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Abstract

Using twisted nearby cycles, we define a new notion of slopes for complex holonomic
D-modules. We prove a boundedness result for these slopes, study their functoriality
and use them to characterize regularity. For a family of (possibly irregular) algebraic
connections Et parametrized by a smooth curve, we deduce under natural conditions
an explicit bound for the usual slopes of the differential equation satisfied by the
family of irregular periods of the Et. This generalizes the regularity of the Gauss–Manin
connection proved by Griffiths, Katz and Deligne.

1. Introduction

Let V be a smooth algebraic variety over a finite field of characteristic p > 0, and let U be an open
subset in V such that D := V \U is a normal crossing divisor. Let ` be a prime number different
from p. Using restriction to curves, Deligne defined [Del11] a notion of `-adic local system on U
with bounded ramification along D. Such a definition is problematic for treating functoriality
questions: the direct image of a local system is not a local system any more, and duality does
not commute with restriction in general. In this paper, we investigate the characteristic 0 aspect
of this problem, that is, the following question.

Question 1. Let X be a complex manifold. Can one define a notion of holonomic DX -module
with bounded irregularity which has good functoriality properties?

In dimension 1, to bound the irregularity number of a D-module with given generic rank
amounts to bounding its slopes. LetM be a holonomic DX -module and let Z be a hypersurface
of X. Mebkhout [Meb90] showed that the irregularity complex IrrZM of M along Z is a
perverse sheaf endowed with an R>1 increasing locally finite filtration by sub-perverse sheaves
(IrrZM)(r). If the support of the rth graded piece of ((IrrZM)(r))r>1 is not empty, we say that
1/(r − 1) is an analytic slope of M along Z.1

The existence of a uniform bound in Z is not clear a priori. We thus formulate the following
conjecture.

Conjecture 1. Locally on X, the set of analytic slopes of a holonomic DX -module is bounded.

This statement means that for a holonomic DX -module M, one can find for every point
in X a neighbourhood U and a constant C > 0 such that the analytic slopes of M along any
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1 Note that this terminology differs from that of Mebkhout by the transformation r −→ 1/(r − 1), so that in
dimension 1, analytic slopes correspond to the classical slopes defined via Newton polygons.
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germ of hypersurface in U are less than or equal to C. The main obstacle to the proof of

Conjecture 1 lies in the behaviour of analytic slopes with respect to proper push-forward. On

the other hand, Laurent defined algebraic slopes using his theory of micro-characteristic varieties

[Lau87]. From work by Laurent and Mebkhout [LM99], we know that the set of analytic slopes

of a holonomic D-module M along Z is equal to the set of algebraic slopes of M along Z.

Since micro-characteristic varieties are invariant by duality, we deduce that analytic slopes are

invariant by duality.

For a germ M of DC-module at 0 ∈ C, the set of analytic slopes of M at 0 is also the set of

slopes of the Newton polygon [SV00] of the formal differential module M̂ := C((x)) ⊗C{x}M,

where C{x} stands for the space of germs at 0 of holomorphic functions. We will simply call

these slopes the slopes of M at 0.

The aim of this paper is to define a third notion of slopes and to investigate some of its

properties. The main idea lies in the observation that for a germ M of DC-module at 0 ∈
C, the slopes of M at 0 are encoded in the vanishing of certain nearby cycles. We show in

Proposition 3.3.1 that r ∈ Q>0 is a slope for M at 0 if and only if one can find a germ N of

meromorphic connection at 0 with slope r such that ψ0(M⊗ N) 6= 0. We thus introduce the

following definition.

Definition. Let X be a complex manifold and let M be an object of the derived category

Dbhol(X) of complexes of DX -modules with bounded and holonomic cohomology. Let f ∈ OX be

non-constant. We denote by ψf the nearby cycle functor2 associated to f . We define the nearby

slopes of M associated to f to be the set Slnbf (M) which is the complement in Q>0 of the set

of rationals r > 0 such that for every germ N of meromorphic connection at 0 ∈ C with slope r,

we have

ψf (M⊗ f+N) ' 0. (1.0.1)

Let us observe that the left-hand side of (1.0.1) depends on N via C((x))⊗C{x}N , and that

nearby slopes are sensitive to the non-reduced structure of div f , whereas analytic and algebraic

slopes only see the support of div f .

Twisted nearby cycles appear for the first time in the algebraic context in [Del07]. Deligne

proves in [Del07] that for a given function f , the set Slnbf (M) is finite. The main result of this

paper is an affirmative answer to Conjecture 1 for nearby slopes, stated in the following theorem.

Theorem 1. Locally on X, the set of nearby slopes of a holonomic D-module is bounded.

This statement means that for a holonomic DX -module M, one can find for every point in

X a neighbourhood U and a constant C > 0 such that the nearby slopes of M associated to

any f ∈ OU are less than or equal to C. For flat meromorphic connections with good formal

structure, we show the following refinement.

Theorem 2. Let M be a flat meromorphic connection with good formal structure. Let D be

the pole locus of M and let D1, . . . , Dn be the irreducible components of D. We denote by

ri(M) ∈ Q>0 the highest generic slope of M along Di. Then, the nearby slopes of M are less

than or equal to r1(M) + · · ·+ rn(M).

2 For general references on the nearby cycle functor, let us mention [Kas83, Mal83, MS89, MM04].
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The main tool used in the proof of Theorem 1 is a structure theorem for formal flat
meromorphic connections first conjectured in [CS89], studied by Sabbah [Sab00] and proved
by Kedlaya [Ked10, Ked11] in the context of excellent schemes and analytic spaces, and
independently by Mochizuki [Moc09, Moc11b] in the algebraic context.

Let us give some details on the strategy of the proof of Theorem 1. A dévissage carried out
in § 4.1 allows one to suppose that M is a flat meromorphic connection. Using the Kedlaya–
Mochizuki theorem, one reduces further to the case where M has good formal structure. We
are thus left to prove Theorem 2. We resolve the singularities of Z := div f . The problem that
occurs at this step is that a randomly chosen embedded resolution p : X̃ −→ X will increase
the generic slopes of M in a way that cannot be controlled. We show in Proposition 4.2.2 that
a fine version of embedded resolution [BM89] allows us to control the generic slopes of p+M in
terms of the sum r1(M) + · · · + rn(M) and the multiplicities of p∗Z. A crucial tool for this is
a theorem [Sab00, I 2.4.3] proved by Sabbah in dimension 2 and by Mochizuki [Moc11a, 2.19]
in any dimension relating the good formal models appearing at a given point with the generic
models on the divisor locus. Using a vanishing criterion (Proposition 3.4.1), one finally proves
(1.0.1) for r > r1(M) + · · ·+ rn(M).

Let M ∈ Dbhol(X) and let us denote by DM the dual complex of M. Nearby slopes satisfy
the following functorialities.

Theorem 3. (i) For every f ∈ OX , we have

Slnbf (DM) = Slnbf (M).

(ii) Let p : X −→ Y be a proper morphism and let f ∈ OY such that p(X) is not contained
in f−1(0). Then

Slnbf (p+M) ⊂ Slnbfp(M).

Let us observe that (ii) is a direct application of the compatibility of nearby cycles with
proper direct image [MS89].

It is an interesting problem to try to compare nearby slopes and analytic slopes. This question
will not be discussed in this paper, but we characterize regular holonomicD-modules using nearby
slopes.

Theorem 4. A complex M ∈ Dbhol(X) is regular if and only if for every quasi-finite morphism
ρ : Y −→ X with Y a complex manifold, the set of nearby slopes of ρ+M is contained in {0}.

For an other characterization of regularity (harder to deal with in practice) using derived
endomorphisms, we refer to [Tey16].

Let us give an application of the preceding results. Let U be a smooth complex algebraic
variety and let E be an algebraic connection on U . We denote by Hk

dR(U, E) the kth de Rham
cohomology group of E , and by V the local system of horizontal sections of Ean on Uan. If E is
regular, Deligne proved [Del70] that the canonical comparison morphism

Hk
dR(U, E) −→ Hk(Uan,V) (1.0.2)

is an isomorphism. If E is the trivial connection, this is due to Grothendieck [Gro66]. In the
irregular case, (1.0.2) is no longer an isomorphism. It can happen that Hk

dR(U, E) is non-zero and
Hk(Uan,V) is zero, which means that there are not enough topological cycles in Uan. The rapid
decay homology Hrd

k (U, E∗) needed to remedy this problem appears in dimension 1 in [BE04]
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and in higher dimension in [Hie07, Hie09]. It includes cycles drawn on a compactification of Uan

taking into account the asymptotic at infinity of the solutions of the dual connection E∗. By Hien

duality theorem, we have a perfect pairing∫
: Hk

dR(U, E)×Hrd
k (U, E∗) −→ C. (1.0.3)

For ω ∈ Hk
dR(U, E) and γ ∈ Hrd

k (U, E∗), we call
∫
γ ω a k-period for E .3

Let f : X −→ S be a proper and generically smooth morphism, where X denotes an algebraic

variety and S denotes a neighbourhood of 0 in A1
C. Let U be the complement of a normal crossing

divisor D of X such that for every t 6= 0 close enough to 0, Dt is a normal crossing divisor of Xt.

Let E be an algebraic connection on U . Let us denote by D1, . . . , Dn the irreducible components

of D meeting f−1(0) and let ri(E) be the highest generic slope of E along Di.

As an application of Theorem 2, we prove the following result.

Theorem 5. If E has good formal structure along D and if the fibres Xt, t 6= 0, of f are

non-characteristic at infinity4 for E , then the k-period vectors of the family (Et)t6=0 are the

analytic solutions of the system of differential equations associated to Hkf+E . The slopes at 0

of this system are less than or equal to r1(E) + · · ·+ rn(E).

In the case where E is the trivial connection, we recover that the periods of a proper

generically smooth family of algebraic varieties are solutions of a regular singular differential

equation with polynomial coefficients [Gri68, Kat70, Del70].

The role played in this paper by nearby cycles has Verdier specialization [Ver83] and moderate

nearby cycles as `-adic counterparts. For a discussion of the problems arising in the `-adic case,

we refer to [Tey15a].

2. Notation

We collect here a few definitions used all throughout this paper. The letter X will denote a

complex manifold.

2.1. For a morphism f : Y −→ X with Y a complex manifold, we denote by f+ : Db
hol(DX) −→

Db
hol(DY ) and f+ : Db

hol(DY ) −→ Db
hol(DX) the inverse image and direct image functors for

D-modules. We write f † for f+[dimY − dimX].

2.2. Let M∈ Dbhol(X) and f ∈ OX . From Hkψf (M⊗ f+N) ' ψf (HkM⊗ f+N) for every k,

we deduce

Slnbf (M) =
⋃
k

Slnbf (HkM). (2.2.1)

Let us define Slnb(M) :=
⋃
f∈OX Slnbf (M). The elements of Slnb(M) are the nearby slopes ofM.

For S ⊂ Q>0, we denote by Dbhol(X)S the full subcategory of Dbhol(X) of complexes whose nearby

slopes are in S.

3 This is an abuse of terminology, since there are no natural rational structures on those spaces in general. However,
in some cases including exponential modules, there is such a structure.
4 This is, for example, the case if D is smooth and if the fibres of f are transverse to D.
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2.3. Let us denote by DR : Db
hol(DX) −→ Db

c(X,C) the de Rham functor5 and by Sol :
Db

hol(DX) −→ Db
c(X,C) the solution functor for holonomic DX -modules.

2.4. For every analytic subspace Z in X, we denote by iZ : Z ↪→ X the canonical inclusion.
The local cohomology triangle for Z and M∈ Dbhol(X) reads

RΓ[Z]M //M // RM(∗Z)
+1 // (2.4.1)

It is a distinguished triangle in Db
hol(DX). The complex RΓ[Z]M is the local algebraic cohomology

of M along Z and RM(∗Z) is the localization of M along Z.

2.5. Let M be a germ of flat meromorphic connection at the origin of Cn. Let D be the
pole locus of M. For x ∈ D, we define M̂x := ÔCn,x ⊗OCn,x M, where ÔCn,x stands for the
completion of OCn,x with respect to its maximal ideal. We say thatM has good formal structure
if the following statements hold.

(i) D is a normal crossing divisor.

(ii) For every x ∈ D, one can find coordinates (x1, . . . , xn) centred at x with D defined by
x1 · · ·xi = 0, and an integer p > 1 such that if ρ is the morphism (x1, . . . , xn) −→ (xp1, . . . ,
xpi , xi+1, . . . , xn), we have a decomposition

ρ+M̂x '
⊕

ϕ∈OCn (∗D)/OCn

Eϕ ⊗Rϕ (2.5.1)

where Eϕ = (ÔCn,x(∗D), d + dϕ) and Rϕ is a flat meromorphic connection with regular
singularity along D.

(iii) For all ϕ ∈ OCn(∗D)/OCn contributing to (2.5.1), we have divϕ 6 0, that is, the
multiplicities of divϕ are negative integers.

Let us remark that classically, one requires condition (iii) to be also true for the differences
of two ϕ intervening in (2.5.1). We will not impose this extra condition in this paper.

2.6. Let M be a flat meromorphic connection on X such that the pole locus D of M has
only a finite number of irreducible components D1, . . . , Dn. Let i ∈ J1, nK. As a consequence of
a theorem of Malgrange [Mal96, 3.2.1], M has a good formal structure at each point of a dense
open subset Ui of Di. Moreover, the order of ρ and the set of ϕ ∈ OCn(∗D)/OCn contributing to
(2.5.1) for a given x ∈ Ui do not depend on x. The pole orders of those ϕ (computed with a local
smooth function defining Ui) are the generic slopes of M along Di. We denote by rDi(M) the
highest generic slope ofM along Di and we define the divisor of highest generic slopes of M by

rD1(M)D1 + · · ·+ rDn(M)Dn ∈ Z(X)Q.

3. Preliminaries on nearby cycles in the case of good formal structure

3.1. Let n be an integer and take i ∈ NJ1,nK. The support of i is the set of k ∈ J1, nK such that
ik 6= 0. If E ⊂ J1, nK, we define iE by iEk = ik for k ∈ E and iEk = 0 if k /∈ E.

5 In this paper, we follow Hien’s convention [Hie09] according to which for a holonomic module M, the complex
DRM is concentrated in degrees 0, . . . , dimX.
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3.2. Let R be a regular C((t))-differential module, and take ϕ ∈ C[t−1]. For every n > 1, we
define ρ : t −→ tp = x and

El(ρ, ϕ,R) := ρ+(Eϕ ⊗R).

If R is the trivial rank 1 module, we will use the notation El(ρ, ϕ). In general, El(ρ, ϕ,R) has
slope ordϕ/p. The C((x))-modules of type El(ρ, ϕ,R) for variable (ρ, ϕ,R) are called elementary
modules. From [Sab08, 3.3], we know that every C((x))-differential module can be written as a
direct sum of elementary modules.

3.3 Dimension 1
In this subsection, we work in a neighbourhood of the origin 0 ∈ C. Let x be a coordinate on C.
Take p > 1 and define ρ : x −→ t = xp.

Proposition 3.3.1. Let M be a germ of holonomic D-module at the origin. Let r > 0 be a
rational number. The following conditions are equivalent.

(i) The rational r is not a slope for M at 0.

(ii) For every germ N of meromorphic connection of slope r/p, we have

ψρ(M⊗ ρ+N) ' 0.

Proof. Since ψ is not sensitive to localization and formalization, one can work formally at 0 and
suppose that M and N are differential C((x))-modules.

Let us prove (2) =⇒ (1) by contraposition. Define ρ′ : u −→ up
′

= x, ϕ(u) ∈ C[u−1] with
q = ordϕ(u) and R a C((u))-regular module such that El(ρ′, ϕ(u), R) is a non-zero elementary
factor (§ 3.2) of M with slope r = q/p. Define

N := ρ+ El(ρ′,−ϕ(u)) = El(ρρ′,−ϕ(u)).

The module N has slope q/pp′ = r/p. A direct factor of ψρ(M⊗ ρ+N) is

ψρ(ρ
′
+(Eϕ ⊗R)⊗ ρ+N) ' ψρ(ρ′+(Eϕ ⊗R)⊗ ρ+ El(ρρ′,−ϕ(u)))

' ψρ(ρ′+(Eϕ ⊗R⊗ (ρρ′)+ El(ρρ′,−ϕ(u))))

' ψρρ′(Eϕ ⊗R⊗ (ρρ′)+ El(ρρ′,−ϕ(u)))

where the last identification comes from the compatibility of ψ with proper direct image. By
[Sab08, 2.4], we have

(ρρ′)+ El(ρρ′,−ϕ(u)) '
⊕
ζpp′=1

E−ϕ(ζu).

So ψρρ′R is a direct factor of ψρ(M⊗ ρ+N) of rank np(rgR) > 0, and (2) =⇒ (1) is proved.
Let us prove (1) =⇒ (2). Let N be a C((t))-differential module of slope r/p. Then ρ+N

has slope r. Thus, the slopes of M⊗ ρ+N are greater than 0. Hence, it is enough to show the
following lemma.

Lemma 3.3.2. Let M be a C((x))-differential module whose slopes are greater than 0. Then
ψρM ' 0.

By Levelt–Turrittin decomposition, we are left to study the case where M is a direct sum
of modules of type Eϕ ⊗ R, where ϕ ∈ C[x−1] and where R is a regular C((x))-module. The
hypothesis on the slopes of M implies ϕ 6= 0, and the expected vanishing is standard. 2
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3.4 A vanishing criterion
LetM be a germ of flat meromorphic connection at the origin 0 ∈ Cn. We suppose that M has
good formal structure at 0. Let D be the pole locus of M. Let ρp be a ramification of degree p
along the components of D as in (2.5.1).

Proposition 3.4.1. Let f ∈ OCn,0. Let us define Z := div f and suppose that |Z| ⊂ D. Let
r ∈ Q>0 such that for every irreducible component E of |Z|, we have

rE(M) 6 rvE(f).

Then for every germ N of meromorphic connection at 0 with slopes greater than r, we have

ψf (M⊗ f+N) ' 0 (3.4.2)

in a neighbourhood of 0.

Proof. Let us choose local coordinates (x1, . . . , xn) and a ∈ Nn such that f is the function
x −→ xa. Take N with slopes greater than r. Since ψf depends on M ⊗ f+N only via the
formalization of M ⊗ f+N along Z, one can always suppose that N is a C((t))-differential
module and p = qk where ρ′ : t −→ tk decomposes N .

The morphism ρp is a finite cover away from D, so the canonical adjunction morphism

ρp+ρ
+
pM //M (3.4.3)

is surjective away from D. So the cokernel of (3.4.3) has support in D. From [Meb04, 3.6-4], we
know that both sides of (3.4.3) are localized along D. So (3.4.3) is surjective. We thus have to
prove

ψfρp(ρ
+
pM⊗ (fρp)

+N) ' 0. (3.4.4)

Since |Z| ⊂ D, we have fρp = ρ′fρq. So the left-hand side of (3.4.4) is a direct sum of k copies
of

ψfρq(ρ
+
pM⊗ (fρp)

+N). (3.4.5)

We thus have to prove that (3.4.5) is 0 in a neighbourhood of 0. We have

(fρp)
+N ' (fρq)

+ρ′+N

with ρ′+N decomposed with slopes greater than rk. The zero locus of fρq is |Z|, and if E is an
irreducible component of |Z|, the highest generic slope of ρ+pM along E is

rE(ρ+pM) = p · rE(M) 6 rk · q · vE(f) = rk · vE(fρq).

Hence we can suppose that ρp = id and that N is decomposed.
Take

N = EP (t)/tm ⊗R
with P (t) ∈ C[t] satisfying P (0) 6= 0, with m> r and with R regular. Since again ψf is insensitive
to formalization, one can suppose that

M = Eϕ(x) ⊗R

with ϕ as in (iii) in § 2.5 and R regular. The Sabbah–Mochizuki theorem ([Sab00, I 2.4.3],
[Moc11a, 2.19]) says that ϕ contributes to the Levelt–Turrittin decomposition of M at the
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generic point of an irreducible component D′ of D. So the multiplicity of −divϕ along such a D′

is a generic slope ofM along D′. Thus, one can write ϕ(x) = g(x)/xb where g(0) 6= 0 and where
the bi are such that if i ∈ Supp a, we have bi 6 rai < mai. We thus have to prove the following
lemma.

Lemma 3.4.6. Take g, h ∈ OCn,0 such that g(0) 6= 0 and h(0) 6= 0. Let R be a regular flat
meromorphic connection with poles contained in x1 · · ·xn = 0. Take a, b ∈ NJ1,nK such that
A := Supp a is non-empty and bi < ai for every i ∈ A. Then

ψxa(Eg(x)/xb+h(x)/xa ⊗R) ' 0

in a neighbourhood of 0. 2

3.5 Proof of Lemma 3.4.6

We define M := Eg(x)/xb+h(x)/xa ⊗R. Since A is not empty, a change of variables allows one to
suppose that h = 1. If Supp b ⊂ A, a change of variable shows that Lemma 3.4.6 is a consequence
of Lemma 3.6.1. Let i ∈ Supp b be an integer such that i /∈ A. Using xi, a change of variables
allows one to suppose that g = 1. Let p1, . . . , pn ∈N∗ such that ajpj is independent of j for every
j ∈ A and pj = 1 if j /∈ A. Let ρp be the morphism x −→ xp. As in (3.4.3), we see that

ρp+ρ
+
pM //M

is surjective. We are thus left to prove that Lemma 3.4.6 holds for multi-indices a such that aj
does not depend on j for every j ∈ A. Let us denote by 1A the characteristic function of A. From
[Sab05, 3.3.13], it is enough to prove that

ψx1A (E1/xb+1/xa ⊗R) ' 0.

Using the fact that R is a successive extension of regular modules of rank 1, one can suppose
that R = xc, where c ∈ CJ1,nK. Let

Cn
� � ι //

x1A $$

Cn × C

��
C

be the inclusion given by the graph of x −→ x1A . Let t be a coordinate on the second factor of
Cn × C. We have to prove that

ψt(ι+(xcE1/xb+1/xa)) ' 0.

Define δ := δ(t−x1A) ∈ ι+(xcE1/xb+1/xa) and let (Vk)k∈Z be the Kashiwara–Malgrange filtration
on DCn×C relative to t, that is,

Vk := {P ∈ DCn×C, P ((t)m) ⊂ (t)m−k ∀m ∈ Z}.

For d ∈ NJ1,nK such that xd = 0 is the pole locus of xcE1/xb+1/xa , the family of sections xd

generates xcE1/xb+1/xa . For such d, the family s := xdδ generates ι+(xcE1/xb+1/xa). We are left
to prove s ∈ V−1s. One can always suppose that 1 ∈ A. We have

x1∂1s = (d1 + c1)s−
b1
xb
s− a1

xa
s− x1A∂ts.
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We define M ∈ NJ1,nK by Mk = max(ak, bk) for every k ∈ J1, nK. We thus have

xMx1∂1s = (d1 + c1)x
Ms− b1xM−bs− a1xM−as− xMx1A∂ts. (3.5.1)

We have M = a+ bAc = 1A + (a− 1A) + bAc = 1A + b+m with m ∈ NJ1,nK. So

xM−bs = xmts ∈ V−1s.

Moreover, we have

xMx1∂1s = x1∂1x
Ms−M1x

Ms = x1∂1x
m+bts−M1x

m+bts ∈ V−1s

and
xMx1A∂ts = xm+b∂tx

2×1As = xm+b∂tt
2s = 2xm+bts+ xm+bt(t∂t)s ∈ V−1s.

So (3.5.1) gives
xM−as ∈ V−1s. (3.5.2)

Recall that i was chosen at the beginning of the proof such that i /∈ A and i ∈ Supp b. In
particular, (M − a)i = bi 6= 0 and ∂iδ = 0. Applying xi∂i to (3.5.2), we obtain

(di + ci + bi)x
M−as− bi

xM−a

xb
s ∈ V−1s,

so from (3.5.2) we deduce xM−a−bs ∈ V−1s. We have M−a−b = −bA, so by multiplying xM−a−bs
by xbA , we get s ∈ V−1s.

3.6. The aim of this subsection is to prove the following lemma.

Lemma 3.6.1. Let α, a ∈ NJ1,nK such that Suppα is not empty and Suppα ⊂ Supp a. Let R be
a regular flat meromorphic connection with poles contained in x1 · · ·xn = 0. We have

ψxα(E1/xa ⊗R) ' 0.

Proof. Let p1, . . . , pn be integers such that αipi does not depend on i for every i ∈ Suppα (we
denote such an integer by m) and pi = 1 if i 6= Suppα. Let ρp be the morphism x −→ xp. As
in (3.4.3), the morphism ρp+ρ

+
pM−→M is surjective. We are left to prove Lemma 3.6.1 for α

such that αi does not depend on i for every i ∈ Suppα. From [Sab05, 3.3.13], one can suppose
that αi = 1 for every i ∈ Suppα. So α 6 a. One can suppose that R = xb where b ∈ NJ1,nK. Let

Cn
� � ι //

xα $$

Cn × C

��
C

be the inclusion given by the graph of x −→ xα. Let t be a coordinate on the second factor of
Cn × C. We have to show that

ψt(ι+(xbE1/xa)) ' 0.

Define δ := δ(t − xα) ∈ ι+(xbE1/xa). For c ∈ NJ1,nK such that Supp c ⊂ Supp a ∪ Supp b, the
family of sections xc generates xbE1/xa . For such c, the family s := xcδ generates ι+(xbE1/xa). It
is thus enough to show s ∈ V−1s. Let us choose i ∈ Suppα. We have

xi∂is = (ci + bi)s−
ai
xa
s− xα∂ts.
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We have α 6 a. Define a = α+ a′. From

xαxi∂is = xi∂ix
αs− xαs = xi∂its− ts ∈ V−1s

we deduce that ais+ xa
′
x2α∂ts ∈ V−1s. We also have x2α∂ts = ∂tx

2αs = ∂tt
2s = 2ts+ t(t∂t)s ∈

V−1s. Since ai 6= 0, we deduce s ∈ V−1s and Lemma 3.6.1 is proved. 2

4. Proof of Theorem 1

4.1 Dévissage to the case of flat meromorphic connections

Suppose that Theorem 1 is true for flat meromorphic connections for every choice of ambient

manifold. Let us show that Theorem 1 is true forM∈Dbhol(X). We argue by induction on dimX.

The case where X is a point is trivial. Let us suppose that dimX > 0. We define Y := SuppM
and argue by induction on dimY .

Let us suppose that Y is a strict closed subset of X. We denote by i : Y −→ X the canonical

inclusion. Let π : Ỹ −→ Y be a resolution of the singularities of Y [AHV75] and p := iπ. The

regular locus Reg Y of Y is a dense open subset in Y and π is an isomorphism above Reg Y . By

Kashiwara’s theorem, we deduce that the cone C of the adjunction morphism

p+p
†M //M

has support in Sing Y , with Sing Y a strict closed subset in Y . Let x ∈ X and let B be a

neighbourhood of x with compact closure B. Then, p−1(B) is compact. Since dim Ỹ < dimX,

Theorem 1 is true for p†M ∈ Dbhol(Ỹ ). Let (Ui) be a finite family of open sets in Ỹ covering

p−1(B) and such that for every i, the set Slnb((p†M)|Ui) is bounded by a rational ri. Define

R = maxi ri.

By the induction hypothesis applied to C, one can suppose at the cost of taking a smaller

B containing x that the set Slnb(C|B) is bounded by a rational R′. Take f ∈ OB. We have a

distinguished triangle

ψf (p+p
†M⊗ f+N) // ψf (M⊗ f+N) // ψf (C ⊗ f+N)

+1 // . (4.1.1)

By the projection formula and compatibility of ψ with proper direct image, (4.1.1) is isomorphic

to

p+ψfp(p
†M⊗ (pf)+N) // ψf (M⊗ f+N) // ψf (C ⊗ f+N)

+1 // .

So we have the desired vanishing on B for r > max(R,R′).

We are left with the case where dim SuppM = dimX. Let Z be a hypersurface containing

SingM. We have a triangle

RΓ[Z]M //M //M(∗Z)
+1 // .

By applying the induction hypothesis to RΓ[Z]M, we are left to prove Theorem 1 for M(∗Z).

The module M(∗Z) is a flat meromorphic connection, which concludes the reduction step.
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4.2 The case of flat meromorphic connections

Let D be the pole locus of M. At the cost of taking an open cover of X, let π : X̃ −→ X be an
embedded resolution of the singularities of D. Since π is an isomorphism above X\D, the cone
of

π+π
+M //M (4.2.1)

has support in D. From [Meb04, 3.6-4], the left-hand side of (4.2.1) is localized along D. So
(4.2.1) is an isomorphism. We thus have a canonical isomorphism

π+ψfπ(π+M⊗ (fπ)+N) ' ψf (M⊗ f+N).

Since π is proper, we see as in 4.1 that we are left to prove Theorem 1 for π+M. We can thus
suppose that D has normal crossing.

Let p : X̃ −→ X be a resolution of the turning points for M as given by the Kedlaya–
Mochizuki theorem. Again p is proper and induces an isomorphism above X\D. So we are left
to prove Theorem 1 for p+M. So we can suppose that M has a good formal structure.

At the cost of taking an open cover, we can suppose that D has only a finite number of
irreducible components. Let S be the divisor of highest generic slopes (§ 2.6) ofM. Let S1, . . . , Sm
be the irreducible components of S. Let us prove that Slnb(M) is bounded by the sum degS of
the multiplicities of the Si in S. This is a local statement. Let f ∈ OX and define Z := div f .
Let us denote by |Z| (respectively, |S|) the support of Z (respectively, S) and let us assume for
a moment the validity of the following proposition.

Proposition 4.2.2. Locally on X, one can find a proper birational morphism π : X̃ −→ X such
that:

(i) π is an isomorphism above X\|Z|;
(ii) π−1(|Z|) ∪ π−1(|S|) is a normal crossing divisor;

(iii) for every valuation vE measuring the vanishing order along an irreducible component E of
π−1(|Z|),

vE(S) 6 (degS)vE(f).

Let us suppose that Proposition 4.2.2 is true. At the cost of taking an open cover, let us
take a morphism π : X̃ −→ X as in Proposition 4.2.2. Since condition (i) is true, the cone of the
canonical comparison morphism

π+π
+M //M (4.2.3)

has support in |Z|. Since f+N is localized along |Z|, we deduce that (4.2.3) induces an
isomorphism

(π+π
+M)⊗ f+N ∼ //M⊗ f+N.

Applying ψf and using the fact that π is proper, we see that it is enough to prove that

ψfπ(π+M⊗ (fπ)+N) ' 0 (4.2.4)

for every germ N of meromorphic connection at the origin with slope r > degS. Since (fπ)+N
is localized along π−1(|Z|), the left-hand side of (4.2.4) is

ψfπ((π+M)(∗π−1(|Z|))⊗ (fπ)+N). (4.2.5)
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The vanishing of (4.2.5) is a local statement on X̃. Since (ii) and (iii) are true, Proposition 3.4.1
asserts that it is enough to show that for every irreducible component E of π−1(|Z|), we have

rE((π+M)(∗π−1(|Z|))) 6 (degS)vE(fπ).

Notice that vE(fπ) = vE(f). Let P be a point in the smooth locus of E. Let ϕ be as in (2.5.1) for
M at the point Q := π(P ). For i = 1, . . . , n, let ti = 0 be an equation of Si in a neighbourhood
of Q. Modulo a unit in OX,Q, we have ϕ = 1/tr11 · · · trnn where ri ∈ Q>0. If u = 0 is a local equation
for E in a neighbourhood of P , we have, modulo a unit in OX̃,P ,

ϕπ =
1

ur1vE(t1) · · ·urnvE(tn) .

So the slope of Eϕπ(∗π−1(|Z|)) along E is r1vE(t1) + · · ·+ rnvE(tn). By the Sabbah–Mochizuki
theorem, ri is a slope of M generically along Si, so ri 6 rSi(M). We deduce that

rE(π+M(∗π−1(|Z|))) 6
∑
i

rSi(M)vE(ti) = vE(S) 6 (degS)vE(f).

This concludes the proof of Theorems 1 and 2.

4.3 Proof of Porposition 4.2.2
At the cost of taking an open cover of X, let us take a finite blow-up sequence

πn : Xn
pn−1 // Xn−1

pn−2 // · · · // X1
p0 // X0 = X (4.3.1)

given by [BM89, 3.15 and 3.17] for Z relative to the normal crossing divisor |S|. Let |Z|i be the
strict transform of |Z| in Xi and let Ci be the centre of pi. We define inductively H0 = |S| and
Hi+1 = p−1i (Hi) ∪ p−1i (Ci) for i = 1, . . . , n, where p−1i denotes the set theoretic inverse image. In
particular, Hi+1 is a closed subset of Xi+1. We will endow it with its canonical reduced structure.
Then (4.3.1) satisfies the following conditions.

(i) Ci is a smooth closed subset of |Z|i.
(ii) Ci is nowhere dense in |Z|i.

(iii) Ci and Hi have normal crossing for every i.

(iv) |Z|n ∪ Hn is a normal crossing divisor.

Since Ci and the components of Hi are reduced and smooth, condition (iii) means that locally
on Xi, one can find coordinates (x1, . . . , xk) such that Hi is given by the equation x1 · · ·xl = 0
and the ideal of Ci is generated by some xj for j = 1, . . . , k. Using condition (i), we see by
induction that π−1n (|Z|) ∪ π−1n (|S|) = |Z|n ∪ Hn. Proposition 4.2.2 is thus a consequence of the
following result.

Proposition 4.3.2. Let

πn : Xn
pn−1 // Xn−1

pn−2 // · · · // X1
p0 // X0 = X

be a blow-up sequence satisfying (i), (ii) and (iii). For every irreducible component E of π−1n (|Z|),
we have

vE(S) 6 (degS)vE(f). (4.3.3)
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Proof. Let S1, . . . , Sm be the irreducible components of |S| and let Z1, . . . , Zm′ be the irreducible
components of Z. Note that some Zi can be in |S|. We define ai = vZi(f) > 0 and let Zji
(respectively, Sji) be the strict transform of Zj (respectively, Sj) in Xi.

We argue by induction on n. If n = 0, E is one of the Zi and then (4.3.3) is obvious. We
suppose that (4.3.3) is true for a composite of n blow-ups and we prove that it is true for a
composite of n+ 1 blow-ups.

Let Cn be the set of irreducible components of

n−1⋃
i=0

(pn−1 · · · pi)−1(Ci).

Each element E ∈ Cn will be endowed with its reduced structure. Condition (i) implies that the
irreducible components of π∗nZ are the Zin and the elements of Cn. Condition (ii) implies that
none of the Zin belongs to Cn. Thus, we have

π∗nZ = div fπn = a1Z1n + · · ·+ am′Zm′n +
∑
E∈Cn

vE(f)E.

On the other hand, we have

π∗nS = rS1(M)S1n + · · ·+ rSm(M)Smn +
∑
E∈Cn

vE(S)E.

Let us consider the last blow-up pn : Xn+1 −→ Xn. Let us denote by P the exceptional divisor
of pn and let En+1 be the strict transform of E ∈ Cn in Xn+1. We have

p∗nZin = Zin+1 + αiP with αi ∈ N.
Since

Hn =
m⋃
j=0

Sjn ∪
⋃
E∈Cn

E

we deduce from condition (iii) and smoothness of Cn that

p∗nE = En+1 + εEP with εE ∈ {0, 1}
and

p∗nSin = Sin+1 + εiP with εi ∈ {0, 1}.
Hence, we have

π∗nZ =
∑

aiZin+1 +
∑
E∈Cn

vE(f)En+1 +

(∑
aiαi +

∑
E∈Cn

εEvE(f)

)
P

and

π∗nS =
∑

rSi(M)Sin+1 +
∑
E∈Cn

vE(S)En+1 +

(∑
rSi(M)εi +

∑
E∈Cn

εEvE(S)

)
P.

Formula (4.3.3) is true for the Zin+1. By the induction hypothesis, formula (4.3.3) is true for
En+1, where E ∈ Cn. We are left to prove that (4.3.3) is true for P . Conditions (i) and (ii) imply
that one of the αi is non-zero, so

(degS)

(∑
aiαi +

∑
εEvE(f)

)
> (degS) + (degS)

∑
εEvE(f)

>
∑

rSi(M)εi +
∑

εE(degS)vE(f)

>
∑

rSi(M)εi +
∑

εEvE(S). 2
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5. Duality

We prove Theorem 3(i). Let us denote by D the duality functor for D-modules. There is a
canonical comparison morphism

D(M⊗ f+N) // DM⊗ f+DN. (5.0.4)

On a punctured neighbourhood of 0 ∈ C, the module N is isomorphic to a finite sum of copies of
the trivial connection. Thus, there is a neighbourhood U of Z such that the restriction of (5.0.4)
to U\Z is an isomorphism. Hence, the cone of (5.0.4) has support in Z. We deduce that

(D(M⊗ f+N))(∗Z)
∼ // DM⊗ f+((DN)(∗0)).

We have (DN)(∗0) ' N∗, where ∗ is the duality functor for meromorphic connection. Note that
∗ is a slope preserving involution. Since nearby cycles are insensitive to localization and commute
with duality for D-modules, we have

ψf (DM⊗ f+N∗) ' D(ψf (M⊗ f+N))

and Theorem 3(i) is proved.

6. Regularity and nearby cycles

The aim of this section is to prove Theorem 4.

6.1. We will use the following lemma.

Lemma 6.1.1. Let F be a germ of closed analytic subspace at the origin 0 ∈ Cn. Let Y1, . . . , Yk
be irreducible closed analytic subspaces of Cn containing 0 and such that F ∩Yi is a strict closed
subset of Yi for every i. Then there exists a germ of hypersurface Z at the origin containing F
and such that Z ∩ Yi has codimension 1 in Yi for every i.

Proof. Denote by IF (respectively, IYi) the ideal sheaf of F (respectively, Yi). By irreducibility,
IYi,0 is a prime ideal in OCn,0. The hypothesis says that IF * IYi for every i. From [Mat80, 1.B],
we deduce that

IF *
⋃
i

IYi .

Any function f ∈ IF not in
⋃
i IYi defines a hypersurface as required. 2

6.2. We say that a holonomic module M is smooth if the support SuppM of M is smooth
equidimensional and if the characteristic variety ofM is equal to the conormal of SuppM in X.
We denote by SingM the complement of the smooth locus of M. It is a strict closed subset of
SuppM.

Let x ∈ X and let us define F as the union of SingM with the irreducible components of
SuppM passing through x which are not of maximal dimension. Define Y1, . . . , Yk to be the
irreducible components of SuppM of maximal dimension passing through x. From 6.1.1, one
can find a hypersurface Z passing through x such that:

(i) Z ∩ SuppM has codimension 1 in SuppM;

(ii) the cohomology modules of HkM are smooth away from Z;

(iii) dim SuppRΓ[Z]M < dim SuppM.
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6.3. The direct implication of Theorem 4 is a consequence of the preservation of regularity by
inverse image and the following proposition.

Proposition 6.3.1. We have Dbhol(X)reg ⊂ Dbhol(X){0}.

Proof. Take M ∈ Dbhol(X)reg. We argue by induction on dimX. The case where X is a point is
trivial. By arguing on dim SuppM as in § 4.1, we are left to prove Proposition 6.3.1 in the case
whereM is a regular flat meromorphic connection. Let D be the pole locus ofM. Take f ∈ OX
and let N with slope greater than 0. To prove

ψf (M⊗ f+N) ' 0

one can suppose, using embedded desingularization, that D+ div f is a normal crossing divisor.
We then conclude with Proposition 3.4.1. 2

6.4. To prove the reverse implication of Theorem 4, we argue by induction on dimX > 1.
The case of curves follows from Proposition 3.3.1. We suppose that dimX > 2 and we take
M ∈ Dbhol(X){0}. We argue by induction on dim SuppM. The case where SuppM is punctual
is trivial.

Suppose that 0 < dim SuppM < dimX. Since SuppM is a strict closed subset of X, one
can always locally write X = X ′ × D where D is the unit disc of C and where the projection
X ′ × D −→ X ′ is finite on SuppM. Let i : X ′ × D −→ X ′ × P1 be the canonical immersion.
There is a commutative diagram

SuppM //

&&

X ′ × P1

p

��
X ′

(6.4.1)

The oblique arrow of (6.4.1) is finite, and p is proper. So the horizontal arrow is proper. Thus,
SuppM is a closed subset in X ′ × P1. Hence, M can be extended by 0 to X ′ × P1. We also
denote this extension by M. It is an object of Dbhol(X ′ × P1){0} and we have to show that it is
regular.

Let Z be a divisor in X ′ given by the equation f = 0 and let ρ : Y −→ X ′ be a finite
morphism. Since p is smooth, the analytic space Y ′ making the diagram

Y ′
ρ′ //

p′

��

X ′ × P1

p

��
Y ρ

// X ′

cartesian is smooth. Moreover, ρ′ is finite. By base change [HTT00, 1.7.3], the projection formula
and compatibility of ψ with proper direct image, we have for every germ N of meromorphic
connection with slope greater than 0,

ψf (ρ+p+M⊗ f+N) ' ψf (p′+ρ
′+M⊗ f+N)

' ψf (p′+(ρ′+M⊗ (fp′)+N))

' p′+ψfp′(ρ′+M⊗ (fp′)+N)

' 0.
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By the induction hypothesis p+M is regular. Let Y1, . . . , Yn be the irreducible components of

SuppM with maximal dimension. Since SingM∩ Yi is a strict closed subset of Yi and since a

finite morphism preserves dimension, p(SingM)∩p(Yi) is a strict closed subset of the irreducible

closed set p(Yi). In a neighbourhood of a given point of p(SingM), one can find from § 6.2 a

hypersurface Z containing p(SingM) such that Z ∩ p(Yi) has codimension 1 in p(Yi) for every i.

So p−1(Z) contains SingM and

dim p−1(Z) ∩ Yi = dimZ ∩ p(Yi) = dim p(Yi)− 1 = dimYi − 1.

Since Irr∗Z is compatible with proper direct image [Meb04, 3.6-6], we have

Irr∗Z p+M' Rp∗ Irr∗p−1(Z)M' 0.

Since p is finite over SuppM, we have

Rp∗ Irr∗p−1(Z)M' p∗ Irr∗p−1(Z)M.

So for every x ∈ p−1(Z), the germ of Irr∗p−1(Z)M at x is a direct factor of the complex

(p∗ Irr∗Z p+M)p(x) ' 0. Thus Irr∗p−1(Z)M' 0. From [Meb04, 4.3-17], We deduce thatM(∗p−1(Z))

is regular.

To show thatM is regular, we are left to prove that RΓ[p−1(Z)]M is regular. From § 6.3, the

nearby slopes of all quasi-finite inverse images of M(∗p−1(Z)) are contained in {0}. Thus, this

is also the case for RΓ[p−1(Z)]M. By construction of Z,

dim SuppRΓ[p−1(Z)]M < dim SuppM.

We conclude by applying the induction hypothesis to RΓ[p−1(Z)]M.

Let us suppose that SuppM has dimension dimX, and let Z be a hypersurface as in § 6.2.

Then M(∗Z) is a flat meromorphic connection with poles along Z. Let us show that M(∗Z) is

regular. By [Meb04, 4.3-17], it is enough to prove regularity generically along Z. Hence, one can

suppose that Z is smooth. By Malgrange’s theorem [Mal96], one can suppose that Z is smooth

and that M(∗Z) has good formal structure along Z. Let (x1, . . . , xn, t) be coordinates centred

at 0 ∈ Z such that Z is given by t = 0 and let ρ : (x, u) −→ (x, up) be as in § 2.5 for M(∗Z).

Let Eg(x,u)/uk ⊗ R be a factor of ρ+(M̂0(∗Z)) where g(0, 0) 6= 0 and where R is a flat regular

meromorphic connection with poles along Z. For a choice of kth root in a neighbourhood of

g(0, 0), we have

ψu/ k√g(ρ
+M⊗ (u/ k

√
g)+E−1/uk) ' 0.

Since nearby cycles commute with formalization, we deduce that

ψu(ρ+(M̂0(∗Z))⊗ E−g/uk) ' ψu(ρ+M̂0 ⊗ E−g/u
k
) ' 0.

Thus ψuR ' 0, so R ' 0. Hence, the only possibly non-zero factor of ρ+(M̂0(∗Z)) is the regular

factor. So M(∗Z) is regular. We obtain that M is regular by applying the induction hypothesis

to RΓ[Z]M.
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7. Slopes and irregular periods

7.1. The main reference for what follows is [Sab00, II]. Let X be a smooth complex manifold of
dimension d and let D be a normal crossing divisor in X. Define U := X\D and let j : U −→ X
be the canonical inclusion. Let M be a flat meromorphic connection on X with poles along D.
We denote by p : X̃ −→ X the real blow-up of X along D and by ι̃ : U −→ X̃ the canonical
inclusion.

Let A<D
X̃

be the sheaf of differentiable functions on X̃ whose restriction to U is holomorphic

and whose asymptotic development along p−1(D) is zero, and let Amod
X̃

be the sheaf of

differentiable functions on X̃ whose restriction to U is holomorphic with moderate growth along
p−1(D). We define the de Rham complex with rapid decay by

DR<D
X̃
M := A<D

X̃
⊗p−1OX p

−1 DRXM
and the moderate de Rham complex by

DRmod
X̃
M := Amod

X̃
⊗p−1OX p

−1 DRXM.

7.2. With the notation in § 7.1, if M has good formal structure along D, we define [Hie09,
Proposition 2]

Hrd
k (X,M) := H2d−k(X̃,DR<D

X̃
M).

The left-hand side is the space of cycles with rapid decay for M. For a topological description
justifying the terminology, we refer to [Hie09, 5.1].

7.3 Proof of Theorem 5
We first prove the assertion concerning the slopes of Hkf+E . We denote by j : U −→ X the
canonical immersion, d := dimX and Sl0(Hkf+E) the slopes of Hkf+E at 0. We will also use the
letter f for the restriction of f to U . From [HTT00, 4.7.2], we have a canonical identification

(f+E)an ' (f+(j+E))an
∼ // fan+ (j+E)an. (7.3.1)

We deduce that
Sl0(Hkf+E) = Sl0(Hkfan+ (j+E)an).

Let x be a local coordinate on S centred at the origin. From Proposition 3.3.1, we have

Sl0(Hkfan+ (j+E)an) = Slnbx (Hkfan+ (j+E)an).

Since Slnbx (Hkfan+ (j+E)an) ⊂ Slnbx (fan+ (j+E)an), we deduce from Theorems 2 and 3 that

Sl0(Hkf+E) ⊂ Slnbf(x)((j+E)an) ⊂ [0, r1 + · · ·+ rn].

We are thus left to relate Sol(Hkfan+ (j+E)an) to the periods of Et, for t 6= 0 close enough to 0. Such
a relation appears for a special type of rank 1 connections in [HR08]. We prove more generally
the following proposition.

Proposition 7.3.2. For every k, we have a canonical isomorphism

Rkfan∗ Sol(j+E)an
∼ // Rk(fanp)∗DR<D

X̃
(j+E∗)an. (7.3.3)

For t 6= 0 close enough to 0, the fibre of the right-hand side of (7.3.3) at t is canonically isomorphic
to Hrd

2d−2−k(Ut, E∗t ) := Hrd
2d−2−k(X

an
t , (jt+E∗t )an).
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Proof. Set M := (j+E∗)an. Hien duality for the De Rham cohomology of E on U is induced by

a canonical isomorphism of sheaves

DR<D

X̃an
M∗ ' RHom(DRmod

X̃anM, ι̃!C).

We thus have

Rp∗DR<D

X̃an
M∗ ' Rp∗RHom(DRmod

X̃anM, ι̃!C)

' RHom(Rp∗DRmod
X̃anM,C)

' RHom(DRXanM,C)

' SolM.

The second isomorphism comes from Poincaré–Verdier duality and the fact that ι̃!C[2 dimX] is

the dualizing sheaf of X̃an. The third isomorphism comes from the projection formula and the

canonical identification [Sab00, II 1.1.8]

Rp∗Amod
X̃an ' OXan(∗D).

The last isomorphism comes from the duality theorem for D-modules [Meb79, KK81]. By

applying Rfan∗ , we obtain for every k and every t 6= 0 close enough to 0 the following commutative

diagram:

(Rkfan∗ SolM)t

(1)

��

∼ // (Rk(fanp)∗DR<D
X̃
M∗)t

(6)

��
Hk(Xan

t , (SolM)t)

(2)

��

Hk(Xan
t , (DR<D

X̃
M∗)t)

(7)

��

Hk(Xan
t ,SolMt)

(3)

��
H−k(Xan

t ,DSolMt)
∗

(4)

��

Hk(Xan
t ,DR<Dt

X̃t
M∗t )

o
��

H2d−2−k(Xan
t ,DRMt)

∗

(5)

��

Hrd
2d−2−k(X

an
t ,M∗t )
|
��

H2d−2−k(Ut,DR Et)∗
(8)

// Hrd
2d−2−k(Ut, E∗t )

By the proper base change theorem, morphisms (1) and (6) are isomorphisms. Morphism (2)

is an isomorphism by the non-charactericity hypothesis. Morphism (3) is an isomorphism by

Poincaré–Verdier duality. Morphism (4) is an isomorphism by the duality theorem for D-modules.

Morphism (5) is an isomorphism by Serre’s GAGA theorem [Ser56] and exactness of jt∗ where

jt : Ut −→ Xt is the inclusion morphism. Morphism (8) is an isomorphism by the Hien duality

theorem. We deduce that (7) is an isomorphism. 2
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Let e := (e1, . . . , en) be a local trivialization of Hk(f+E)(∗0) in a neighbourhood of 0. One
can suppose that f is smooth above S∗ := S\{0}. Set U∗ := U\{f−1(0)}. From [DMSS00, 1.4],
we have an isomorphism of left DS-modules

Hk(f+E)|S∗ ' Rk+d−1f∗DRU∗/S∗ E

where the right-hand side is endowed with the Gauss–Manin connection as defined in [KO68]. We
deduce that (et)t6=0 is an algebraic family of bases for the family of spaces (Hk+d−1

dR (Xt, Et))t6=0.
At the cost of shrinking S, Kashiwara’s perversity theorem [Kas75] shows that the only

possibly non-zero terms of the hypercohomology spectral sequence

Epq2 = Hp SolH−q(f+E)an|S∗ =⇒ Hp+q Sol(f+E)an|S∗

sit on the line p = 0. Hence, at the cost of shrinking S again, we have

SolHk(f+E)an|S∗ ' H0 SolHk(f+E)an|S∗ ' H−k Sol(f+E)an|S∗ . (7.3.4)

Since Sol is compatible with proper direct image, we deduce from (7.3.1) and (7.3.4) that

SolHk(f+E)an|S∗ ' R−k+d−1f∗ Sol(j+E)an. (7.3.5)

Let s : Hk(f+E)an −→ OSan be a local section of SolHk(f+E)an over an open subset of S∗an.
From (7.3.5) and Proposition 7.3.2, there exists a unique continuous family (γt)t6=0 of elements
of the spaces (Hrd

2d−2−k(Ut, E∗t ))t6=0 inducing s, that is,

s(e) : t −→
∫
γt

et

for every e ∈ Hk(f+E)|S∗ . Hence, the vector function

t −→
(∫

γt

e1t, . . . ,

∫
γt

ent

)
satisfies the system of differential equations corresponding to Hk(f+E), and Theorem 5 is proved.
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