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We shall present in this paper a certain theorem concerning complex manifolds 
provided with an Hermitian metric satisfying the Kaehler restriction. The 
variables Zi, £2, . . . , zn denote local complex coordinates in the manifold and 
Zi, 22, . . . , zn their conjugates. The subscripts a, &, c, . . . run from 1 to n and 
by â we mean a + n (mod 2n), e.g., â = a. 

An Hermitian line element is given by 

(1) ds = gabdzadzh 

(summation over a, 6 from 1 tow); the coefficients ga& shall satisfy the con­
ditions 

(2) gab = gab = 0, gaS = gja = ^6-

In matric notation (2) has the following form: 

(gl.n+l» • • • » g l , 2 n \ 

gn,7i+l> • • • > gn,2nj 

If we let G' be the transposed conjugate of G, then by (2), G' = G and ®, the 
matrix of the fundamental tensor, is as follows: 

© 

so we see that 

-(°-G) 

*-fe$-tes)-* 
The line element (1) is said to satisfy the Kaehler condition if 

K } dzc bZa' 

The relations (2) and (3) thus imply 

(A\ Eg** = dgç* 
V ; dze dza' 

We may form an affine connection and a Riemann-Christoffel tensor from the 
fundamental tensor by the usual formulae. The only components different from 
zero of the Riemann-Christoffel tensor are 
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( 5 ) -K-abcdi -K-abcd} -K-abcdy J^abcd* 

A two-dimensional element at a point is called an holomorphic section if it is 
tangent to a complex curve through that point. If the sectional curvature at a point 
is the same for all holomorphic sections at that point then the Riemann-
Christoffel tensor can be written in the form 

(6) Robed = — |b(g a& gcd ± gad gcb), 

where b is the curvature on holomorphic sections ; moreover b is a constant on 
the manifold if at each point the sectional curvature is the same for all holo­
morphic sections at that point [1, p. 184]. For a more thorough-going exposition 
of this subject matter, one is referred to the papers of Bochner [1; 2]. 

Bochner has shown that relation (6) implies the existence of an analytic 
coordinate system in which the line element has the form 

m 2 £ \dza\
2 + b{ £ |Sa|2E l^l2 - I 2 UZa?) 

v> ds2 = —*- * * a-
(l + èbX>„|2)2 

a 

The line element (7) is, for b > 0, the Fubini-Study line element for complex 
projective space. If b = — 2 then (7) is the invarient line element of the unit 
cell |zi|2 + . . . + |JSW|2<1 under the group of all linear fractional transformations 
into itself. Let us call the complex projective space P* and the unit cell E* when 
they have these line elements. 

We can now state our theorem. 

THEOREM I. If a complex manifold S has an Hermitian metric satisfying the 
Kaehler restriction and if it has constant holomorphic curvature and if the space is 
complete in this metric then its universal covering space is analytically isometrically 
equivalent with E* for b = — 2 and with P* for b > 0. 

Let us assume from the start that S is simply connected. From Bochner's 
result we know that there is a local coordinate neighbourhood of each point of 5 
such that the line element can be put into the form (7). Since 5 is complete there 
is a 5 > 0 such that each coordinate neighbourhood can be chosen with radius 
> 25. Let K(x, 5) denote the cell of radius 5 and centre x in 5 and let L(y, 5), 
denote the cell of radius 5 and centre y in E* or P* according to whether b = — 2 
or b > 0. Then K(x0, 5) can be mapped analytically isometrically onto L(y0, 5) 
where XQ is any point of S and yo is any point of E* (or P* as the case may be). 
Let Xi be a point of K(x0, 5) and let <£ be the analytic isometry of K(x0l ô) onto 
L(yo, à) considered, and let yi = </>(xi). We now wish to show that <j> can be 
extended to an analytic isometry of K(x0l ô) KJK(xi, à) onto L(y0, ô)\JL(yi, ô). 

So far we have discussed only the mapping of a K{x, 8) onto an L(y, ô), but 
we could also discuss the analytic isometry of a K(x, 25) onto an L(y, 25) since 
one of these is contained in a suitable coordinate neighbourhood (in which the 
line element has the form (7)) about each point. We now observe that there 
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exists a mapping of X(x0, 28) onto L(y0, 28) which agrees with <f> on K(x0, 8), 
for an isometry of K(x0l 8) is characterized by the directions at yo into which 
the directions at Xo are sent. Since <f> is analytic it sends holomorphic directions 
into holomorphic directions. Now the unimodular unitary group acts transitively 
on the set of all holomorphic directions and we have the unimodular unitary 
group acting on both K(x0, 28) and L(yo, 28) (leaving invariant the metrics in 
each). Thus an analytic isometry x// of K(xo, 28) onto L(y0, 28) can be made into 
one which agrees with <t> on K(XQ> 8) by first performing \f/ and then performing 
an unimodular transformation of L(y0l 28) into itself. Therefore <i> can be extend­
ed from K(xo, 8) to K(x0, 28) so in particular to K(xo> 8) U K(xi, 8). Now let 
x'o be any point of 5 then we can continue (analytically and isometrically) the 
mapping <t> to x'o. To do this choose a path C with end points x0 and x'0; take 
points xi, . . . , xs on C so that Xi 6 K(xo, 8), x2 G K(xi, 8),.. . , x'0 6 K (xs, 8), 
then by the method described above <j> can be extended to each cell in turn and 
so to x'o. In this way we extend <j> to all of S. But <t> is single valued since S is 
simply connected. Now S satisfies all the conditions of being a covering space 
over part of JE* (or P*), however since E* (as well as P*) is also simply 
connected <£ is actually an homeomorphism of S into E* (or P*). Also <j> is an 
analytic isometry by the way it was defined, and it must be onto since 5 is 
complete; thus we have the theorem. 

Since we know that the complex projective space cannot cover, we have the 
following corollary: 

COROLLARY. If b > 0 then S must already be simply connectedf hence S — P*. 

On the other hand, E* may well occur as the covering space of a non-simply 
connected 5, even of a compact 5. We now have 

THEOREM II. If S is a compact complex manifold with Hermite-Kaehler metric 
which has constant negative holomorphic curvature then the group of analytic 
homeomorphisms of S is finite. 

The proof of Theorem II follows quickly from Theorem I and [3, Theorem 
VII]. For 5 has E* as universal covering space and E* is a bounded domain in 
E2n hence a fortiori SL Picard domain. (In Theorem I we assumed that b = — 2, 
but this was only so that E* would be the unit cell; this is clearly inessential 
and b < 0 is all that matters.) 

We now state: if 5 satisfies the conditions of Theorem II it uniformizes an 
algebraic variety. For let S be a fundamental domain for 5 in E*, then S gene­
rates a discontinuous group V in E* such that E* (mod V) = 5. Given such a 
group, where S is compact modulo I\ Siegel has proved there exist n analytically 
independent automorphic functions in E* relative to T [4, pp. 132 — 136]. To 
obtain an algebraic variety which 5 uniformizes we note that any n + 1 functions 
on £*, automorphic relative to T, satisfy an algebraic relation [4, pp. 137 — 145]. 
Making this polynomial homogeneous we obtain a projective model of our 
algebraic variety. 
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Finally one notes that for S compact and b > 0 or b < 0 we have the existence 
of n analytically independent functions meromorphic on S. But for b = 0 we 
have no information as to the existence of functions. Indeed in this case S 
is a multi-torus which may have any number from 0, 1, . . . , n analytically 
independent non-constant meromorphic functions. This phenomenon arises 
because of the need for period relations in the theory of Abelian functions; 
which in turn arises from the fact that in some multi-tori a local sub-variety is 
not part of a sub-variety in the large, not because the local sub-variety cannot 
be extended (it can be continued indefinitely), but because it winds infinitely 
often around the multi-torus and never meets itself (much as the familiar 
everywhere-dense integral curve winds on the two-dimensional torus). In fact 
a multi-torus (in n complex variables, n > 1) may be constructed which has no 
proper sub-varieties other than points. (For an example see [4, pp. 104—106].) 

In concluding I wish to thank Professor S. Bochner for suggesting Theorem I. 
It is also explicitly stated in [2, p. 21]. 
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