INEQUALITIES CONCERNING THE INVERSES OF POSITIVE DEFINITE MATRICES

by W. W. MUIR
(Received 4th October 1972)

0. Introduction

Much has been written on inequalities concerning positive definite matrices, but a new insight may be gained by examining inequalities from the standpoint of the inverse matrix. The standard inequality of Hölder can then be used in a more fruitful manner. This leads to some new results and a rediscovery of some known results.

1. Compound matrices

The following theory requires the use of the Binet-Cauchy theory of compound matrices which is described here. M is a given $m \times n$ matrix and k is an integer less than the smaller of m and $n . \alpha$ is a subset of k integers from the set $(1,2, \ldots, m)$ and β is a subset of k integers from the set $(1,2, \ldots, n)$. Suppose we delete all rows of M whose indices do not belong to α and also all columns whose indices do not belong to β. The determinant of the remaining $k \times k$ matrix is denoted by $[M]_{\alpha \beta}$ or $m_{\alpha \beta}$. The matrix whose elements are $m_{\alpha \beta}$ is denoted by $M^{(k)}$. The priority of the elements in rows or columns is in lexicographical order of the elements of either the set α or the set β respectively. $M^{(k)}$ therefore is a matrix of order $m_{(k)} \times n_{(k)}$ where $m_{(k)}=m!/(k!(m-k)!)$. It can be proved (Aitken (1), p. 94) that

$$
\begin{equation*}
(M N)^{(k)}=M^{(k)} N^{(k)} \tag{1.1}
\end{equation*}
$$

2. The inverse log-convex property

In the text that follows it is assumed that A and B are positive definite real symmetric matrices each of order $n \times n$ and λ and μ are real non-negative numbers such that $\lambda+\mu=1$.

Let $f(M)$ be a scalar function of the elements of a matrix M. Then if

$$
f\left((\lambda A+\mu B)^{-1}\right) \leqq\left\{f\left(A^{-1}\right)\right\}^{\lambda}\left\{f\left(B^{-1}\right)\right\}^{\mu} \leqq \lambda f\left(A^{-1}\right)+\mu f\left(B^{-1}\right)
$$

we say that the function f possesses the inverse logconvex property or ILC property for short. We note that if $f\left(A^{-1}\right)$ and $f\left(B^{-1}\right)$ are real non-negative numbers then the right-hand inequality follows (Bellman (2), p. 129).

3. A basic theorem

Let X be any real matrix and let $g(M)=\left[X^{\prime} M X\right]_{\alpha x}$. Then the function g has the ILC property.

Since A and B are positive definite real symmetric matrices of order $n \times n$, we can find a matrix P such that

$$
P^{\prime} A P=I, P^{\prime} B P=F=\operatorname{diag}\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right)
$$

and
It follows that

$$
\begin{equation*}
\gamma_{i}>0 \text { for all } i \tag{3.1}
\end{equation*}
$$

It follows that

$$
(\lambda A+\mu B)^{-1}=P(\lambda I+\mu F)^{-1} P^{\prime}
$$

We use also two inequalities:
(i) If x and y are real positive or zero numbers then (Bellman (3), p. 129),

$$
\begin{equation*}
\lambda x+\mu y \geqq x^{\lambda} y^{\mu} \tag{3.2}
\end{equation*}
$$

(ii) If u_{i} and v_{i} are non-negative for $i=1,2, \ldots, n$ then (Hölder's Inequality)

$$
\begin{equation*}
\sum_{i=1}^{n} u_{i}^{\lambda} v_{i}^{\mu} \leqq\left(\sum_{i=1}^{n} u_{i}\right)^{\lambda}\left(\sum_{i=1}^{n} v_{i}\right)^{\mu} \tag{3.3}
\end{equation*}
$$

From (1.1) and (3.1) it follows that

$$
\left(P^{\prime}\right)^{(k)} A^{(k)} P^{(k)}=I \text { and } P^{\prime(k)} B^{(k)} P^{(k)}=F^{(k)}
$$

where for instance if $k=3$, from the matrix $F^{(k)}$ we obtain

Now

$$
f_{11}=\gamma_{1} \gamma_{2} \gamma_{3}, f_{22}=\gamma_{1} \gamma_{2} \gamma_{4}, \ldots, \text { etc. }
$$

$$
\begin{align*}
{\left[X^{\prime}(\lambda A+\mu B)^{-1} X\right]_{\alpha \alpha} } & =\left[X^{\prime} P(\lambda I+\mu F)^{-1} P^{\prime} X\right]_{\alpha \alpha} \\
& =\left[U^{\prime}(\lambda I+\mu F)^{-1} U\right]_{\alpha \alpha}\left(\text { where } U=P^{\prime} X\right) \\
& =\sum_{\beta} \sum_{\gamma} u_{\alpha \beta}^{\prime}\left[(\lambda I+\mu F)^{-1}\right]_{\beta \gamma} u_{\gamma \alpha} \\
& =\sum_{\beta} u_{\alpha \beta}^{\prime}\left[(\lambda I+\mu F)^{-1}\right]_{\beta \beta} u_{\beta \alpha} \text { (as } \lambda I+\mu F \text { is diagonal) } \\
& =\sum_{\beta}\left\{\frac{u_{\beta \alpha}^{2}}{\left(\lambda+\mu \gamma_{i}\right)\left(\lambda+\mu \gamma_{j}\right) \ldots\left(\lambda+\mu \gamma_{i}\right)}\right\} \tag{3.4}
\end{align*}
$$

and β represents the subset (i, j, \ldots, l) from the numbers $(1,2, \ldots, n)$. From (3.2) therefore
by Hölder's inequality.

$$
\begin{align*}
{\left[X^{\prime}(\lambda A+\mu B)^{-1} X\right]_{\alpha \alpha} } & \leqq \sum_{\beta}\left\{\frac{u_{\beta \alpha}^{2}}{\left(\gamma_{i} \gamma_{j} \ldots \gamma_{l}\right)^{\mu}}\right\} \\
& =\sum_{\beta} u_{\beta \alpha}^{2 \lambda}\left\{\frac{u_{\beta \alpha}^{2}}{f_{\beta \beta}}\right\}^{\mu} \\
& \leqq\left\{\sum_{\beta} u_{\beta \alpha}^{2}\right\}^{\lambda}\left\{\sum_{\beta} \frac{u_{\beta \alpha}^{2}}{f_{\beta \beta}}\right\}^{\mu} \tag{3.5}
\end{align*}
$$

By choosing appropriate values of λ and μ in (3.4) we obtain

$$
\left[X^{\prime} A^{-1} X\right]_{\alpha x}=\sum_{\beta} u_{\beta \alpha}^{2} ;\left[X^{\prime} B^{-1} X\right]_{\alpha x}=\sum_{\beta}\left(\frac{u_{\beta \alpha}^{2}}{f_{\beta \beta}}\right) .
$$

Hence (3.5) gives

$$
\left[X^{\prime}(\lambda A+\mu B)^{-1} X\right]_{\alpha \alpha} \leqq\left\{\left[X^{\prime} A^{-1} X\right]_{x x}\right\}^{\lambda}\left\{\left[X^{\prime} B^{-1} X\right]_{x x}\right\}^{\mu}
$$

and the result is proved.

4. Deductions from the basic theorem

(a) It follows that $g(M)=[M]_{\alpha \alpha}$ is a matrix function that has the ILC property:
in particular if $k=1$ then

$$
\left[(\lambda A+\mu B)^{-1}\right]_{i i} \leqq\left\{\left[A^{-1}\right]_{i i}\right\}^{2}\left\{\left[B^{-1}\right]_{i i}\right\}^{\mu}
$$

which is given as Bergström's Inequality in Bellman (2, p. 131). Also if $k=n$ we obtain
(Bellman (2), p. 128).

$$
|\lambda A+\mu B| \geqq|A|^{\lambda}|B|^{\mu}
$$

(b) Let $\phi_{k}(M)=\sum_{a} m_{\alpha \alpha}$. Thus $\phi_{k}(M)$ is the sum of the products of the eigenvalues of M taken k at a time.

Then ϕ_{k} is a function with the ILC property.

Proof.

$$
\begin{align*}
\phi_{k}\left((\lambda A+\mu B)^{-1}\right) & =\sum_{\alpha}\left[(\lambda A+\mu B)^{-1}\right]_{\alpha \alpha} \\
& \leqq \sum_{\alpha}\left\{\left[A^{-1}\right]_{\alpha \alpha}\right\}^{\lambda}\left\{\left[B^{-1}\right]_{\alpha \alpha}\right\}^{\mu} \tag{4.1}\\
& \leqq\left\{\sum_{\alpha}\left[A^{-1}\right]_{\alpha \alpha}\right\}^{\lambda}\left\{\sum_{\alpha}\left[B^{-1}\right]_{\alpha \alpha}\right\}^{\mu} \tag{3.3}\\
& =\left\{\phi_{k}\left(A^{-1}\right)\right\}^{\lambda}\left\{\phi_{k}\left(B^{-1}\right)\right\}^{\mu} \tag{4.2}
\end{align*}
$$

If $k=1$ then (4.2) yields

$$
\operatorname{tr}\left\{(\lambda A+\mu B)^{-1}\right\} \leqq\left\{\operatorname{tr}\left(A^{-1}\right)\right\}^{\lambda}\left\{\operatorname{tr}\left(B^{-1}\right)\right\}^{\mu}
$$

where tr stands for trace. Hence the trace of a matrix possesses the ILC property.
(c) Let M be a positive definite symmetric matrix and let the eigenvalues be

$$
\begin{equation*}
l_{1}, l_{2}, \ldots, l_{n} \text {, where } l_{1} \geqq l_{2} \geqq \ldots, \geqq l_{n}>0 \tag{4.3}
\end{equation*}
$$

Let $L_{k}(M)=l_{1} l_{2} \ldots l_{k}$.
Then L_{k} is a function that follows the ILC property.
The proof from the basic theorem is omitted since this result has already been given in equivalent form in Bellman (2, p. 130).

5. Certain types of matrices A and B

Suppose we partition A as

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

where A_{11} is of order $p \times p$ say. Let

Let $\lambda=\mu=\frac{1}{2}$ and hence

$$
B=\left[\begin{array}{rr}
A_{11} & -A_{12} \\
-A_{21} & A_{22}
\end{array}\right]
$$

$$
\lambda A+\mu B=\left[\begin{array}{cc}
A_{11} & 0 \\
0 & A_{22}
\end{array}\right]
$$

A, B, λ and μ are defined as above from now on in this paper.
Let $D=A^{-1}$ and let D be partitioned similarly to A with

Then it is easy to prove that

$$
D=\left[\begin{array}{ll}
D_{11} & D_{12} \\
D_{21} & D_{22}
\end{array}\right]
$$

$$
B^{-1}=\left[\begin{array}{rr}
D_{11} & -D_{12} \tag{5.1}\\
-D_{21} & D_{22}
\end{array}\right]
$$

and that the eigenvalues of A and B are the same.
The determinant of a principal submatrix of A is the same as the determinant of the corresponding principal submatrix of B and the same applies to their inverses. In our previous notation therefore we obtain

Hence from (4.1)

$$
\begin{equation*}
\left[A^{-1}\right]_{\alpha x}=\left[B^{-1}\right]_{\alpha z} \tag{5.2}
\end{equation*}
$$

$$
\left[(\lambda A+\mu B)^{-1}\right]_{\alpha \alpha} \leqq\left[A^{-1}\right]_{\alpha \alpha}^{\lambda}\left[B^{-1}\right]_{\alpha \alpha}^{\mu}
$$

and inserting the appropriate values of λ, μ, A and B and letting $\alpha=1,2, \ldots, p$ we obtain

$$
\begin{equation*}
\left|A_{11}^{-1}\right| \leqq\left|D_{11}\right| \tag{5.3}
\end{equation*}
$$

i.e. $\left|D_{11}\right| \geqq 1 /\left|A_{11}\right|$ (De Bruijn (3), page 28.)

6. Further inequalities concerning products of largest eigenvalues

Following the definition L_{k} of the product of largest eigenvalues and using (4.3) and (5.1) we obtain

$$
L_{k}\left(A^{-1}\right) \geqq L_{k}^{-}\left[\begin{array}{cc}
A_{11}^{-1} & 0 \\
0 & A_{22}^{-1}
\end{array}\right] .
$$

Thus $L_{k}\left(A^{-1}\right) \geqq L_{k}\left(A_{11}^{-1}\right)$, or, if we take r of the eigenvalues from A_{11}^{-1} and the rest from A_{22}^{-1}, we obtain

$$
\begin{equation*}
L_{k}\left(A^{-1}\right) \geqq L_{r}\left(A_{11}^{-1}\right) \cdot L_{k-r}\left(A_{22}^{-1}\right) . \tag{6.1}
\end{equation*}
$$

Suppose the eigenvalues of A are $\alpha_{1} \geqq \alpha_{2} \geqq \alpha_{3} \geqq \ldots \geqq \alpha_{n}>0$; then it follows from (6.1) that

$$
\frac{1}{\alpha_{n}} \cdot \frac{1}{\alpha_{n-1}} \cdots \frac{1}{\alpha_{n-k+1}} \geqq \frac{1}{a_{11}} \frac{1}{a_{22}} \cdots \frac{1}{a_{k k}}
$$

or $\alpha_{n} \alpha_{n-1} \ldots \alpha_{n-k+1} \leqq a_{11} a_{22} \ldots a_{k k}$. (See Bellman (2), page 134.)

7. Further inequalities concerning sums of products of eigenvalues

As $\phi_{k}(A)$ is the sum of principal minors of order k and using the definitions of A and B given in Section 5 and the relationship (5.2) we see that

Hence from (4.2)

$$
\phi_{k}\left(A^{-1}\right)=\phi_{k}\left(B^{-1}\right) .
$$

$$
\begin{align*}
& \begin{aligned}
\phi_{k}\left(A^{-1}\right) & \geqq \phi_{k}\left[\begin{array}{cc}
A_{11}^{-1} & 0 \\
0 & A_{22}^{-1}
\end{array}\right] \\
& =\phi_{k}\left(A_{11}^{-1}\right)+\phi_{k-1}\left(A_{11}^{-1}\right) \phi_{1}\left(A_{22}^{-1}\right)+\phi_{k-2}\left(A_{11}^{-1}\right) \phi_{2}\left(A_{22}^{-1}\right) \\
& \quad+\ldots+\phi_{1}\left(A_{11}^{-1}\right) \phi_{k-1}\left(A_{22}^{-1}\right)+\phi_{k}\left(A_{22}^{-1}\right)
\end{aligned} \tag{7.1}
\end{align*}
$$

$$
\phi_{k}\left(A^{-1}\right) \geqq \sum_{\mathrm{r}=0}^{k} \phi_{r}\left(A_{11}^{-1}\right) \phi_{k-r}\left(A_{22}^{-1}\right)
$$

If $k=n$ then from (7.1)

$$
\begin{equation*}
|A| \leqq\left|A_{11}\right|\left|A_{22}\right| \tag{7.2}
\end{equation*}
$$

the well-known Hadamard-Fischer theorem.
If $k=1$, from (7.1) it follows that

$$
\operatorname{tr}\left(A^{-1}\right) \geqq \operatorname{tr}\left(A_{11}^{-1}\right)+\operatorname{tr}\left(A_{22}^{-1}\right),
$$

a sort of dual to the Hadamard-Fischer theorem.
Also we see from (5.3) and (7.2) that

$$
\phi_{k}\left(A^{-1}\right)=\sum_{\alpha}\left[A^{-1}\right]_{\alpha x} \geqq \sum_{\alpha} \frac{1}{[A]_{\alpha x}} \geqq \sum \frac{1}{a_{11} a_{22} \ldots a_{k k}}
$$

REFERENCES

(1) A. C. Artken, Determinants and Matrices (Oliver and Boyd, 1964).
(2) R. Bellman, Introduction to Matrix Analysis, 2nd Edition (McGraw-Hill, 1970).
(3) N. G. de Bruinn, Inequalities concerning minors and eigenvalues, Nieuw Arch. Wisk. 3 (1956), 18-35.

