h)2 = 0, which takes the form

χL1 ∼ x2/3

2h5/3

(
x2 + y2 + (z + h)2

)
. (B13)

In the prefactor equation (3.28), we see that the unknown coefficient is a function of s.
From the Charpit analysis, it follows that s ∼ x near the singularity at t = 0. Hence we
define a system of inner coordinates given by

εσ1 = x2/3

2h5/3

(
x2 + y2 + (z + h)2

)
, εσ2 = x2/3

2h5/3

(
x2 + y2 + (z − h)2

)
, λ = x.

(B14a–c)
To leading order in ε, the linearized governing equation (3.6) becomes

5σ1φσ1σ1 + 5σ2φσ2σ2 + λφλσ2 + λφλσ1 = 0, (B15)

where terms containing derivatives with respect to both σ1 and σ2 were disregarded due to
the form of the inner expansion (B19a,b). Similarly, the boundary conditions (3.7)–(3.8)
become

hφσ1 − hφσ2 − λξσ1 − λξσ2 = 0 on σ1 = σ2, (B16)

hφσ1 + hφσ2 − λξσ1σ1σ1σ1 − λξσ2σ2σ2σ2 = 0 on σ1 = σ2. (B17)

Finally, by expressing the leading-order behaviour (3.15) in terms of the local variables,
we find that

φ(0) ∼ λ1/3
√

2

8πh5/6ε1/2σ
1/2
1

− λ1/3
√

2

8πh5/6ε1/2σ
1/2
2

. (B18)

We now define the series expansion near the singularity on the complexified free surface
as

φ ∼
∞∑

n=0

[
an(λ)

σ
n+1/2
1

+ bn(λ)

σ
n+1/2
2

]
, ξ ∼

∞∑
n=0

[
2cn(λ)

σ
n+1/2
1

]
, (B19a,b)

where the latter expression is valid only on the free surface itself, on which σ1 = σ2. The
factor 2 is included for subsequent algebraic convenience, and has no effect on the solution
to the problem as cn is unknown at this stage of the analysis. From (B18), we have

a0(λ) = λ
1/3

√
2

8πh5/6 , b0(λ) = −λ
1/3

√
2

8πh5/6 . (B20a,b)

We are interested in the behaviour of the terms on the complexified free surface in the
neighbourhood of the singularity at x2 + y2 + h2 = 0. Consequently, we apply the series
expression to (B16) on the surface (defined by σ1 = σ2) and match in the limit that σ1 (and
therefore σ2) tends to zero, giving

− h(an − bn)− 2λcn = 0, n ≥ 0. (B21)

Applying the series expansion to (B17) and matching in the same limit gives

− h(n + 7/2)(n + 5/2)(n + 3/2)(an + bn)+ 2cn+1 = 0, n ≥ 0. (B22)

We are interested in the behaviour on the complexified free surface; however, restricting
the domain in this fashion means that it is impossible to distinguish between the
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contributions from the series in σ1 and the series in σ2. We note, however, that the two
contributions have equal magnitude in (B18). As the singular behaviour of the problem is
preserved in all higher orders (see Dingle 1973), we conclude that this must be true for
the contributions at all subsequent orders. We therefore set |an| = |bn| in order to maintain
consistency with the leading-order singularity contributions. This may be accomplished
only if we divide the two equations given in (B21)–(B22) into four equations such that

−han − λcn = 0, −h(n + 7/2)(n + 5/2)(n + 3/2)an + λcn+1 = 0, (B23a,b)

hbn − λcn = 0, −h(n + 7/2)(n + 5/2)(n + 3/2)bn + λcn+1 = 0. (B24a,b)

We will consider only the first two of these equations, noting that the remaining equations
imply that bn = (−1)nan. Eliminating cn from this system gives

an+1 = (n + 7/2)(n + 5/2)(n + 3/2)an = a0 Γ (3n + 1/2)
Γ (1/2)

. (B25)

Hence, using the expression for a0 given in (B20a,b), we may match the local series
expression given in (B19a,b) with the prefactor given in (3.28). Noting that λ is the local
expression for s in the outer solution, and that Φ(s, 0) in the outer coordinates matches
with an(λ)+ bn(λ) in the inner coordinates, we find that

Φ(s, 0) = s1/3
√

2
4π3/2h5/6 . (B26)

Hence we are able to completely describe the late-order behaviour of terms in (3.10a,b),
with the complete expression given in (3.28).

B.3. Exponential asymptotic analysis
The asymptotic series given in (3.10a,b) may be truncated to give

φ̃ =
N−1∑
n=0

εnφ(n) + R(N), ξ̃ =
N−1∑
n=0

εnξ (n) + S(N), (B27a,b)

where N will be chosen in order to minimize the remainders R(N) and S(N). Applying this
series expression to (3.6) gives

∇2R(N) = 0, (B28)

while the boundary conditions (3.7)–(3.8) become, on z = 0,

R(N)z − S(N)x = 0, (B29)

R(N)x + ε3
(

S(N)xxxx + 2S(N)xxyy + S(N)yyyy

)
= −ε3N

(
ξ (N−1)

xxxx + 2ξ (N−1)
xxyy + 2ξ (N−1)

yyyy

)
, (B30)

having made use of the relationship in (3.13) and the fact that φ(0)x = 0. The homogeneous
form of (B28)–(B30) is satisfied as ε → 0 by

R(N) ∼ Φ e−χ/ε, S(N) ∼ Ξ e−χ/ε, (B31a,b)

where χ is one of the singulants determined from (3.26)–(3.27).
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We therefore set the remainder terms for the inhomogeneous problem to take the form

R(N) = A(x, y, z)Φ e−χ/ε, S(N) = B(x, y)Ξ e−χ/ε, (B32a,b)

where A and B are Stokes switching parameters. From (B29), we see that A = B on z = 0.
To determine the late-order term behaviour, we will require the first correction term for

the prefactors, and we therefore set

Φ = Φ0 + εΦ1 + · · · , Ξ = Ξ0 + εΞ1 + · · · . (B33a,b)

Applying the remainder forms given in (B32a,b) to the boundary conditions (B29) and
(B30) gives, after some rearrangement,

−AχzΦ1 + AχxΞ1 = −AΦ0,z − AzΦ0 + AΞ0,x + AxΞ0,

AχxΦ1 + A(χ2
x + χ2

y )
2Ξ1 = AΦ0,x + 4B(χ3

x + χxχ
2
y )Ξ0,x + 4A(χ3

y + χ2
x χy)Ξ0,y

+ AxΦ0 + 4Ax(χ
3
x + χxχ

2
y )Ξ0 + 4Ay(χ

3
y + χ2

x χy)Ξ0

+ A(8χxχyχxy + (6χ2
x + 2χ2

y )χxx + (6χ2
y + 2χ2

x )χyy)Ξ0

+ ε3N−2 eχ/ε
(
ξ (N−1)

xxxx + 2ξ (N−1)
xxyy + 2ξ (N−1)

yyyy

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B34)
Combining these expressions, and making use of (B4) to eliminate terms and (3.13) to
simplify the right-hand side, gives

−χx(AzΦ0 − AxΞ0)+ χz(AxΦ0 + 4(χ2
x + χ2

y )(Axχx + Ayχy)Ξ0)

∼ −ε3N−2χz(χ
2
x + χ2

y )
2ξ (N−1) eχ/ε. (B35)

As only the leading-order prefactor behaviour appears in the final expression, we will no
longer retain the subscripts. Applying the late-order ansatz gives

−χx(AzΦ − AxΞ)+ χz(AxΦ + 4(χ2
x + χ2

y )(Axχx + Ayχy)Ξ)

∼ ε3N−2 χ
2
xΞ Γ (3N − 3/2)

χ3N−3/2 eχ/ε. (B36)

Motivated by the homogeneous solution, we express the equation in terms of χ and y, and
apply (3.23a,b) to obtain

3Aχ = ε3N−2 eχ/ε
Γ (3N − 3/2)
χ3N−3/2 . (B37)

The optimal truncation point is given by N ∼ |χ |/3ε in the limit that ε → 0. We write
χ = r eiθ , with r and θ real so that N = r/3ε + α, where α is necessary to make N an
integer. Since N depends on r but not θ , we write

∂

∂χ
= − i e−iθ

r
∂

∂θ
. (B38)

Using Stirling’s formula on the resultant expression gives

Aθ ∼ i
√

2πr
3ε

exp
(

r
ε

(
eiθ − 1

)
− iθ

(
r
ε

+ 3α − 1
2

))
. (B39)

This variation is exponentially small, except in the neighbourhood of the Stokes line given
by θ = 0, where it is algebraically large. To investigate the rapid change in A in the vicinity
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of the Stokes line, we set θ = ε1/2θ̂ , giving

A
θ̂

∼ i
3

√
2πr
ε

e−rθ̂2/2, (B40)

so that

A ∼ i
3

√
2π

ε

∫ θ
√

r/ε

−∞
e−t2/2 dt + C, (B41)

where C is constant. Thus, as the Stokes line is crossed, A increases rapidly from 0 to
2πiε−1/2. Using (B32a,b), we find the variation in the fluid potential, and we subsequently
use (B29) to relate B to A. We therefore find the variation in the free-surface behaviour
as the Stokes line is crossed. The Stokes line variation for the potential and free-surface
position are respectively given by[

R(N)
]+
−

=2πiΦ
3
√
ε

e−χ/ε,
[
S(N)

]+
−

=2πiΞ
3
√
ε

e−χ/ε. (B42a,b)

Hence if we determine the prefactor and singulant behaviour associated with each
contribution, then (B42a,b) gives an expression for the behaviour switched on across the
appropriate Stokes line.
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