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0. Introduction
Much has been written on inequalities concerning positive definite matrices,

but a new insight may be gained by examining inequalities from the standpoint
of the inverse matrix. The standard inequality of Holder can then be used in a
more fruitful manner. This leads to some new results and a rediscovery of some
known results.

1. Compound matrices
The following theory requires the use of the Binet-Cauchy theory of com-

pound matrices which is described here. M is a given m x n matrix and k is an
integer less than the smaller of m and n. a is a subset of k integers from the
set (1,2, ...,rri) and /? is a subset of A: integers from the set (1, 2,...,«). Suppose
we delete all rows of M whose indices do not belong to a and also all columns
whose indices do not belong to /?. The determinant of the remaining kxk
matrix is denoted by [M]a? or maf. The matrix whose elements are mafi is
denoted by M(fc). The priority of the elements in rows or columns is in lexico-
graphical order of the elements of either the set a. or the set p respectively.
M(k) therefore is a matrix of order mmxnm where mik) = m\/(k\(m — k)l).
It can be proved (Aitken (1), p. 94) that

(1.1)

2. The inverse log-convex property

In the text that follows it is assumed that A and B are positive definite real
symmetric matrices each of order nxn and 1 and n are real non-negative
numbers such that X + fi = 1.

Let/(M) be a scalar function of the elements of a matrix M. Then if

MAA + nB)-1) £ {f(A-1)Y{f(B-1)Y ^ XfiA-^ + fifiB'1)
we say that the function / possesses the inverse logconvex property or ILC
property for short. We note that iff{A~l) and/(B- 1) are real non-negative
numbers then the right-hand inequality follows (Bellman (2), p. 129).

3. A basic theorem
Let X be any real matrix and let g{M) = {X'MX^. Then the function g

has the ILC property.
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Since A and B are positive definite real symmetric matrices of order nxn,
we can find a matrix P such that

P'AP = /, P'BP = F = diag (yu y2, ..., yn)
and

y(>0 for all i. (3.1)
It follows that

We use also two inequalities:

(i) If x and y are real positive or zero numbers then (Bellman (3), p. 129),

xV- (3-2)
(ii) If Uj and vt are non-negative for i = 1, 2, ..., « then (Holder's

Inequality)

, j (,?/) (3-3)
From (1.1) and (3.1) it follows that

(P')<*U«p<*> = / and P'WBWPW = F w ,

where for instance if k = 3, from the matrix Fm we obtain

/ n = yiYiYiJn = 7iy2?4> •••» etc.
Now

(where 1/ = P'X)

1 ]«>«/>« (a s ^ + M ^ is diagonal)

( 3 4 )

and P represents the subset (i,j, ..., I) from the numbers (1, 2, ..., n). From
(3.2) therefore

» \kiaj-YiF)

_y M 2 ,K 2 >

(3.5)

by Holder's inequality.
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By choosing appropriate values of A and y. in (3.4) we obtain

lXAX]m £ ufc {XBX]ai £ (
P f \ftt

Hence (3.5) gives

and the result is proved.

4. Deductions from the basic theorem

(a) It follows that g{M) = [M]aiJ is a matrix function that has the ILC
property: (4.1)

in particular if k — 1 then

which is given as Bergstrom's Inequality in Bellman (2, p. 131). Also if k = n
we obtain

(Bellman (2), p. 128).

(b) Let (f>k(M) = YJ mxtx- Thus (j)k(M) is the sum of the products of the eigen-
a

values of M taken k at a time.
<f>k is a function with the ILC property.

Proof.

If* = 1 then (4.2) yields

(from (4.1))

(from (3.3))

(4.2)

where tr stands for trace. Hence the trace of a matrix possesses the ILC
property.

(c) Let M be a positive definite symmetric matrix and let the eigenvalues be

lu l2, ..., ln, w h e r e h^l2^ ..., ^ / n > 0 .

Then Lk is a function that follows the ILC property. (4.3)

The proof from the basic theorem is omitted since this result has already
been given in equivalent form in Bellman (2, p. 130).
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5. Certain types of matrices A and B

Suppose we partition A as

A =

where Alt is of order pxp say. Let

\_-A2l A22
Let X = n = i and hence

XA + nB =

\

A22j
A, B, X and \i are defined as above from now on in this paper.

Let D = A~l and let D be partitioned similarly to A with

Then it is easy to prove that

D21 D22\ (5.1)
and that the eigenvalues of A and B are the same.

The determinant of a principal submatrix of A is the same as the determinant
of the corresponding principal submatrix of B and the same applies to their
inverses. In our previous notation therefore we obtain

[^"1]«=[B"1]«.- (5-2)
Hence from (4.1)

and inserting the appropriate values of A, //, A and B and letting a = 1, 2, ...,p
we obtain

\A;1
1\^\D11\ (5.3)

i.e. | />„ | £ 1/| Atl | (De Bruijn (3), page 28.)

6. Further inequalities concerning products of largest eigenvalues

Following the definition Lk of the product of largest eigenvalues and using
(4.3) and (5.1) we obtain

M1 0

Thus Lk{A x) ^ Lk{Aii), or, if we take r of the eigenvalues from A^ and the
rest from A22 , we obtain

(6.1)
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Suppose the eigenvalues of A are at ^ oc2 ^ a3 ^ ... 2: a n >0 ; then it follows
from (6.1) that

i L 1 > J J J

or «„<*„_!...«„_*+! ^ a^a12...akk. (See Bellman (2), page 134.)

7. Further inequalities concerning sums of products of eigenvalues

As <f>k(A) is the sum of principal minors of order k and using the definitions
of A and B given in Section 5 and the relationship (5.2) we see that

<f,k{A~i) = 4>k{B~l).
Hence from (4.2)

i - i

(7.1)

or in short, if 4>o(A) = 1, then

k

~ r = 0

If k = n then from (7.1)
\A\^\Ail\\A22\ (7.2)

the well-known Hadamard-Fischer theorem.
If k = 1, from (7.1) it follows that

a sort of dual to the Hadamard-Fischer theorem.
Also we see from (5.3) and (7.2) that
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