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Information search with situation-specific reward fungto

Bjorn Meder Jonathan D. Nelson

Abstract

The goal of obtaining information to improve classificatasturacy can strongly conflict with the goal of obtaining in-
formation for improving payoffs. Two environments with e conflict were identified through computer optimization.
Three subsequent experiments investigated people’stsbahavior in these environments. Experiments 1 and 2 used
a multiple-cue probabilistic category-learning task tonay environmental probabilities. In a subsequent seask t
subjects could query only a single feature before makingssdication decision. The crucial manipulation concerned
the search-task reward structure. The payoffs correspbeitleer to accuracy, with equal rewards associated with the
two categories, or to an asymmetric payoff function, witffiedlent rewards associated with each category. In Experime
1, in which learning-task feedback corresponded to thedatiegory, people later preferentially searched the acgura
maximizing feature, whether or not this would improve mamngtrewards. In Experiment 2, an asymmetric reward
structure was used during learning. Subjects searchedterd-maximizing feature when asymmetric payoffs were
preserved in the search task. However, if search-task fsagofresponded to accuracy, subjects preferentiallychedr

a feature that was suboptimal for reward and accuracy dligortantly, this feature would have been most useful, un-
der the learning-task payoff structure. Experiment 3 fotlnad, if words and numbers are used to convey environmental
probabilities, neither reward nor accuracy consistentigjzts search. These findings emphasize the necessitying ta
into account people’s goals and search-and-decision gseseduring learning, thereby challenging current models o
information search.

Keywords: information search, classification, optimalexmental design, payoffs, decisions from experience.

1 Introduction experimental desigfOED) models provide one frame-
work for evaluating the value of alternative queries (Fe-
When diagnosing and treating a patient, when choosingdorov, 1972; Good, 1950; Lindley, 1956; Myung & Pitt,
job candidate or a mate, and in many other situations, o2909). A variety of experiments suggest that such mod-
must make decisions without having all the relevant inforels can also provide a reasonable description of human
mation. Are there widely applicable strategies for ideninformation-search behavior (reviewed by Nelson 2005,
tifying useful queries? What governs people’s informa2008), in situations with no explicit external payoffs.
tion search? In information-acquisition situations where Byt in many situations—for instance, when deciding
no particular benefits and costs apply, statistmaimal  whether something is safe to eat, whether a suspicious
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specific costs and benefits must be considered when dbree experiments on human information-search behav-
termining which information to acquire (which test toior, in those environments. These experiments were de-
conduct, which question to ask, which query to make)igned to identify whether people use probability gain
and not only when making classification decisions. Imore broadly than it is adaptive to do so, and what
other words, many highly informative tests are uselesspnditions can facilitate identification of the most use-
given the applicable situation-specific reward structuresful queries, given situation-specific reward functions. Fi
To what extent does people’s information-search berally, we discuss the implications of our findings in re-
havior appropriately reflect the costs or benefits assodation to Bayesian decision-theoretic models of human
ated with different correct or mistaken decisions? Weognition, existing models of the value of information,
address this in three experiments, using a probabilistand real-world information-search tasks.
multiple-cue category learning and information-search
paradigm. Importantly, we identify and investigate sit- ) )
uations in which the goal of obtaining information that?2 ~Models of information search
helps to maximize the number of correct classification
decisions should in principle lead to different search bedow can one anticipate the usefulness of possible infor-
havior than is appropriate to maximize reward, given thEational queries (questions, tests or experiments), eefor
particular environment's reward structure. (The environthe answer (query result, experiment result, or test out-
mental reward structure consists of the payoffs for eackPme) is known? In information-acquisition situations
kind of correct classification decision, and the costs g classification tasks where no particular benefits and
each kind of incorrect classification decision.) We exam@osts apply, optimal experimental design (OED) molels
ine whether people’s information-search behavior apprgovide one framework for evaluating the value of al-
priately reflects situation-specific reward structures, dgernative queries (Nelson, 2005, 2008; Appendix, Table
whether peop'e may U$R'0bab|||ty gain(accuracy max- Al) Mathematica”y, these models fall within a frame-
imization, a psychologically plausible goal for informa-Work of expected utility maximization (Savage, 1954),
tion search in classification tasks, Baron, 1981, as cited Where utility is defined according to a particular quan-
Baron, 1985; Nelson, McKenzie, Cottrell, & Sejnowski,tification of the value of information. Some OED models
2010) to guide their search decisions, even when it is ndiclude maximizing improvement in probability of iden-
adaptive to do so. tifying the correct hypothesis, or categoryrgbability
gain, Baron, 1981/1985), maximizing change in beliefs
. (e.g.,Kullback-Leibler divergenceKullback & Leibler,
1.1 Overview of paper 1951; orimpact Wells & Lindsay, 1980), and minimiz-
! . ing uncertainty (as measured wihannon entropgr a
We first review research on general-purpose methods f(r)ercllated measure, Shannon, 1948; Lindley, 1956). OED

identifying useful informational queries, and empirical . .

. ; ) L . models can in some cases themselves be exactly imple-
studies on human information selection in which no ex- L i
mented by heuristic processes (Navarro & Perfors, 2011;

te_mal payoffs ap_ply. We then d|§cuss .rela.ted eX|st|n.g e.nNeIson, 2005, 2008, 2009). A number of heuristic al-
pirical research in psychology, investigating behavior in

situations with different reward structures. This resbarcgor'thms’ outside the mathematical framework of util-

shows some of the capabilities and limitations of humalty maximization, have also been proposed (Gigerenzer,

behavior in maximizing payoffs following ex erience-rllOdd’ & ABC Research Group, 1999; Green & Mehr,
based learning, on nor?—igfgrmation-sear?:h tar'Jsks Sorﬁlgg?; Luan, Schooler, & Gigerenzer, 2011; Martignon,
9 ) I&tsikopoulos, & Woike, 2008).

prior research also deals with information search given
Some of these models have been proposed as norma-

asymmetric rewards, but not in the context of experienc?.- e and/or descriptive models in psveholoav. For exam-
based learning, and not in contexts in which reward anéﬁ/ P psy 9y-

. . ple, Baron, Beattie, and Hershey (1988) used probabil-

accuracy make contradictory predictions. ; . . : : :
We then introduce the mathematics that should in prinrEy gain as a normative model in a medical test scenario.
ciple govern classification behavior in environments with 1Related terms includepistemic utilityand quasi utility (Good,
external payoffs, and show how situation-specific payoff£950). Note that the idea with “optimal” experimental desigodels is

can be incorporated into models of information searcH‘.Ot that they are globally optimal for sequential searchetd, compu-
tational constraints usually require planning only a ledinumber of

BU||d'ng_ on t.hese ?quat'onsi _We u.5e _C(_)mPUter S'mU|§feps into the future. Nor are OED models intended to opérkimwn
tions to identify environments in which it is highly prob- external constraints. Rather, OED models are a statissiteipt to

lematic to use probability gain (i.e., selecting informa<€lucidate reasonable bases for selecting experimentsieguer tests

tion so as to maximize the probability of making a Cor_when external utilities do not apply or are not specificaiiypwn. This
might be the case on perceptual or other categorizatiors tasid sci-

rect (?laSSiﬁcatilon. decision) to identify queries, if theengfic inference tasks. Various names of particular moHeis been
goal is to maximize expected reward. We then repotised. We follow Nelson's (2005, 2008) nomenclature.
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Crupi, Tentori, and Lombardi (2009) used probability 3. the factors driving people’s choices among queries,
gain in an analysis of the pseudo-diagnosticity paradigm. in environments with asymmetric payoffs, but in
Oaksford and Chater (1994, 1996) used information gain ~ which the alternate queries are objectively equally
to analyze Wason’s (1966, 1968) selection task. Klayman  useful.

and Ha (1987) used impact in their research on hypothe-

sis testing (Klayman, 1987, also used information gainour experiments bring together these research areas in
Most of these studies focused on tasks where no partichovel ways.

lar benefits and costs apply. (Baron & Hershey'’s, 1988,
medical diagnosis task, and Oaksford & Chater’s, 1991!3
model of deontic versions of Wason’s selection task, are’
notable exceptions.) This research has shown that infor-

mation search that may look irrational from the view-geyeral studies on perceptual categorization have used a
point of classical deductive logic may make sense fro@ignal-detection—theory framework to examine how peo-
the perspective of adaptively seeking information to fap|e’s decision criteria vary as a function of the costs and
cilitate probabilistic inductive inference (Chater & Oaks peanefits associated with different categorization degisio
ford, 2008; Hahn & Oaksford, 2007; Oaksford & Chater(Maddox, 2002: Maddox & Bohil, 1998, 2003: Maddox
2007). Other work (Myung & Pitt, 2009; Cavagnaro,g, podd, 2001; von Winterfeldt & Edwards, 1982). Typ-
Myung, Pitt, & Kujala, 2010) shows how OED princi- jcaly, these categorization experiments present subject
ples can be used to automatically design experiments {th stimuli (e.g., lines of varying length), randomly sam-
investigate different aspects of human cognition and digsieq from two overlapping category distributions. The
criminate between competing cognitive models (€.9., th@sk of the subject is to categorize a given stimulus (e.g.,
shape of memory decay curves). as “short” vs. “long”) in a way that maximizes accuracy
Which model best describes human intuition about thgy expected reward.
usefulness of possible informational queries, on classi- paddox and Bohil (1998, 2001; see also Maddox,
fication tasks where no particular extemal payoffs ap002; Maddox & Dodd, 2001) examined how people’s
ply? Nelson et al. (2010) used an experience-based C@ltegorization decisions vary as function of asymmetric
egory learning paradigm to pit alternate models againgayoffs_ For example, if correct Categoxyresponses
each other, in several experiments. Probability gain begte rewarded twice as highly as correct Categorg-
described human information search behavior when €8ponses, the expected value of a Categorgsponse is
vironmental probabilities were learned through experihigher than the expected value of a Categprgsponse
ence and no particular costs or benefits for different typ%heneveP(Category( | stimulus) > 1/3. (The section on
of decisions applied. Subjects preferentially viewed thepecision bounds in binary classification tasks,” below,
higher-probability gain feature in all the environmentsyrovides a formal treatment.) By contrast, to maximize
studied by Nelson et al., even in cases when all the Othﬁf:curacy, one must always choose the more likely cate-
OED models (Appendix, Table Al) preferred a diﬁerenbory, meaning to prediotwheneveP(Categoryx | stim-
query. ulus) > 1/2. To maximize long-run expected reward, one
must sometimes choose the less likely category, which
. necessarily leads to a higher number of incorrect classifi-
3 Prior research cation decisions than if always choosing the more likely
category. Thus, asymmetrically rewarded classification
Previous research does not address information searchdécisions induce a conflict between accuracy and reward.
the context of asymmetric reward functions, where the Do people adopt decision criteria so as to maximize
two goals of obtaining information for improving classifi- reward, in classification tasks? Typically, people shift
cation accuracy, and maximizing reward, contradict eadieir decision criterion away from 50% in the appropri-
other. Previous research addresses related issues, heye direction, but not as much as would be optimal from
ever. These issues include: the perspective of expected reward. To account for these
_ ) - and related findings, Maddox and Bohil (1998) intro-
1. th.e circumstances under Whlgh classifications gf,ced theCOmpetition Between Reward and Accuracy
;tlmul| can adapt to asymmetric payoff structurescoBRA) hypothesis. Since under asymmetric payoffs
in non-search tasks; the reward- and accuracy-maximizing decision bounds
2. people’s ability in rapid motor movement tasksconflict, the resulting criterion placement is suboptimal
which do not involve information acquisition, to (for an overview, see Maddox, 2002). Thus, even given
spontaneously adapt to asymmetric payoff strucexperience-based learning of the overlapping category
tures; and distributions, when reward and accuracy conflict, peo-

1 Perceptual categorization, asymmetric
rewards, and signal detection theory
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ple’s categorization decisions can fail to follow a rewardthe motor training phase, subjects had to reach quickly,
maximizing strategy. Note, however, that this line of reand could learn how accurate they are in hitting a par-
search (and the COBRA model) is not concerned witlicular target location in the available time. After this

information search, but rather with classification leagnin experience-based learning of motor uncertainty, the re-
based on full stimulus information. ward function was introduced. At this point, subjects

immediately adapted their movements to approximately

3.2 Rapid motor movements under uncer- maximize reward. These findings suggest that when
. . probabilistic information (the motor uncertainty of the

ta!nty_ and spontaneous reward maxi- reach destination under time pressure) is properly inter-

mization nalized, people are able to adapt their behavior to maxi-

Another research program that uses experience-baddige reward. o o
learning to convey probabilistic information, and stud- YWhat are the limits to this kind of reward-maximizing

ies people’s ability to spontaneously behave appropyiateP€havior? Wu, Trommershauser, Maloney, a}nd Landy
in the context of situation-specific reward structures, int2005) noted that in Trommershauser et al's (2003a,

volves rapid motor movement tasks. Trommershauser003P) tasks, the optimal reach destination was always

Maloney, and Landy (2003a,b) introduced tasks that is®Mewhere along a single imaginary line, about which
volved rapid pointing to a touch screen, with a payoff folth® reward and penalty regions were symmetric. If a sub-
hitting a reward region (e.g., a green circle), and a penalf§Ct noticed and correctly intuited this symmetry, they
for hitting a penalty region (e.g., a red circle). Because dfould reduce the decision space from two dimensions to
the small size and close spatial (or overlapping) locatiof Single continuous dimension. (Wu et al. called this the
of the reward and penalty regions, and the motor uncefYMMmetry-axis heurisfic Wu et al. (2005) considered a
tainty in the rapid movement, it is generally not optimaf!ightly more complex scenario, in which there were two
to aim at the center of the reward region. Rather, thgenalty regions, _whlch differed in thelr_ severity. In this
intended reach location should be appropriately shiftegF€nario, the optimal movement endpoint goal was noton
(according to the motor uncertainty in the rapid reachin'€ imaginary symmetry line. Rather, the optimal move-
movement), to maximize the expected payoff, aggrega‘FJent gpal was shghtllethlnthe Iesser-pen_alty region, in
ing the expected reward (amount times probability) fron® location that overl_aps with Fhe_revyard region. Althc_>ugh
the hit region, minus the expected penalty (amount timgi€"formance was high, the distributions of most subjects’
probability) from the penalty region(s). reaches were sh|ft_ed 5|gn|f|c§mtly away from t_h_e optimal
These motor tasks are mathematically equivalent tl&catlon_s, sugg_estlng that this tas_k is more difficult than
more traditional decision making under risk tasks stud'€ earlier maximum expected gain tasks.
ied in psychology (e.g., choices between gambles). Each 10 Summarize, Trommershauser and colleagues’ re-
pointing trial is the choice of a gamble, defined by the®arch suggests that, following experience-based learn-
intended pointing location. The possible outcomes df'9 0 internalize uncertainty in motor movement tasks,
a motor action (gamble) are determined by the prob&€0Ple have a remarkable, but not perfect, ability to take
bility, given the motor uncertainty, of actually touching@rPitrary payoff functions into account, without requgin
each particular region (each reward, penalty, or overldfW learning experiences. The conditions for optimality
region) on the screen, and that region’s associated pdf)-the motor movement plans—namely, why Trommer-
offs. Trommershauser et al. (2003a,b) found that peopfitauser et al. (2003a,b) saw it, yet Wu et al (2005) did
were close to optimal (typically earning 95+% of the theNot—are not fully clear.
oretical maximum returns) in movement tasks, with mon-
etar_y_reward._ln view of other p;ychological researchoB 3 |nformation search under asymmetric
decision makmg _u_nder uncertainty, an_d_ the fact that the reward functions
relevant probabilities were never explicitly conveyed to
subjects, this is remarkable (Trommershéuser, Maloneyyhereas standard classification tasks require people to
& Landy, 2008). categorize items based on the full stimulus information,
Note also that subjects’ capacity to apply a rewardsearch tasks require people to consider which query (test,
maximizing strategy did not require new learning expeguestion, experiment) is most useful to achieve a cer-
riences, or gradually shifting behavior, after the payoffain goal (such as maximizing reward or accuralog)
scheme was introduced. Prior to the actual decisiofiere making a classification decision. For each possible
making phase, in which the payoff scheme was imposetkst outcome (e.g., for a positive or negative medical test
subjects underwent a motor-task training phase, in whiatesult), such a task requires estimating its marginal prob-
they internalized motor uncertainty without explicit pay-ability, its implications (i.e., posterior probabilitydha
offs for correct or incorrect pointing movements. Inperson does or does not have the disease, given a par-
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ticular test result), and its usefulness with respect to ther (see Appendix, Table A2).
agent’s goals. For instance, it may be more important to Still another possibility is that subjects have difficul-
correctly identify people who have a disease than thogsi&s understanding and utilizing probabilistic infornaeti
who do not have the disease, or vice versa, or to maxivhen itis presented with words and numbers, in this type
mize overall classification accuracy. of task. Traditional words-and-numbers formats are not
Baron and Hershey’s (1988) study of information acvery meaningful for inductive inferences (Cosmides &
quisition included some problems in which the choicgooby, 1996; Gigerenzer & Hoffrage, 1995; Krauss, Mar-
was whether or not to conduct a medical test, and othégnon, & Hoffrage, 1999), and lead to less-consistent
problems in which the choice was which of two tests tgearch behavior than experience-based learning (Nelson
conduct. In each particular scenario, subjects were give al., 2010). Baron and Hershey found evidence that
information on the probability of a disease, and one osubjects may have used particular heuristic strategi¢s tha
two tests. The information on each test was presented @guld be applied given the words-and-numbers format of
the test’s true positive rate (the probability of a positivéhe probability and cost (reward structure) information.
test result in a patient who has the disease), and the false
positive rate (the probability of a positive test result in a . .
patient who does not have the disease). There were ﬁ‘b Aims of this paper

explicit payoffs for correct diagnoses. The reward struc- revious research on classification decisions and on rapid
ture was described in terms of the cost (harm) of treaE viou meatior ISl . P!
movement tasks under asymmetric rewards gives a com-

ing & person who does not have the disease, and the COﬁcated icture regarding the circumstances under which
(neglect) of failing to treat a person who does have thig ; P €9 9 ; .
ople’s behavior, following experience-based learning,

disease. Both symmetric and asymmetric cost structurB§ ) .
n respond appropriately to externally imposed payoff

were used. In the symmetric cost structure, failing to treé:[?ructures Moreover. this research does not examine in
a person with the disease was equally problematic as ufu- ' :

: . lormation search. Although Baron and Hershey (1988)
necessarily treating a healthy person. In the asymmetri 4 studv inf i it q i
cost structure, one of the kinds of errors had a great {d study information acquisition under asymmetric pay-

cost, which was specified, than the other kind of error. Off structures, they did not use experience-based learn-

| . E . (1 C 511 ting of environmental probabilities, and they did not study
n some scenarios (Experiment 1, Cases N ): r2:(?rcumstances under which the goal of gathering infor-
task was to choose between two tests. The idea w

A¥ation to improve accuracy contradicts the goal of max-

to try o identify the cues that people use to select us?r'nizing some external payoff function. Thus, it is hard

ful tests. Baron and Hershey found that subjects WeLs predict from the literature whether people will be able

pften _sensm\ée g_)l.{1_orm?ttl\r/]eI)arelevantt\r/]arhq?fles, 'nelLédto identify the most useful tests, after learning environ-
INg prior probabiliies of the disease, e CIErence Deq, o probabilities through experience, when situation-
tween true and false positive rate (which corresponds

a test's impact: Nelson, 2005, 2009), and the applicab ecific payoffs apply. The present paper has twin goals:

cost structure. Baron and Hershey also found that sub-1. theoretically identify circumstances under which

jects use heuristic strategies, for instance by choosing a it is important to take situation-specific payoff
test that, relative to a giVen cost Structure, minimizes the schemes into account when Searching for informa-

most harmful kind of errors. tion, and

However, because the tests were objectively equally2  empirically address the circumstances under which

useful (i.e., had the same utility given the applicable cost  pepple can take situation-specific payoffs into ac-
structure), subjects’ preferences do not directly show how  ¢count when searching for information.

sensitive people are to the relative objective usefulnéss o

different tests. In about half of the cases, subjects did not Our theoretical analyses integrate ideas from optimal
have a statistically reliable preference for one test ovexperimental design, statistical decision theory, and sig
the other. In other cases, subjects did have a preferental detection theory. We use computational search tech-
between the tests. Why? Some subjects’ written justificariques to identify environments in which searching with
tions indicated that they had at least approximately calcthe goal to obtain the most reward is maximally incom-
lated the relevant probabilities and utilities, and realiz patible with the goal of making accurate classification de-
that the tests were roughly equally useful. (This does naisions. Empirically, we use experience-based learning
explain why subjects preferred particular tests, in otheand actual information-search tasks to address whether
scenarios.) Another possibility is that people used infoliuman subjects’ information-search behavior can appro-
mational strategies, consistent with OED models, to picgriately make use of situation-specific (symmetric and
gueries. To address this, we re-analyzed these scenariasymmetric) reward structures. We conduct these exper-
However, no OED models consistently predicted behaiments in the environments identified through our com-
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Figure 1: Statistical environments to differentiate usiefas of features and R under symmetric vs. asymmetric
reward functions. In each environment, there are four dtiffplankton’), constructed by combining two binary
features,A (“eye”) andR (“claw”). The numbers above the items indicate their fratpies; the numbers below
indicate the probability of belonging to Categorgr y, respectively. The table at right provides detailed infation
on the two environments.

Environment 1 Probabilities
Env.1 Env. 2
Priors:
P(z) 0.440 0.360
3.7% 37.7% 8.6% 49.9%
P(y) 0.560 0.640
an a a a ikelihood

# # # e Likelihoods:
& * * * P(airm|z) 0.000 0.000
3 2 3 h P(ai r2lz) 0.560 0.140
0% 100% 65.3%)\34.7% 0% A\mO% 38.8%/J\61.2% P(az mi|z)  0.000 0.000
y ~ | y - ‘ | ~/ ‘ P(az r2|z)  0.440 0.860
Cat. x Cat. y Cat. x Cat. y Cat. x Cat. y Cat. x Cat. y P(al 7‘1|y) 0.066 0.352
P(air2]y) 0.234 0.448
. R P(a2 r1ly) 0.154 0.088

i t

nvirenmen Plazraly) 0546 0.112

Frequencies:
P(aim) 0.037 0.225
| 22.5% ‘ 33.7% | 5.6% | 38.1% P(axr2) 0.377 0.337

Plasr)  0.086 0.056

i ar an ayr P 0.499 0.381

*‘Q’, *‘ “? *ﬁ (a2 2) . .

. Posteriors:
R A R A\

P(z|a; 1) 0.000 0.000
0% 100% 15% ,L 85% 0% /j\ 100% s1.2%fl\1s.s% P(z|ay r2) 0.653 0.150
] ] |~ P(zlazr1) 0.000 0.000
Cat. x Cat. y Cat. x Cat. y Cat. x Cat. y Cat. x Cat. y P(1‘|CL2 7,,2) 0.388 0.812

puter simulations, in which the goals of obtaining infor-a; anda,, andR (e.qg., the claw feature), which can take
mation to be accurate, and obtaining information for revaluesr; andr,. Subjects’ task was to classify stimuli as
ward, maximally conflict. Categoryx or Categoryy, as a function of which stimulus
Experiments 1 and 2 each consist of two tasks: Was showndri, air, ar, orarz).
classification-learning task and a search task. In thedearn Our research question concerned behavior in the sub-
ing task, both feature values of the stimuli were visible irsequent search task. In this task, subjects could view only
every trial. The learning-task procedure was very sima single feature (Featureor FeatureR), before classify-
ilar to that of Nelson et al. (2010), and other multipledng stimuli. Figure 2 illustrates the decision problem that
cue probabilistic category learning tasks (e.g., Knowltorthe search task presents, at a conceptual level. Once a
Squire, & Gluck, 1994; Kruschke & Johansen, 1999). Ifeature is chosen to view, the specific value that it takes
was also similar to perceptual categorization classificds revealed (Featur& can take valuea; or a; FeatureR
tion tasks in the signal detection theory paradigm (e.gcan take values; or ry), according to the environmental
Maddox, 2002). Figure 1 illustrates the category-learningrobabilities. Based on this information, subjects had to
task at a more conceptual level; Figure 4 illustrates a saralassify the item as Categoryor y.
ple trial from the category-learning task. The goal of the The crucial manipulation concerned the monetary pay-
learning task was to help subjects internalize environmeiwffs for correct classification decisions in the search:task
tal probabilities. Stimuli consisted of two dichotomousin the symmetric payoffs conditiopmach type of correct
features:A (e.g., the eye feature), which can take valueslassification paid the same amount of mone§ (@r any
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correct classification). In this case, maximizing accuracifies and the actual (symmetric vs. asymmetric) search-
will also maximize rewards, and Featuleis most use- task payoff structure.
ful. In the asymmetric payoffs conditipnorrect classifi- Research on motor movement tasks suggests that if
cations of one category received a higher payoff than copeople meaningfully assimilate environmental probabil-
rect classifications of the other category (e.&,f@r cor- ities, their performance might indeed approximate a
rect Category classifications vs. 0£€ for correct Cat- reward-maximizing strategy, consistent with ideas from
egoryy classifications). In this case, maximizing over-Bayesian decision theory. Thus, they should search Fea-
all classification accuracy would not maximize rewardsture A under symmetric rewards (as in this case maximiz-
and Featur® is more useful. This manipulation was de-ing accuracy will also maximize rewards), but FeatBre
signed to mimic the asymmetric rewards inherent in realvhen searching under asymmetric rewards.
world scenarios, such as medical screening, in which itis On the other hand, studies on experience-based infor-
more important to correctly identify patients who have anation search (Nelson et al., 2010) show that maximiz-
disease than those who do not have the disease. ing accuracy (i.e., searching for information that helps
Mathematically, the search task is very different fromto improve classification accuracy) best describes peo-
the learning task, as it requires people to determine whigtle’'s search behavior when no explicit external rewards
of the two featuresA vs. R) would be most useful, rela- are provided. Similarly, studies on perceptual categeriza
tive to their goals (e.g., the applicable payoff function otion (which do not address information search) show that
an intrinsic goal, such as maximizing accurady@fore people have a general preference for accuracy, making it
seeing the specific feature value or making a classificaifficult to apply a reward-maximizing strategy in pure
tion decision. Choosing a feature to view requires arclassification tasks. These findings lend support to the
ticipating the usefulness of the possible outcomes of tharediction that people may also have a preference for ac-
search (e.g., usefulnessaf vs. ay, in the case of Fea- curacy in information-search tasks, even when this may
ture A), and aggregating the usefulness of each possibbe suboptimal for maximizing rewards. On this view,
feature value according to its probability, in order to depeople may preferentially search Featéeeven when
termine the aggregate usefulness of the feature. (Raiff@arching under asymmetric payoffs.
and Schlaifer, 1961, would call thispeposterior analy- Finally, it may be that people generally have difficulty
sis) Importantly, the usefulness of the individual featuredentifying which informational query is most useful to
states depends on the goal, such as maximizing accurahieve their goals when accuracy and reward conflict,
or reward. even following experience-based learning of environmen-
Note that the classification part of the search tastal probabilities. In this case, people might have no par-
is mathematically also very different from that of theticular preference for Featurk vs. R, regardless of the
learning task. For example, a subject may decide t@pplicable reward function.
search Featurd, and observe that it takes the value Inthe following section, we briefly introduce the math-
a;. Given this single piece of information, the sub-ematics that should govern behavior (for an agent who
ject has to estimate the probability of the categoriesyishes to maximize rewards, or utility) in two-way clas-
e.g., P(Category x|a;). However, this information sification tasks with situation-specific rewards. Impor-
may not have been learned, because in the learnit@ntly, these equations also form the foundation of calcu-
task classifications were made based on full informatiolation of questions’ usefulness in the context of informa-
about both feature states, e.B(Categoryx|a;r1) and tion search, given asymmetric payoff structures. Subse-
P(Category | a;rp). Thus, to estimatB(Categoryx | a;), quently, we describe our simulation experiments to iden-
the subject has to remembB{Categoryx|a;r;) and tify environments to differentiate probability gain from
P(Categoryx | a;r2), and then to average those two numsituation-specific utilities, and behavioral experiments
bers according to the relative frequency of the; and identify what tests people select when reward and accu-
ayr, configurations. racy conflict.

4.1 Hypotheses 5 Decision bounds in binary classi-

The environments used in our experiments entailed acon- ~ fication tasks

flict between the goals of improving accuracy and re-

ward, when searching under asymmetric reward schemé3onsider a task in which stimuli must be designated as
whereas FeaturA improves overall classification accu- Categoryx or Category. Given a particular reward func-
racy, Featurd improves expected reward. The questiortion, including the rewards associated with correand
was which feature people would prefer to view, accordy classifications, and the costs associated with incoxrrect
ing to the way they learned the environmental probabilandy classifications, it is possible to determine for each
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Figure 2: Information-search task illustrated. First oas to decide which feature to view 6r R, here “eye” and
“claw” of plankton stimuli, respectively). The numbers ghibow likely one is to encounter a particular feature value,
as well as the posterior probabilities of the two categomg@gen the feature value. Below the tree, the utility gain
(Equation 5) of featuresX R) and feature valuesa{, ap, r1, r2) is shown, for symmetric and asymmetric rewards.
The height of the bars indicates the amount of utility gatme width represents the frequency of occurrence. For
example, in Environment 1, under the symmetric reward fong¢tfeaturer; entails a high utility gain (0.440), but
the probability of encountering this feature value is lowl@B). The tables provide detailed information on the two
environments.

Environment 1
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possible value oP(Categoryx | stimulus) whether desig- If k — m = | — n, then the decision bound=1/2;
nating an item as Categoryor y has a higher expected we term this asymmetric reward functior(or pay-
reward (utility, or payoff). We refer to an environmentaloff structure). If c,=1/2, selecting the more proba-
payoff structure in the formkl| m n as follows (Figure ble category maximizes both reward and accuracy (to-
3a): tal number of correct classifications). Examples include
[k ' mn=[11 0 0] (Figure 3b), a symmetric payoff struc-
* kis the payofffor correct classification of a Categoryture under which correct classifications of either category
x stimulus (“predic” when the true category i9;  receive one unit payoff, and there are no costs for mak-
ing erroneous classification decisions, but also the payoff
Ystructure [5 10 3 8], which may not look symmetric on
first glance.

« mis the cost of erroneously categorizing a Category An asymmetric reward functioapplies where,71/2.

y stimulus as Category (“predictx’ when the true For example, K I m il = [10 1 0 0] refers to a reward
category isy); scheme according to which correct Categogecisions

are rewarded ten times as highly as correct Category
* nis the cost of erroneously categorizing a Categorgecisions, and there are no costs for erroneous decisions
x stimulus as Category (“predicty” when the true (Figure 3d). Plugging these values into Equation 2 yields
category i). cx=1/11, meaning that one should predict Categoil
_ ) P(x) > 9%, and predicy otherwise.

Given a particular reward structdrethe reward-  Figure 3 (right hand side) exemplifies the situations
maximizing decision bound, which we cat}, corre- graphically. For each value ¢¥(Categoryx | stimulus)
spond§ to the point Qf indifference, i.e., the prob.abilitybne can determine the action (“preditis. “predicty”)
of a stimulus belonging to Category P(x), for which  that has the higher expected value. The decision bound
both possible categorization decisions (“predict Catggor, is given by the intersection of the two reward functions

X" and “predict Category”) have equal expected value g, the “predictx’ and “predicty” responses.
(von Winterfeld & Edwards, 1982). The probability of

Categoryx, P(x), for which both categorization choices
have the same expected reward is given by solving

« | is the payoff for correct classification of a Categor
y stimulus (“predicty” when the true category i9;

6 Simulation experiment:
gain vs. probability gain

Utility

kP(x) —m(l - P(z)) =1(1 - P(x)) —n(P(z)) (1) o . .

Are there implications of symmetric vs. asymmetric re-
for P(x). The left side of the equation gives the expecteward structures for information search, when one or more
value of classifying the stimulus as belonging to Categorproperties in the environment can be queried, before mak-
x, and the right side of the equation gives the expectdtig @ classification decision? How can one quantify
value of classifying the stimulus as belonging to Categorthe usefulness of alternative queries, such as when de-
y. This implies that the indifference point, or decisionciding whether to look at Featurk (“eye”) vs. Feature

criterioncy, is given by

l+m

Pl)=c =

(@)

20ur terms can be related to signal detection theory. If Qateg
is signal, and Categoryis noise, therk is the payoff for a hit] is the
payoff for a correct rejectionn is the cost of a false positive, amds
the cost of a false negative (Figure 3). Our terms can alselaeed to
the medical diagnosis scenarios used by Baron and HersB8g)1If
Categoryx is disease, and Categoyys healthy, therk is the payoff for
correctly treating a person with the disedsis,the payoff for correctly
not treating a person without the diseases the cost (harm) from treat-
ing a person who does not have the disease naadhe cost (neglect)
from failing to treat a person with the disease. The payoffcitires we
use (with positive payoffs for correct categorizations batpenalties
for mistakes), and the payoff structures Baron and Hersh@§q) used
(with penalties for mistakes but no rewards for correct dasgs) can
be easily equated. A [2 1 0 0] payoff structure, and a [0 O 1 8} pa
off structure each lead tx=1/3; a [10 1 0 0] and a [0 0 1 10] payoff
structure each lead t =1/11, etc.
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R (“claw”) in Figure 2?

In this section we introduce probability gain, which is
a psychologically plausible optimal experimental design
(epistemic utility) method for selecting queries (Baron,
1985; Nelson et al.,, 2010). We also introdugidity
gain, which uses the situation-specific utility structure to
identify the most useful query. Finally, we use computer
search techniques to identify environments in which the
asymmetric reward structure strongly suggests that one
query (e.g., looking at FeatuR) is most useful, but prob-
ability gain strongly prefers a different query (e.g., leok
ing at Featured). We will subsequently use those envi-
ronments in three experiments to explore whether human
search can adapt to environment-specific reward struc-
tures.

Let F denote a feature (a random variable) before its
specific state is known. The possible states of the feature
F arefq, fa, ..., fm. The expected usefulness (utility)
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Figure 3: Payoff functions in a binary classification taskt@oryx vs. Category)

General Case [k I m n] Reward Function

a) Gen_erz?ll_case: The rew_a_rd- True category T e
maximizing decision S ol - <~ predictCat.y | _
bound ¢, is given by Decision Catx Cat.y £ g

58 g
(+m/(k+l+m+n). If predictx Kk m g " 3
P(Categoryx | stimulus) > ¢ di | 3 ol o &
one should predict Category P'® icty n g 3
x, if P(Categoryx |stimulus) i g o %
< ¢ one should predict © e
Categoryy.

0 P(Category x | St?mulus)
. Symmetric [1 1 0 0] Reward Function

b) Symmetric payoffs: If_ True category g " 9
k+m=1+ n, then the deci- S "\ ===~ predict Cat. y
sion bounct, = 1/2, meaning ~ Decision Catx Cat.y

5 o
that one shpuld always select predictx 1 0 2 g
the more likely category, to i 0 = 5
maximize rewards. This is _Predicty 1 g 3
the implicit reward function @ &
when the goal is to maximize
accuracy.

o) Moderately asymmetric pay- True category A;_Ymmetric [? 1.0 0] Reward Func:tioT2
offs: Correct Category clas- Y SIZZ:ZI g::;
sifications are rewarded twice  Decision Catx Cat.y
as much as correct Category . 5 g
classifications;c, = 1/3. predfctx 2 0 « g

predicty O 1 g 5
& S
0 13 1
P(Category x | Stimulus)

d) Strongly asymmetric payoffs: True category heymmetno 110 1 9.0) Reward Puneten.
Correct Category classifica- Y SIZZ:ZI g::;
tions are rewarded ten times Decision Catx Cat.y
as much as correct Category . 5 g
classificationsg, = 1/11. predfctx 10 0 « g

predicty O 1 g e
& S

0 ca1/1
P(Category x | Stimulus)
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of Featurer can be defined as the average of the usefuggeneralize the probability gain model to thglity gain
ness of the possible states®fu(f;), weighted by their mode| which defines a datum’s usefulness as the extent
probability (Savage, 1954): to which it increases the expected utility of a classifica-
tion decision (Savage, 1954). The expected utility of a
feature query is the utility associated with classifying a
stimulus after the state of Featufdés known, minus the

utility of making a decision without searching for infor-
Different models have been suggested to calculate thgation:

usefulness of choosing to view a feature, before the par-
ticular feature state is known. We focus on probability

m

eu(F) =" P(f;)ulf;) (3)

J=1

gain (PG; Baron, 1985), which appears to best capture m
people’s intuitions about the usefulness of different fea- ¢y, (F) = Z P(f;) max(u(predicte;|f;)) —
tures in classification tasks when environmental probabil- =1 @

ities are learned through experience (Nelson et al., 2010).

Probability gain quantifies the expected utility of a featur

query (a test question) as the probability of correctly-clas max(u(predictc;)) (5)

sifying a stimulus after the stateof Featurer is known, v

minus the probability of making a correct decision with-

out asking the question: where in the two-category case “predigt corresponds
to “predictx” and “predictc,” corresponds to “predigt’,

. respectively (see Equation 1).

etupg(F) = Zp(fj) max P(c;|f;))—max(P(c;)) (4) Conceptually, the utility gain model is similar to the
J=1 ‘ ! probability gain model, except that utility gain is based
on the maxima of the prior and posteriofility distri-
whereP(ci| fj) denotes the posterior probability of cate-bution, taking into account the costs and benefits of dif-
goryc; given that featurg has been observed, aR(ti) is  ferent types of classification decisions. The “currency*
the prior probability of category;. As the model assumes of this model is improvement in expected utility, and
selection of the most probable hypothesis, it is only conthe implicitly entailed decision bound maximizes util-
cerned with the maximum of the prior and posterior disity (reward). Under a symmetric reward function, the
tributions. Using this measure to quantify the usefulnesgility gain model reduces to the probability gain model

of a datum and as basis for information search will maxii.e., both models operate with the same decision criterion
mize accuracy (i.e., number of correct classifications®); thg,=1/2) 4
“currency” of this model is the expected improvementin
correct classifications. Thus, a fixed decision bound of ye— - _ , _
c,=1/2 is built in to this modet. To illustrate, consider again Er_1\_/|r0r_1ment 1 (F|gure.2), botv
. L assume that correct Categoxyclassifications pay two units reward,
But what if different types of correct classification de-yhereas correct Category decision pay one unit reward (i.e., a
cisions are not equally rewarded? In this case we mdy 1 0 0] reward function applies). Without querying a featuthe
expected reward when classifying an item as Categofwhich is
3To illustrate, consider Environment 1 in Figure 2. Withouegy-  the less likely, but higher rewarded category) is highemti@ate-
ing FeatureA or R, one should assign an item to Categgrywhich  goryy (0.44 x 2 = 0.88 vs. 0.56 x 1 = 0.56). If looking at Feature
has the higher base rate (56%) (see table in Figure 2). Oageweme A, one will observea; with 41.44% probability andy, with 58.56%
would achieve 56% classification accuracy. Imagine we caw yist  probability. If we observes;, then the probability of Category is
one feature, and we decide to look at FeatdraNVe will observea;  59.45%, so we should classify the items as Categpmyhich yields
with 41.44% probability andy, with 58.56% probability. If we ob- 0.5945 x 2 = 1.1891 units of reward. If we obsemg the prob-
servea;, we should classify the items as Categanachieving 59.45%  ability of Categoryy is 66.94% (which is greater than the thresh-
accuracy. If we observey, we should assign the stimulus to Cate- old of 2/3), so we should assign the stimulus to Categgryield-
gory y, and will be correct on 66.94% of the cases. Weighing theseng 0.6694 x 1 = 0.6694 units of reward. Thus, the expectedeval
outcomes by the frequencies of each respective feature yalds an  of FeatureA is 0.4144 x 1.1891 + 0.5856 x 0.6694 = 0.8848, ef-
expected accuracy of 0.4144 x 0.5945 + 0.5856 x 0.6694 = 8.638fectively unchanged from the 0.88 units of utility that cae bb-
Thus, looking atA will improve our classification accuracy from 56% tained without looking at either feature. Thus, utility gaf Fea-
to 63.84%, on average; the probability gain of this featsr®.D784. ture A (0.0048) is effectively zero. Now consider FeatuRe We
Now consider Featur®. If we search this feature, we will observg  will observer; with 12.32% probability and, with 87.68% prob-
with 12.32% probability and, with 87.68% probability. Ifr; is ob-  ability. If r; is observed, we know that the stimulus definitely be-
served, we know that the stimulus definitely belongs to Gatey. If longs to Categoryy, yielding one unit reward. If we encountes,
we encounter,, x is slightly more likely (50.18%). The expected ac- both categories are equally likely (50.18% vs. 49.82%),diutex is
curacy is 0.1232 x 1 + 0.8768 x 0.5018 = 0.5632. Thus the pitityab higher rewarded, the item should be assigned to this categetding
gain of FeatureR is effectively zero, because querying FeatBrdoes  0.5018 x 2 = 1.0037 units reward. The overall expected rewhFia-
not meaningfully improve accuracy, versus the 56% accutlaayycan tureRis 0.1232 x 1 + 0.8768 x 1.0037 = 1.0032. Thus, the utility gain
be achieved without looking at either feature. expected from queryingis 1.0032 — 0.88 = 0.1232 units reward.
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6.1 Environments for differentiating prob- than Featur® (remember that probability gain and utility
ability gain and utility gain gain are identical under symmetric rewards). By contrast,
if the moderately asymmetric [2 1 0 0] reward structure
Would using the utility gain model lead to making dif- applies, according to which correct Categriglassifica-
ferent queries than using probability gain, when searchions are rewarded twice as highly as correct Category
ing for information under asymmetric payoffs? Weclassifications, Featufis more useful in terms of max-
used computer simulations to search for environmenigizing reward than Featur& is (Figure 2). Given this
in which the goals of accuracy and reward make maxienvironment and reward structure, maximizing accuracy
mally contradictory claims about which of two featuresand reward at the same time is not possible when select-
would be most useful to view. We considered a modeing a single feature to view. In Environment 1, in the ex-
ately asymmetric [2 1 0 0] payoff structure, as well as @eriments, when we refer to an asymmetric reward struc-
strongly asymmetric [10 1 0 O] payoff structure, in septure, it has a [2 1 0 0] payoff function.
arate optimization procedures. Given these payoff func- Wwe also identified a second environmeBngironment
tions we searched in environments with two mutually exz) in which a Strong|y asymmetric []_O 10 O] payoff struc-
clusive categories, Categoryand Category, and two  ture makes Featur® more useful, but in which Feature
features: A, which can take values; anda;, andR, A leads to higher classification accuracy (Figure 2). In
which can take values; andr,. For instance, for the Environment 2, in the experiments, when we refer to an
[2 10 0] reward structure, we searched for valueB@j,  asymmetric reward structure, we mean a [10 1 0 0] payoff
P(a1[X), P(a1ly), P(r1[x), andP(r1]y), such that the prob- function.
ability gain of Feature\ is much higher than that of Fea-  The results of these optimizations show that, if one’s
tureR, but the utility gain (relative to the [2 1 0 0] payoff goa| is to behave adaptively in an environment with asym-
structure) of Featur® is much higher than that of Fea- metric payoffs, it is not adequate to use informational
tureA® A further constraint was that both features wouldtjjities to select pieces of evidence to acquire. The
be needed in order to achieve the maximum possible agnojice of queries (experiments, or features to view), and

curacy in classifying stimuli as Categoxys. Category not only the eventual classification decision, must reflect
tures would be learned, in the learning task of our exper-

iments. The features were class-conditionally indepen-

dent (i.e., the state of Featufewas independent of the 7 Overview of Experiments

state of Featur®, and vice versa, conditional on the true
category). , i We studied information search under symmetric and
Figure 1 outlines the environments found by these o

timizat The two t lustrate the f asymmetric reward functions, in the two environments
Imizations. -~ 1ne two trees flustrate the Irequency ofyq gy through our computer simulations. To give a
the different stimulus configurations in the two environ-

ments, and the probability of Categaxyandy for each richer per-spect}ve, We.manlpulated across gxperlments
. S : : . the way in which subjects learn about environmental
configuration, in each environmehtThe different deci-

sion rules built into the probability gain and utility gain probab|I|t|e§ and the relevant payoff-structure. .
model directly influence the usefulness of featukemnd In Experiment 1, a neutral experience-based multiple
R (Figure 2). Consider Environment 1 (Figure 2, top). 1Y€ category-learning task was used to convey environ-
all correct classifications are rewarded equally and thef@€ntal probabilities to subjects. The categorization task
is no penalty for incorrect classifications, then Equationgas followed by a search task, in which subjects gath-
4 and 5 may be used to verify that probability gain an@red information under symmetric or asymmetric real-
utility gain both consider Featur& to be more useful money payoffs. When searching under symmetric re-
wards, correct classifications of either category were paid
5The optimization procedure itself was similar to that of 8¢l et  the same amount of money. Under asymmetric payoffs

al. (2010). The main distinction is that Nelson and collesgeon- ot ;
trasted various OED models with each other, whereas we asiatt correct Categor)( classifications were pald more money

each asymmetric reward function with probability gain. than correct Category/classifications.
8For example, in Environment 1 configurati@ar, occurs with a The search task in Experiment 2 was virtually identi-

probability of 49.9% and belongs with a probability of 38.86(Cate- 5| 15 Experiment 1, involving real-money payoffs, with
gory x. Imagine your goal is to maximize total number of correctela

sifications. In this case, the stimulus should be classifiedategory, ~ the reward structure _(S_ymmetric VS. asymmetric) m_anip-
which is the more likely categoryP(y|ayr) = 61.2%). ulated between conditions. The difference was that in the

_ But what if correct Category pla_lssifications_ are reward_ed twice as initial experience-based Iearning task subjects learoed t
highly as correct Category predictions? In this case, the item should

be assigned ta, as 0.388 x 2 > 0.612 x 1. classify stimuli under an asymmetric reward structure.
Subjects received points for correct classification deci-
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Figure 4: Classification-learning task illustrated. A stlos (“plankton”) is shown and must be categorizeck as

y (“Species A’ or “Species B”). In Experiment 1, if the item isrcectly categorized, feedback in form of a smiley
appears; if incorrectly classified, a frowny face appeatse [Barning task in Experiment 2 was virtually the same,
except thatinstead of a smiley or frowny face, points weseaiated with correct and incorrect classifications, with t

amount of points earned depending on the reward functioal($nset picture, at top right). Erroneous classifications
were associated with zero points.

Example Feedback

<ITe
£ &{ Exp. 1 e )
&E' ’ Exp. 2 )

sions, according to an explicit asymmetric payoff func8 Experiment 1

tion (i.e., correct Categomyclassifications received more

points than correct Categoyyclassifications). Their task Experiment 1 examined whether information search can
was to learn to make categorization decisions that wouRdapt to asymmetric reward structures, if people learn
maximize expected reward (points). about environmental structure and probabilities through

In Experiments 1 and 2 alike, after the experience@Xperieﬂcej An initial experience-based multiple cue
based classification task, the search-task payoff strelCtLHrObab'hSt'C category-learning task was used to help sub-

was announced with words and numbers: the real-monéeCts internalize the probabilistic structure of a patacu

. ) . . e¥1vironment (Environment 1 or 2, as described above and
payoffs were provided immediately after the experiments

L , - in Figure 1).
The objective was to study people’s ability to respond to . :

. . Our focus was on the subsequent information-search
a_lsymmetnc payoff structurgs after learning about the st ask, which utilized the same stimuli. In the search task
tistical structure of the .enV|r0nr_nent through experienc owever, the features were obscured; people could view
No feedback was p_ro_v_|ded during the search task itse nly a single featureR or A), of their choice, before cat-
to prevent the p953|blllty that search strategies could %orizing the stimulus, in each trial (Figure 2). Before
adjusted according to search-task feedback. the search task, subjects were informed that real-money

Finally, in Experiment 3 we compared search behawpayoffs would be provided after the experiment, accord-
ior under symmetric vs. asymmetric payoffs in a coming to the announced (asymmetric or symmetric) payoff
pletely description-based task, in which both environstructure.
mental probabilities and payoff functions were presented What goals do people have in search? If people want
with words and numbers. to maximize external rewards, they should prefer to view
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FeatureR under asymmetric rewards. However, undeCategoryy whenP(Category | stimulus) <1/2. Criterion
symmetric rewards they should preferentially view Feaperformance was defined as (1) making at least 98% opti-
ture A, which maximizes accuragndreward. By con- mal (not necessarily correct) responses in the last 200 tri-
trast, if people have a general preference to search for ials, irrespective of the specific stimuli in those trialsglan
formation that helps to improve overall accuracy of clas¢2) making an optimal response in the last five trials of ev-
sification decisions, they should search Feafuregard- ery single stimulus type. The latter criterion ensures that
less of the applicable external payoff function. even rare configurations are learned (see Figure 1 for fre-
quencies of stimulus configurations). The purpose of the
8.1 Subiect strict learning criterion was to ensure that subjects mean-
) ubjects ingfully assimilated the environmental probabilities; be
Subjects were 91 volunteers—largely universitfore the information-acquisition task. Subjects were also

students—from Berlin (48% female, mean age 26)eriodically informed at the accuracy they would achieve
They received a show-up fee of€0and could earn an if they continued to respond as they did in the last 200
additional bonus of up to 2. Subjects were randomly trials, and how well the optimal strategy would perform.
assigned to one of four conditions: one of two environThis feedback was given on trial number 500, 750, 1000,
ments {Environment 1, Environment 2} x one of two 1250, etc.

search-task reward structures {symmetric, asymmetric}. In the subsequent information-acquisition task, which
comprised ten trials without feedback, subjects contin-
ued to classify the plankton stimdli.However, in this
phase the stimuli’s features were obscured, and subjects

The experiment consisted of two tasks, an inicould reveal only one of the features on each trial (Fig-
tial classification-learning task and a subsequentre 2). The crucial differences, versus the initial learn-
information-search task. The learning task involvedng task, were that (i) prior to searching a feature it was
categorizing simulated plankton specimens as Categd#y}certain which state it would take, so subjects had to
x or Categoryy, based on the full feature configurationtake into account the individual feature states’ usefidnes

(Figure 1). (The categories were described as “Speciégd the probability of their occurrence, and (i) after re-
A’ or “Species B".) In each trial, a stimulus was choservealing a feature, classifications had to be made based
randomly according to the environmental probabiliie®n the state of a single feature alone, whereas both fea-
and the subject categorized the item as belonging tgre values were known in the learning task. The crucial
Categoryx or y (Figure 4). Both features were visible question was which feature subjects would prefer to view.
in each stimulus presented, in each trial, throughout thehe same plankton stimuli, with the same environmental
categorization learning task. Subjects were familiarizegrobabilities as in the learning task, were used; this was
with the two forms of each feature (e vs. ap, andr;  disclosed to subjects.

vs. ry) beforehand. After a categorization decision was The payoff scheme was manipulated between subjects.
made, in a trial, feedback on the true species was givelm the asymmetric reward conditionsvhich were the
accompanied by a smiley or frowny face, dependinghain manipulation of interest, subjects’ received for

on whether the categorization decision was correct @orrect Category classifications. The payment for cor-
incorrect (Figure 4, upper-right inset). The assignmentct Category classifications was€ in Environment

of physical features to probabilities, the polarity of eacil ([2 1 0 0] asymmetric reward structure), and®.4n
feature (e.g., which version of Featukeis considered Environment 2 ([10 1 0 0] asymmetric reward structure).
a; and which version is considerem), and whether Inthesymmetric reward conditiorsubjects received®
Categoryx or y was labeled as “Species A’, werefor each correct classification of either species. In the
randomized. For each subject, two of three possiblesymmetric payoff conditions, Featukdeads to highest
features (“tail”, “eye”, and “claw” of the plankton classification accuracy, but FeatirRéeads to highest ex-
specimens) were chosen at random to be used. This Ipdcted reward (Figure 2). In the symmetric rewards con-
to 96 randomizations in each condition, one of whichlitions, Featuré\ leads to highest classification accuracy

8.2 Materials and Procedure

was chosen at random for each subject. as well as to highest reward.
Subjects were instructed to learn to correctly classify
the stimuli, based on the states of featukesdR. No ex- “Why just 10 information-search trials? Nelson et al. (204€3d

plicit rewards were provided in the learning task. Learno1 information-search trials. However, within subjedtéormation-
ing continued until criterion performance was reached, grearch behavior was very consistent from one trial to the hielelson

; : i £tal’s Experiment 1, for instance, the median subject gtktte higher
the available time (around 2 hours) elapsed. Forany StlnErobability gain feature in 100 out of 101 search-taskgridlhus, hav-

ulus, the optimal strategy was defined as predicting.Catﬁ,-g 100 or more search-task trials would not likely providiliional
goryxwhenP(Category | stimulus) >1/2 and predicting information about subjects’ behavior.
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The payoff scheme was presented to subjects befoieemaladaptivegiven the environmental probabilities and
the information-search task. To prevent learning fronsituation-specific payoffs.
feedback during the search task, no feedback (no smiley g yjects’ probability estimates for the different feature
or frowny face, no count of accumulated earnings or nUMsqhigurations were also analyzed. There was good corre-
ber of correct decisions, or otherwise) was provided duk,ndence between subjects’ estimates and the true envi-
ing the ten search trials themselves. After the end of the nmental probabilities, indicating that subjects acegir

experiment, subjects were given feedback on their corregiasonable knowledge of environmental structure (Table
and incorrect Categoryandy classifications, and paid in oy

cash according to the previously announced asymmetric
or symmetric payoffs.

To assess how well subjects were calibrated to envi-
ronmental probabilities, subjects were subsequently prg-4  Discussion
sented with all stimuli (plankton specimens), and asked
to estimate for each type the proportion that are ea
species, i.e P(Categoryx | stimulus), for all four combi-
nations of the featuresry, a;r,, axr1, andayr,. Subjects
also estimated the base rates of the two categdpied,
andP(y).

Clt?ow can it be that subjects’ probability estimates ap-
peared well calibrated, yet subjects did not search to max-
imize payoffs under asymmetric reward structures? Did
subjects fail to view the reward-maximizing feature be-
cause of a strong desire to maximize classification ac-
curacy? Or were subjects unable to flexibly use their
8.3 Results knowledge of environmental probabilities to identify the

reward-maximizing feature, given an asymmetric reward

Most subjects (80/91=88%) achieved the learning criteynction?
rion well within the available time~2h). Two subjects . .
) ) 2h) ) . One explanation for the preference for Featyis that

(one in each environment) were replaced as the experi- _. .~ : o
_ . . maximizing accuracy serves as a kind of overriding goal
enced probabilities did not match the true environmental . ) i
- : in search behavior, which dominates the external reward
probabilities closely enough to produce the intended of- =~ ~ .
S . . unction (i.e., monetary payoffs). For example, over the

dering in features’ relative usefulness.

; . course of life, including school history, people may have
Our main research questions concerned th g Y, PEOp y

: . . . . f2arned that being accurate is an important goal in man
information-search task (Figure 2), in which sub-_ " __ g P 9 y
. . ituations, and have therefore developed a general pref-
jects could only select one feature to view, on eacﬁ

of the ten trials (Table 1). Most subjects with hetrence for searching for information that allows them to

i ; improve accuracy.
symmetric search-task payoff structure viewed Feature
on more than half of the search-task trials (27/39 = 69% An alternative explanation is that subjects in the asym-
of subjects; two-tail binomialp=.02).  Surprisingly, metric payoff conditions did want to earn the most money
among subjects with the asymmetric payoff structure, BOssible, but for some reason perceived Featute be
majority also preferentially viewed Featubewhich has Most useful, relative to that goal. This idea would match
higher probability gain, rather than Feat®Rewhich has the (incorrect) intuition that it is reasonable to conduct
the higher expected reward under asymmetric payofgyeries with the goal of learning the true state of nature
(28/38=74% of subjects, two-tail binomipk.01). as accurately as possible, and to take asymmetries in the
Analysis of the mean percentage of views to Featyre revx_/ard strl_Jc;ture into account only in the actual classifi-
aggregating across subjects, gives a similar picture.erhefation decision.
was no effect of reward manipulatioiVi§ymmeti=68%, A third explanation is that, the theoretical complexities
Masymmetic68%). The results were similar in Environ-in calculating individual features’ usefulness notwith-
ment 1 and Environment 2Men=63%, Men=73%). standing, features’ usefulness was somehow encoded rel-
The possible slight difference between the environmentgive to an implicit accuracy-based reward structure in the
could reflect some subjects’ sensitivity to informationinitial classification-learning task. For instance, peopl
gain, which prefers Featurein Environment 2, but Fea- might build up a decision tree that orders features rela-
tureRin Environment 1 (see General Discussion and Figiive to the accuracy-based learning task structure. Peo-
ure 5). ple might not be able to use their knowledge of envi-
These results extend Nelson et al’s (2010) findingonmental probabilities in a flexible way to identify the
that subjects prefer to view higher-probability gain feamost useful queries, in response to the novel asymmet-
tures on classification tasks in which no particular costsc search-task payoff structures. Such a finding could be
or benefits apply. Importantlyhe preference to search problematic for a Bayesian-decision theoretic account of
higher-probability gain features may apply even when itognition and behavior (see General Discussion).
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Table 1: Search-task views to Featésavhich maximizes accuracy, across Experiments 1, 2, and 3

Experiment 1 Experiment 2 Experiment 3

Rewards; Environment % of SS % of views (ClI) % of SS % of view (C % of SS

Symmetric; Env. 1&2 69% (27/39) 68% (55%-78%) 9% (2/23)" 12% (6%-25%)  50% (11/22)
Asymmetric; Env. 1&2  74% (28/38) 68% (55%-79%) 0% (0/20)° 2% (0%-6%) 63% (12/19)

Symmetric; Env. 1 60% (12/20) 59% (41%-75%) 8% (1/13) 11% (3%-28%)  54% (7/13)
Symmetric; Env. 2 79% (15/19) 77% (60%-89%)  10% (1/10) 14% (4%-40%)  44% (4/9)
Asymmetric; Env. 1 70% (14/20)  67% (47%-82%) 0% (O/T1) 1% (0%-5%) 45% (5/11)
Asymmetric; Env. 2 78% (14/18) 70% (52%-83%) 0% (0/9) 2% (0%-9%) 88% (7/8)

Note. Under symmetric payoffs, Featufealso leads to highest reward; under asymmetric payoffsureR leads

to highest reward. In Experiment 1, following a neutral gatg-learning task, subjects preferentially viewed the
accuracy-maximizing featurd\). In Experiment 2, following an asymmetric learning-taslvard function, subjects
preferentially viewed the other featur@)( Experiment 3 used a verbally described information<eacenario; no
consistent preference for either feature was observed. @s#idence intervals (CI) for mean proportion Featéire
views were calculated using bootstrap sampling (biasected and accelerated, in Matlab). In Experiment 1, three
subjects viewed Featur® and FeaturdR equally often and were excluded (for computing percentdgeess to
featureA, these subjects were included). In Experiment 3 one sulge&ed Featurd andR as equally useful, and
one subject ranked the uninformative foil feature as moedulisboth subjects were excluded. Two-tail, uncorrected
binomialp-values are reported as followg< .05 =*,p< .01 =**, p<.001 =*** p<.0001 = **** |n Experiment

3, and where not specifically noted, results were not sigitig different from 50% of subjects preferring to view
FeatureA.

9 Experiment 2 jects, and the same real-money payoffs. Our goal was
to examine how learning to classify under asymmetric re-
Experiment 2 was designed to investigate the possiblgard functions would influence subsequent information
influence of the learning task on search-task behaviagsearch under symmetric vs. asymmetric paydff@ne
by explicitly cueing asymmetric payoff structures dur-possibility is that people generally prefer to search for
ing learning, but was otherwise virtually identical to Ex-information that improves accuracy. This would be espe-
periment 1. As before, a classification-learning task wadally consistent with Nelson et al.’s (2010) interpretati
followed by an information-search task. The exact samef their findings. It could also be seen as being consistent
plankton stimuli, environmental probabilities, and asymwith Maddox and Bohil’s (1998) competition between re-
metric or symmetric search-task payoffs were used. Theard and accuracy (COBRA) hypothesis, although this
main difference was a slight modification to the learningmodel was designed to apply to classification decisions,
task feedback, to explicitly cue the asymmetric environnot to information-search behavior. In this case, similar
mental payoff structure in the learning task.
_ After each learning-task trlal_of Experiment 2, the_sub- 81n each environment (Figure 1), the asymmetric learniss-e-
jectwas shown a number of points (rather than a smiley Qfard structure ([2 1 0 0] in Environment 1, [10 1 0 0] in Environ
frowny face, as in Experiment 1) according to their clasment 2) induces a conflict between accuracy and reward mzaimi
sification decision, and whether it was correct. Corredton f?rda Conf“dm CO”f'g:”a“‘r’]”'” ":E'Chdon_e_de‘?'s'on hf?;j) higher
e . . expected reward, even thougnh anotner aecision IS morg/ e ac-
Categoryx cIassﬁman_qs Were worth more points thancurate. In Environment 1, the probability that itegr, belongs to Cat-
correct Category classifications, according to the payoffegoryy is 61.2% (Figure 1). However, under the asymmetric [2 1 0 0]
structure of the environment: twice as much in Environpayoff scheme (Figure 1c), maximizing points earned reguonsis-
ment 1, and ten times as much in Environment 2. Subjec‘%‘“y categorizing this item as belonging to the less yik€ategory
ked t ke cl ificati decisi that if(j This will yield 2 x 0.388 = 0.776 points on average, as opgdse
Were. als €d 10 make classiica _'On ecisions that wWoulfl, 612 =0.612 points when categorizing it as belongingnéonhore
maximize expected reward (points), even when that rgrobable Category. Similarly, in Environment 2 under the [10 1 0 0]
quires assigning an item to the less likely category. reward function, itenayr, has a probability of only 15% of belonging
The information-search task of Experiment 2 was virl2 Categorx. However, categorizing this item as belonging to the less
. . . . likely Categoryx is the reward-maximizing strategy, which will yield
tually |dent|cal to Experlmgnt 1, Wlt_h the reward structure g x g 15 = 1.5 points on average, as opposed to 0.85 x 1 = 0i8f po
(symmetric vs. asymmetric) manipulated between sulter categorizing it as Categony
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findings as in Experiment 1 should be obtained, with aision, a “?” symbol at the bottom of the screen changed
preference to search Featukeregardless of the search-to a 2, 1 or 0.2 (according to the reward function and the
task reward structure. category) if the decision was correct, or to a 0 if the deci-
However, if the asymmetric learning-task payoffs helion was incorrect (Figure 4, upper-rightinset). Learning
people identify the reward-maximizing strategy, a prefeontinued until the subject’s performance approximated
erence for Featura should be observed when searchinga reward-maximizing classifier that on each trial chooses
under symmetric payoffs, and a preference for Fed®urethe category with the higher expected reward. The pre-
when searching under asymmetric payoffs. Finally, if in€ise learning criterion was analogous to Experiment 1,
formation search is driven by the usefulness of featuragmely both (1) making at least 98% reward-maximizing
relative to the learning-phase payoff structure, a genersgsponses in the last 200 trials, irrespective of the stim-
preference for Featufecould be observed, even for sub-uli in those trials; and (2) making reward-maximizing re-
jects with symmetric search-task payoffs, for whom Feasponses in the last five trials of every single stimulus type.
tureA leads to highest accuracy and payoffs. Feedback on the points they would earn on average, if
they continued as in the last 200 trials, and the number of
9.1 Subiect points that the optimal classifier would earn on average,
) ubjects was given after trial 200, 400, 600, 800, etc. (Feedback

Subjects were 80 young adult (largely university studentd¥as slightly increased, vs. Experiment 1, because pilot
58% female, mean age 25 years) volunteers from Berli/ork suggested that the learning task of Experiment 2
Subjects were randomly assigned to one of four condwould be more difficult.) The instructions, and this pe-
tions: one of two environments {Environment 1, Envi_riOdiC feedback, both emphasized that in some cases, it
ronment 2} x one of two search-task reward structure®dy be necessary to choose the less-probable category,
{symmetric, asymmetric}. They received a show-up fed0 obtain the highest expected points.
of 5€ and could earn an additional bonus of up t&€20 The information-search task of Experiment 2 was vir-
the information-acquisition task. tually identical to that of Experiment 1. Half of the sub-
jects were assigned to symmetric search-task payoffs, in
. which correct Category and correct Categonyclassifi-
9.2 Materials and Procedure cations each paid@. Given this symmetric payoff struc-
Experiment 2 employed the same stimuli and probabiligure, Featuré, which leads to higher classification accu-
tic environments as Experiment 1. However, explicifacy, also leads to higher expected payoffs (Figure 2). In
asymmetric reward structures were presented during tiieis case, note that neither the goal of maximizing accu-
classification learning task. Prior to learning subject&acy nor the goal of maximizing reward would suggest
were informed about the reward structure. In Environviewing FeatureR. Half of the subjects were assigned
ment 1 (asymmetric [2 1 0 0] reward structure; Figurd0 an asymmetric search-task reward function. When
3c), subjects were told that correct classifications of Cagearching under asymmetric rewards, Featinmaxi-
egoryx were associated with 2 points, and correct classmizes classification accuracy (but does not improve ex-
fications of Category were associated with 1 point. In pected reward), whereas Featitenaximizes expected
Environment 2 (asymmetric [10 1 0 0] reward structureféward (but does not improve overall classification accu-
Figure 3d), correct Categopyclassifications were asso- racy). In Environment 1, correct Categaxyclassifica-
ciated with 2 points and correct Categgrglassifications tions paid Z and correct Categoryclassifications paid
were associated with 0.2 points. This point manipulatiod€. In Environment 2, correct Categoxyclassifications
was intended to be a heavy-handed way to introduce eahid 2€ and correct Categoryclassifications paid 0.
asymmetric reward structure in the learning task. Sub- In each environment, the asymmetric search-task re-
jects were explicitly instructed to classify stimuli in award structure exactly matched the point structure that
way that maximizes points earned on average. No poinked been experienced in the learning task. The payoff
were accumulated, however, as the goal was for subjeaucture that would apply was presented to subjects be-
to learn the probabilities and the optimal response strafiare the information-search task. Subjects were explic-
egy, rather than to incentivize subjects to quickly amasgy instructed to choose a feature to view, so as to earn
a large number of learning trials. The assignment of erthe most money. As in Experiment 1, there were ten
vironmental structure to specific labels and physical feanformation-search trials, with no feedback during those
tures in the stimuli was randomized across subjects, astirials. Real-money payoffs were given after the exper-
Experiment 1. iment according to the decisions made and the applica-
As in Experiment 1, in each trial a plankton specimerble payoff function. After the search task, subjects were
was chosen randomly according to the environmentgiven a separate questionnaire with which they rated en-
probabilities (Figure 1). After making a classification devironmental probabilities, as in Experiment 1.
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Table 2: Subjects’ median probability estimates.

Environment 1 Environment 2
ltem True percent Experiment1 Experiment2 True percenteBrpgent 1 Experiment 2
P(X) 44% 36% 50% 36% 25% 35%
P(x] azr1) 0% 0% 0% 0% 8% 0%
P(x|air2) 65% 73% 70% 15% 11% 25%
P(x|azri) 0% 0% 0% 0% 2% 0%
P(x| azr2) 39% 35% 53% 81% 85% 90%

Note The item being judged is in the left column; its true peraesitt; and the median of subjects’
estimated percentages next. In this tablé, denotes whichever category was less probable in a
particular subject’'s randomization. Overall, subjectsevgell-calibrated, especially in Experiment
1. Most individual subjects appeared qualitatively wellitorated, as well. In Experiment 2, there
may be a tendency to overestimate the probability of Categoperhaps due to the asymmetric
learning-task reward structure in which correct Categoelassifications have a higher payoff than
correct Category classifications.

Table 3: Learning difficulty across Experiments 1 and 2.

Experiment 1 Experiment 2 Experiment 1 Experiment 2

% learners % learners Median learning trials Median lea@rtriials
Environment 1 82% (40/49) 60% (24/40) 469 733
Environment 2 95% (40/42) 48% (19/40) 280 794

Note The number of learning trials is based on learners only.eERrpent 2's asymmetric learning-task reward

structure made learning much more difficult than in Experitie This is reflected by the smaller proportion

of learners, and the learners’ higher number of learnisg-tdals. The especially strong difference in number
of learning trials required in Environment 2, between thpegiments, could be due to its especially high conflict
(with the highly asymmetric [10 1 0 O] reward structure) bedén reward and accuracy maximization (configuration
airo, see Figure 1). See Appendix, Figure Al, for more detailachieg-task results.

9.3 Results and Discussion the signal detection theory paradigm into a multiple-cue
probabilistic category learning task. These learning-tas

Only about half of the subjects (43/80 = 54%) reachefgsults suggest that the competition between rewar_d and
the learning criterion in the-2h available for learning, @ccuracy (COBRA) hypothesis may extend to multiple-

in contrast to virtually all (80/91 = 88%) subjects in Ex-CU€ category learning tasks under asymmetric rewards.
periment 1. Even restricting consideration to the learn- Our research questions concerned information search
ers, a greater number of trials were needed, in the saraader asymmetric-vs.-symmetric rewards, in the subse-
environments, than in Experiment 1 (Table 3). Analysigjuent information-search task. In stark contrast to Ex-
of learning data shows that the difficulty in learning inperiment 1, almost all learners preferentially viewed Fea-
Experiment 2 stemmed from the need to choose the ledsire R (Table 1). The preference to view FeatiRavas
probable (but higher-rewarded) category, on the conflieen when that feature improved expected reward, in the
configurations for which Categogywas more probable asymmetric reward conditions (20 of 20 subjects: two-
but a Category response had higher expected rewardail binomial p<.0001). Remarkably, this preference
(Appendix, Figure Al). On these stimuli, the vast majorwas also seen when a symmetric reward function—under
ity of subjects first responded in a way that would maxiwhich FeaturéA maximizes both accuracy and reward—
mize accuracy, rather than reward, and only later shiftestas used (21 of 23 subjects: two-tail binonpad .0001).

to the reward-maximizing response strategy. The learningnalysis of the mean percent of views to FeatAreon-

task in Experiment 2 can itself be seen as an extensionfifims these findings Msymmetric12%, Masymmetric2%0).
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This is particularly remarkable, as under symmetric payexperience-based learning task and information-search
offs FeatureR does not improve classification accuracytask in Experiment 2, subjects were presented with a ver-
or reward. bally described information-search scenario in which the
This clarifies the meaning of results from Experimentask was to categorize fictitious aliens into two species
1, as well as Nelson et al. (201(eople do not always (adapted from the “Planet Vuma task”, Skov & Sher-
prefer to view higher-probability gain featuretn Exper- man, 1986). In this scenario, subjects’ task was to
iment 2, which used an asymmetric environmental rewariglentify the species of an invisible alien (“Glom” vs.
structure during learning, the lower-probability gain-fea“Fiz0”), by querying certain features (e.g., “wearing a
ture (FeatureR) was preferentially viewed in the searchhula hoop”). For each subject, the environmental prob-
task, even when doing so was suboptimal with respect &ilities (categories’ base rates and feature likelihpods
both reward and accuracy, given a symmetric search-tagRd the symmetric or asymmetric reward function were
payoff structure. identical to the experience-based plankton classification
Together with Experiment 1, these results suggest thd@sk that they had just completed in Experiment 2. (The
rather than subjects having the capacity to flexibly adaftomology between the tasks was not disclosed.) In Ex-
search behavior following experience-based learning agfiment 3, subjects ranked the features’ usefulness, rel-
a goal of being accurate, their information search seengéive to the explicitly provided reward function, rather
to be driven by the importance of features as identifiethan actually viewing features and categorizing individ-
during |earning under an expncit asymmetric or (|n Ex_ual stimuli. Base rates were Vel’bally described in terms of
periment 1) implicit symmetric reward function. In Ex- Percentages (e.g., “Out of one million creatures on planet
periment 2, the strong finding is that, irrespective of th&/uma, 44% are Fizos and 56% are Gloms”). Feature like-
search-task payoff structure (the manipulation of whiclihoods were presented in a table, denoting what percent-
had little-to-no effect on search behavior), subjects preage of each species possessed each feature (e.g., “56% of
ferred to view Featur®. Across both experiments, sub- Fizos wear a hula hoop”). An uninformative third fea-
jects tended to view the feature thaduld have been the ture, present in 0% or 100% of both species, was also
most useful, if the learning-task reward structure weréncluded, as a foil to ensure that subjects understood the
preserved in the search task, irrespective of the actudfformation presented.
search-task reward structur@®ut more poignantly,itmay ~ The same payoff structure as the subject had just expe-
be that for people to search appropriately in environmenti&nced in Experiment 2 was used. Here, it was described
with asymmetric payoff structures, the payoff structure# terms of points (e.g., “For each correct classification of
themselves must also be learned through experience. a Glomyou get 2 points. For each correct classification of
These results strongly argue against the idea that pedFizo you get 1 point.”). Subjects were asked to rank or-
p|e have a universal accuracy goa' in search. They a|§@r the questions according to their Usefulness: "COI’]Sid-
argue against the idea that people can adaptively sea®fing the information given, what questions would most
according to novel announced payoff structures, followb€lp you to earn the most points possible?” A bonus of
ing experience-based learning of environmental probabi€ was given if the questions were correctly ranked in
ities. Relative to the COBRA hypothesis, there is no evorder of their usefulness (i.A,> Runder symmetric re-
idence of a conflict between reward and accuracy in th&ards andR > A under asymmetric rewards, with the use-
search-task behavior per se. This conflict is seen in tH@ss feature not ranked higher than Feathoz R).
learning task. In the search task, however, search behav-
ior follows wh_ichever way the reward-accuracy conflictlo.l Results and Discussion
was resolved in the learning task.
In the summary-statistics-based scenario there was no
discernible preference between the features. There does
10 EXperiment 3 not appear to be any effect of the payoff manipulation, ei-
ther (Table 1). If anything, the trend is in the wrong direc-
Experiments 1 and 2 both used experience-based leatipn: under asymmetric rewards, 63% of people ranked
ing to convey environmental probabilities to subjectsFeatureA to be more useful than FeatuR(two-tail bi-
Most research on information acquisition, however, hasomialp=.17), whereas under symmetric payoffs 50% of
used words and numbers to convey environmental probtiie subjects ranked Featukd¢o be more useful.
bilities. Experiment 3 therefore examined information- These results add to Nelson et al’s (2010) finding
search behavior under asymmetric payoffs when envihat there is little relationship between actual search be-
ronmental probabilities are conveyed through summaityavior following experience-based learning and judg-
statistics. Subjects were the 43 people who successients of features’ usefulness, based on summary statis-
fully completed Experiment 2. Upon completion of thetics. The present data further show that there may be
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no effect of an explicit payoff manipulation, in an ab-learning criterion in Experiment 2. The proximal driver
stract summary-statistics-based information search soef search-task information-acquisition behavior does not
nario. These data contribute to a body of research, whideem to be the actual search-task payoff structure, but
has focused on risky-choice gambling decisions, examimather something taken more directly from the learning
ing the circumstances under which there are differencéask.
in description- versus experience-based decisions (HadarExperiment 3 found that, when probabilistic informa-
& Fox, 2009; Hertwig, Barron, Weber & Erev, 2004;tion and reward structures were both conveyed through
Hertwig & Pleskac, 2010; Ungemach, Chater & Stewartsummary statistics, people were indifferent regarding the
2009). usefulness of the alternative features. This was found for
both symmetric and asymmetric reward schemes.

11 General Discussion 11.1 Did the search-task payoff manipula-

. I . _ tions have any effect?
Does experience-based classification learning provide a

foundation for adaptive information search in environDid the manipulations perhaps shift decision criteria in
ments with asymmetric reward structures? We address#tk desired direction, but just not far enough? Research
this in Experiment 1, using experience-based classifen perceptual category learning—which is not concerned
cation learning, with natural sampling and immediatavith information search, but rather with classification de-
feedback, to train people in the statistical structure ofisions when full stimulus information is available—has
two probabilistic environments. Subsequently subject®und that people are able to take asymmetric payoff
searched for information under symmetric vs. asymmefunctions into account, but only to a limited extent, when
ric payoffs. Remarkably, even given experience-basesktting their decision criterion for classification decis
learning and subjects’ reasonable explicit knowledge dk.g., Maddox & Bohil, 1998). We therefore analyzed
environmental probabilities, there was no perceptible efwhether the asymmetric search-task payoff manipulation
fect of the payoff manipulation on the feature subjectsould perhaps have shifted the decision criterion some-
preferred to view in the search task. Rather, most sulivhat, in the correct direction, but not enough to cause
jects preferentially searched Featéavhich had higher subjects to preferentially view the feature with higher ex-
probability gain (i.e., led to higher accuracy), irrespecpected payoff. Note that this hypothesis is compatible
tive of whether it led to higher rewards or not, given thewith the ideas that people effectively learn environmen-
monetary payoff structure in the information-search taskal probabilities through their experience, and can search
Is there any way for people to learn to choose inforadaptively relative to asymmetric reward structures. It is
mation adaptively in environments with asymmetric rejust that under this hypothesis it is difficult to internaliz
ward structures? Experiment 2 addressed this by e’n asymmetric reward structure.
plicitly giving subjects asymmetric reward structures in Consider Environment 1, in which a [2 1 0 0] asym-
the initial categorization-learning task. Subjects were i metric reward structure applied in the search task. In this
structed to classify so as to obtain the highest averaggvironment, one can calculate that if the reward func-
reward, even if that required assigning an item to the lestion is a less-asymmetric [1.38 1 0 0], then FeatAre
likely (but higher-rewarded) category. In the subsequernd FeatureRr would have objectively equal usefulness
information-search task, which itself was identical to Ex{Equation 5). This hypothetical indifference reward func-
periment 1, subjects could view only a single feature bdion implies a decision criterion,=42%, rather than the
fore making a categorization decision. In stark contrageward-maximizing decision criterion of 33% (Equation
to Experiment 1, the vast majority of subjects preferen2). The upshot is that subjects could have been slightly
tially viewed FeaturdR, irrespective of whether doing so influenced by the search task payoff manipulation, with
was adaptive given the search-task payoff structure. Thikeir internal decision criterion shifting in the approepri
refutes the idea that people have a general tendencyate direction (say, to 46%), and yet FeatAr&ould have
maximize accuracy in search. Experience-based learbeen objectively more useful than FeatiRerelative to
ing does not necessarily lead to a preference to view thbis slightly-asymmetric internalized reward function. |
higher-probability gain feature. Rather, search behavidtnvironment 2, similarly, a person who internalized a re-
seems to have been driven by the (implicit or explicitward function of the form [4.57 1 0 0], rather than the
reward-scheme experienced during the previous classifictual [10 1 0 0] payoff structure, would find Featlte
cation learning task. The difficulty subjects had in learnand Featurd to be equally useful.
ing in Experiment 2 suggests that accuracy is an espe-If making mistakes is intrinsically psychologically un-
cially intuitive payoff function; even with great encour- pleasant, irrespective of the actual extrinsic payoff func
agement, around half of the subjects failed to achiewon (which in the present experiments included zero
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Table 4: Informative search-task classification decisions

Search-task Higher-rewarded response, Exp. 1: Responses of Exp. 2: Responses of
rewards given feature, Categoryx, given feature,  Categoryx, given feature,
Symmetric X2y 58% (62/106) 96% (152/158)
Asymmetric X 72% (73/101) 100% (162/162)

Note Subjects’ responses, given that they had searched Fdgtared observed,, in the information-search
task in Experiments 1 and 2 (aggregated over Environmentd g Giverr,, categoriex andy are effectively
equally likely. Under symmetric payoffs, both responsegehthe same expected value, but under asymmetric
payoffs assigning the item to Categorjas higher expected value. Results across the experimeggest that
the learning task is the primary determinant of the featulgexts view in the search task, and that there is little
or no influence of the search-task payoff manipulation. Tifferénce in proportion of Category responses
given feature ,, under symmetric versus asymmetric rewards, is not statilst reliable (see text).

penalty for mistakes), this would also result in a less4).
extreme decision criterion,. Suppose a subject in the  However, the raw data do suggest a trend in which sub-
[2 1 0 O] payoff condition intuits one unit cost for eachjects with asymmetric rewards had a higher propensity to
mistake, thereby internalizing an effective [2 1 1 1] rechoose Category givenr, than did subjects with sym-
ward function. This subject should adopt a decision crimetric rewards (Table 4). We used bootstrap sampling
terionc, = 40%, closer to 50% than the optimal 33% cri-to estimate 95% confidence intervals for true proportion
terion (Equation 2). Any intrinsic psychological cost ofof Categoryx responses, giverp, under symmetric vs.
making mistakes, where that cost applies equally to eaetsymmetric rewardsMsymmeric=58%, CI from 39% to
kind of mistake (i.e. wheren=n), would have a simi- 76% andMasymmetic72%, Cl from 54% to 87%. The
lar effect in shifting the decision criterion towards 50%.highly overlapping confidence intervals show that there
Thus, Experiment 1's information-acquisition results das no statistically reliable effect of the payoff manipula-
not preclude that there may be a small influence, in thigon.®
appropriate direction, of the explicitly stated searctkta  What about Experiment 2? In Experiment 2, almost all
reward function. Rather, the results show that such aflassification decisions, given featurg were for Cate-
influence, if it exists, is very small. gory x. Given this ceiling effect, it is not possible to ad-
o . , d(rjess whether the search-phase reward manipulation had
Search-task categorization responses, which requirg ) . . .
. L . an effectin Experiment 2. What is overwhelmingly clear,
subjects to make decisions based on a single feature . . oo .
; o oo . In Experiment 2 and Experiment 1 alike, is that subjects
value, may provide some additional insights into the : - .
: . - . meaningfully assimilated thiearning-taskreward struc-
(in)efficacy of the search-task payoff manipulation. Ir{
; ure.
cases where Featurgwas observed, the posterior prob-
abilities of Categoryx and Category were effectively
equal (Table 4; Figure 2). Thus, if the reward manip11.2 Alternate explanations
ulation had any effect whatsoever, subjects in the asym- ) ) _
metric reward conditions should strongly prefer to choosB€OPIe are often risk-averse, for instance by preferring
the more highly rewarded Categorygiven Feature,, in & retirement investment with a smaller expected return
the search task. Note further that, if either of the abovRut much-less-variable return to a highly variable invest-
hypotheses are true—namely that people applied a decBlent with a higher expected return. When small amounts
erating nonlinear function to the utilities (e.g. and per®f money are involved, little risk aversion is usually ob-
ceived [2 1 0 0] payoffs as [1.38 1 0 0])—or if the intrin- SéTved. That makes risk-aversion an a priori improba-
sic cost of error hypothesis is true (e.g., [2 1 0 0] payP!e, though still conceivable, hypothesis in Experiments
offs are perceived as [2 1 1 1]), then subjects should st and 2. Could risk-aversion explain these results, on the
overwhelmingly respond Categaxgiven Feature,, un- assumption that people understood the underlying prob-
der asymmetric payoffs, in both environments. The dat@bilities and payoff structure? In the asymmetric payoff
from Experiment 1 strongly contradict even these weakéionditions, in each environment, although Featiteas

hypOtheseS about the pOSSIble influence of the SearL'”-9Astandard difference-of-proportions test would falsedgiame that

task payoff manipulation; only .abOUt 72% of subjecCtSine underlying data (including successive responses fersame sub-
responses were for Categaxy given Featura, (Table ject, which tend to be the same) are independent.

https://doi.org/10.1017/51930297500002977 Published online by Cambridge University Press


https://doi.org/10.1017/S1930297500002977

Judgment and Decision Making, Vol. 7, No. 2, March 2012 Infation search and payoffs 140

Table 5: Expected values (and standard deviations) ﬁf
Feature® andR (in €).

d not pick features at random to view, but were in fact
ghly motivated.

Do people dispense with probabilities altogether, and
Symmetric rewards Asymmetric rewards learn according to experienced outcomes and expected
rewards (i.e., learn only expected values of actions; e.g.,
FeatureA FeatureR  FeatureA FeatureR  garron & Erev, 2003)? The learning data strongly con-

Env.1 1.28 (096) 1.13 (099) 0.88 (077) 1.00 (ngﬂ’adlct this idea. Experiment 1 demonstrated that both

nvironments are learnable. However, in Experiment 2
Env.2 1.64(0.77) 1.28(0.96) 0.72(0.86) 0.78 (O'gzgubjects struggled a great deal with the learning task (Ta-

ble 3; Appendix, Figure Al), due to the conflict config-

uration in each environment, in which Categgryas
a lower expected payoff than FeatuReFeatureA also more probable, but a Categarylassification choice had
has lower standard deviation in payoff (Table 5). Thushigher expected reward. This should not be a problem
it would be conceivable that risk aversion could explairior a purely expectation-based system, which could easily
subjects’ preference to view Featuke given asymmet- identify which categorization action has the highest ex-
ric payoffs, in Experiment 1. In the symmetric payoffpected reward, for each configuration, within a few hun-
conditions, however, Featufehas higher expected pay- dred trials. Experiment 2 showed that it takes a great deal
off as well as lower standard deviation in expected payoff training for human subjects to respond contrary to ac-
(Table 5). Thus, in Experiment 2, risk aversion cannoturacy in the learning task. Anecdotal evidence for this
possibly explain why subjects overwhelmingly preferredilso comes from one of our subjects who, after failing
to view FeatureR, given symmetric payoffs. Risk aver- to learn to classify under asymmetric payoffs, stated “It
sion is not a possible explanation of results across the tweels weird to be wrong” in choosing the less-probable
experiments. category in the conflict configuration. In any case, itis not

Can alternate optimal experimental design (OED}ivial mathematically to go from the learning task to the
models (Nelson, 2005, 2008) or heuristic strategies (e.g€arch task, because the search-task requires marginaliz-
Martignon et al., 2008) explain people’s choices of fealng over the unobserved feature, and a preposterior analy-
tures to view? Different models, such as information gaifis of the expected usefulness of each feature. Therefore,
and impact, make various claims about the usefulness @fimple reinforcement-based account of the learning task
individual features, in each environment (Figure 5; Apcould not simultaneously explain search-task behavior.
pendix, Table Al). For example, in Environment 1 the in-

formation gain (expected reduction in Shannon entropy)1 3 Representations, decision strategies,
of FeatureR is higher than that of Featuse whereas in and reward structures in learning and
Environment 2, FeaturA has a higher information gain information search

than FeatureR. Thus, information gain cannot explain

why people preferred Featurein both environments in  For developing psychological theories, Anderson (1990)
EXperiment 1, but Featufein both environments in Ex- proposed beginning with minimal mechanistic assump-
periment 2, nor why people had no preference in Expefions, and making more specific processing assumptions
iment 3. The OED and heuristic models, as articulateghly when necessary. Following the results of Nelson et
to date, were designed to provide general-purpose stratg- (2010), we began with the idea that people can be-
gies for information acquisition. They were not designedome familiar with environmental probabilities through
to apply to situation-specific payoff functions. Accord-experience-based learning, and that we would investi-
ingly, these models do not predict changes as a functigjate people’s goals for information search when asym-
of learning- or of search-task reward manipulations, ometric payoffs apply. In line with Bayesian decision the-
information formats. Hence, these models cannot explagly (Savage, 1954) we assumed that people would have
why search behavior differs between Experiments 1, 3eparate representation of beliefs (probabilities) aitd ut
and 3. ities (costs and benefits), which would allow them to de-
Were the stakes not high enough? Nelson et al. (201@&rmine possible questions’ usefulness, relative to their
Experiment 3, Condition 2), in a task with no external regoals.
wards or payoffs, found that a difference of as little as Subjects in Experiments 1 and 2 appeared to have
4.5 percentage points in features’ probability gain wadeveloped a reasonable understanding of environmental
enough to induce a strong preference to view the higheprobabilities (Table 2). Nevertheless, they were unable to
probability-gain feature. The consistency across subjectise that knowledge in a flexible way to identify the most
in the present experiments, especially the preference tseful query, given novel search-task payoff structures.
view FeatureR in Experiment 2, suggests that subjectsThese results point to the importance of more precisely
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Figure 5: Information-search behavior: data and theorelrigure 6: Decision trees that might be established during
ical models. Dark grey represents FeatArdight grey the learning task. Depending on the goal of the classifi-
FeatureR. Empirical search-task results are displayed iration task (maximizing overall accuracy in Experiment
the top row (% of subjects preferentially viewing Fea-1 vs. maximizing rewards in Experiment 2), features’ rel-
turesA vs. R) and next-to-top row (mean views to Fea-ative usefulness differs. In Experiment 1, subjects were
turesA vs. R); subsequent rows show predictions of altrained to choose whichever category is most probable,
ternate informational OED models (Table Al). MaxValgiven the presented stimulus. To most efficiently achieve
and ZigVal (Martignon et al., 2008), two heuristic mod-this, with minimal feature views, Featue should be
els, also prefer Featuf®@ None of these models capturesthe root node. By contrast, in Experiment 2 subjects
the differences between Experiment 1 and Experiment Barned to classify under asymmetric rewards, with the
as none of these models makes different predictions ageal of categorizing stimuli in a way that maximizes ex-
cording to the procedure during the categorization learrpected reward. This goal is most efficiently achieved by
ing task. The final row, Learning-phase Reward, capturdsst querying Featur®, which has higher usefulness than
the idea that following experience-based learning peopkeeatureA (i.e., higher utility gain). (In fact, categorizing
preferentially view whichever feature would have beemstimuli based on the state of FeatiRalone is sufficient
most important, relative to the reward structure and goate maximize expected rewards. Therefore, in the trees,

in the learning task (see text and Figure 6). both states of Featurklead to the same decision.)
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characterizing the algorithm-level (in Marr’s, 1982, elasbility estimates also show that they were sensitive to the
sification) cognitive processes and representations thafluence of the state of Featufe For example, the me-
develop during experience-based learning. dian estimate foP(x | a1 r,) was 25%, but foP(x | a )

What learning processes might underlie the present ewas 90% (Table 2), close to the true values of 15% and
periments? Research on concept learning shows th&f, %, respectively. Therefore, we kept both features in
even in tasks in which people could in principle view ev-the tree for Experiment 2.
ery feature in each trial, they learn to allocate attention Introducing a new reward function in the search task
to efficiently view features sequentially (Blair, Watson requires rearranging the tree in some cases, to achieve the
Walshe & Maj, 2009; Rehder & Hoffman, 2005). Com-most efficient tree, and changing classification decisions
putational models have been developed to explain the associated with some exit nodes. Such a re-ordering may
location of eye movements to specific stimulus featurdse difficult, and might even require new learning experi-
on Shepard, Hovland and Jenkins's (1961; Nosofskgnces and feedback. The announcement, via words and
Gluck, Palmeri, McKinley & Glauthier, 1994) conceptnumbers, of a new search-task payoff structure was not
formation task (Love, 2010; Nelson & Cottrell, 2007). enough, no matter how well people appeared to have as-

With respect to the present findings, we propose th&imilated the environmental probabilities in the learning
people do something similar, namely learn the decisiot@sk.
tree that is most efficient—i.e., that requires the smallest In sum, for development of a comprehensive theory of
number of feature views, on average—subject to the cohuman information acquisition, the present results sug-
straint of having optimal performance, relative to the (imgest (1) not taking a simplistic decision-theoretic view of
plicit or explicit) reward function during learning. When probability learning as distinct from rewards that could
constructing these trees (Figure 6), we used the explicirive search behavior, and (2) focusing on the nature of
asymmetric learning-task reward structure for Experithe learners’ goals, decision strategies, and any specific
ment 2, and a symmetric reward structure for Experimer@abits in the learning process (e.g., eye movement search
1. In this case, the result is the acquisition dfat-and- ordering among the features).
frugal decision tregBergert & Olsson, in preparation;
%gg; & Mehr, 1997; Luan et al.,, 2011; Martignon et al'11.4 The value of information in real-world

We hypothesize that this tree is what later drives peo- decisions

ple’'s search-task behavior: Choices of which feature tQ/hat about real-world search decisions? Physicians
view reflect the learning-task search hierarchy, rather thay, metimes use fast-and-frugal trees to search for informa-
any judgment of features’ relative usefulness per se. Thig)n and to make medical diagnoses (Fischer et al., 2002;
process works well if the search task retains the learnings een, & Mehr, 1997§° This fits with our ideas on the
task payoff structure, but can work poorly otherwisese of search-and-classification trees learned through ex-
even when the new payoff structure is as straightforwargs rience, which can adapt to situation-specific costs and
as monetary payoffs for accuracy. benefits through the arrangement of the exit nodes (Luan

To illustrate, consider the tree for Environment 1, ingt al., 2011). Such simple decision trees are also used
Experiment 1. When a stimulus is presented, one firgh rain medical personnel for making classification de-
looks at Featurd\. If &, is observed, the stimulus can begisjons during mass casualty incidents, enabling first re-
assigned to Categony as this is now the more probable sponders to classify and prioritize victims according to
category regardless of the state of FeaRi@Figure 1). the severity of their injuries, as they are easy to apply,
The state oR needs to be checked onlyaf is observed, even under stressful conditions (Super, 1984, as cited in
as the item is more likely to belong to Categgrwhen | yanetal., 2011).

R=r1, but more likely to bex whenR=r», givena;. The In applied contexts within medical decision making
tree structure is similar for Environment 2. and environmental toxicology, some studies have explic-
By contrast, in Experiment 2, where people had to astly employed quantitative value of information analy-
sign stimuli to the higher rewarded category, Feafre ses (Yokota & Thompson, 2004; see also Benish, 2002,
is more useful, and is the root node of the search treegp09). However, the explicit use of this methodology has
In fact, people could in principle reach criterion perfor-geveloped slowly, perhaps in part because of the compli-

mance by making decisions based on FeaRm@one. cated mathematics of the real world. For instance, itis not
WheneverR=rq, stimuli should be assigned to Category.
y, and whenR=r,, to Categoryx (Figure 1). However, 10There may be a general bias in favor of medical testing, and co

the different kinds of mistakes made for the various Cor{l'Cts of interest that can arise when the pract|t|one( icspally paid
0 conduct a test. We view these as exogenous issues that abul

figurations during |eam?ng S.hOW that SUbjeC.ts considerggt medicine severely, but which are separate from pepptederlying
both features (Appendix, Figure Al). Subjects’ probainformation-search capacities.
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trivial to identify a reasonable utility function to incasp  useful to query, even in abstract probabilistic simulated
rate both financial costs, and changes in life expectan@yankton categorization tasks. This is a positive finding
and quality of life. Whichever utility function is adopted, that supports a theory of diverse cognitive abilities. It
it is important to appropriately discount future returns acsuggests that even in environments with arbitrary reward
cording to when they will occur. However, Yokota andstructures (e.g., in which a disease is very serious, and its
Thompson note that around half of studies did not repotteatment—if given unnecessarily—is fairly harmless), if
use of temporal discounting in their analyses. people learn the environment, individual featuraad
It does seem that in some circumstances, for instancetine reward structurghrough their own experience, they
deciding to test for a rare but serious disease, people magil spontaneously have very good intuitions as to which
appropriately take asymmetric payoffs into account. Angueries are most useful, even in situations where the most
other example would be airport security personnel’s thotseful queries do not improve classification accuracy.
ough pre-flight screening of a person exhibiting mildly
suspicious behavior. It need not be more likely than not,
or even very likely at all, that the individual present aReferences
threat; the costs of failing to detect a bomb are high, jus-
tifying low thresholds for screening. In these exampleé&nderson, J. R. (1990). The Adaptive Character of
the basic reward structures (e.g., the high cost of missing Thought Hillsdale, NJ: Lawrence Erlbaum.
a serious-yet-treatable disease, or of missing a bomb &aron, J. (1985). Rationality and Intelligence Cam-
an airplane) are very intuitive. There is also ample oppor- bridge, England: Cambridge University Press.
tunity to train practitioners on the payoff structure appliBaron, J., & Hershey, J. C. (1988). Heuristics and biases
cable in particular medical or security contexts. We take in diagnostic reasoning: I. Priors, error costs, and test
our present results to suggest, at a minimum, that without accuracy.Organizational Behavior and Human Deci-
a situation with an intuitive and easily-internalizedoati ~ sion Processed1, 259-279.
nale for a particular asymmetric payoff structure, sponBaron, J., Beattie, J., & Hershey, J. C. (1988). Heuristics
taneously adaptive search behavior could be difficult to and biases in diagnostic reasoning: Il. Congruence, in-
achieve. formation, and certaintyOrganizational Behavior and
Human Decision Processe$2, 88—-110.
Barron, G., & Erev, |. (2003). Small feedback-
based decisions and their limited correspondence to
One important area for future research will be to directly description-based decisionsJournal of Behavioral
compare scenarios with intuitive and strongly asymmet- Decision Making16, 215-233.
ric payoff structures with theoretically-identical atestr  Benish, W. A. (2002). The use of information graphs to
scenarios. Baron and Hershey (1988) described differentévaluate and compare diagnostic tedtethods of In-
diseases abstractly. One manipulation could compare ab-formation in Medicine41, 114-118.
stract disease names with names that cue strongly asyBenish, W. A. (2009). Intuitive and axiomatic arguments
metric consequences, for instance where one disease is alfor quantifying diagnostic test performance in units of
most certainly deadly, but the other disease is akin to hav- information. Methods of Information in Medicinds,
ing the flu. Experience-based learning, perhaps in a way 552-557.
similar to our present experiments, could be used in bofBergert, F. B., & Olsson, H. (in preparation). A new
cases. It would also be interesting to investigate whether method for constructing fast and frugal trees that
the type of learning-phase feedback matters, when the ex-makes them faster, more frugal, and more accurate.
trinsic search-task payoff structure is intuitive. Blair, M. A., Watson, M. R., Walshe, C. R., & Maj, F.
From the perspective of humagarners not all util- (2009). Extremely selective attention: eye-tracking
ities are created equal. Learning is considerably eas-studies of the dynamic allocation of attention to stim-
ier under an implicit symmetric payoff structure (or at ulus features in categorizatiodournal of Experimen-
least, without an explicitly asymmetric payoff structyre) tal Psychology: Learning, Memory and Cognitj@b,
as seen in Experiment 1. Learning is considerably more 1196-1206.
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lowing experience-based learning in a particular environ- 905.
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11.5 Future directions
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Appendix

Table Al: Alternative optimal experimental design (OED)duats.

Probability Gain PG) upe (d) = maz (P (ci|d)) — maz (P (c:))
(Baron, 1985) i i

n

urg (d) = Z P (¢) loggﬁ - Z P (c;|d) loga

=1 =1

Information gain [G)

1
(Lindley, 1956) P (c;|d)

n

ukr (d) = Y P(ci|d) logs

=1

Kullback-Leibler divergencedL)
(Kullback & Leibler, 1951)

P (ci|d)
P(ci)

Impact (mp) n

m d = P i — P 4 d
(Wells & Lindsay, 1980) utmp () ; | P(ci) (cild)|
Bayesian DiagnosticitygD)
(Good, 1950)

upp (d) = max (P(C”Cl) P(d|02))

P(d|ec) " P(d]er)

Logso Diagnosticity {0g10BD) Utoginp (d) = logio (max<P(d|01) P(d|02)))

P(d|cs)” P(d]er)

Note Alternative optimal experimental design (OED) modelspmreed to quantify the usefulness of a datdifa
feature value, test result, answer) to identify an objeza®egoryC={c, ..., ¢ } (for reviews, see Nelson 2005,
2008). The expected usefulness of a query (test, questiperienent) is calculated as the average usefulness of
the data, where the usefulness of each dadusweighted by its probability (Equation 3). See Figure 5rfaydel
predictions for the current experiments. Bayesian Diatjcibsand Log o Diagnosticity are only defined for binary
categories.
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Table A2: Analysis of Baron and Hershey's (1988) scenamowtich study subjects chose which of two medical
tests (T1 or T2) was most useful (Experiment 1, Cases 5-11).

Case 5 6 7 8 9 10 11
P(disease) 0.75 0.50 0.25 0.50 0.50 0.25 0.75
T1 true positive 0.84 0.88 0.92 0.84 0.92 0.88 0.88
T1 false positive 0.32 0.28 0.24 0.32 0.24 0.28 0.28
T2 true positive 0.76 0.72 0.68 0.76 0.68 0.72 0.72
T2 false positive 0.08 0.12 0.16 0.08 0.16 0.12 0.12
harm 1 1 1 1 3 1 3
neglect 1 1 1 3 1 3 1

T1 expected utility 0.050 0.300 0.050 0.100 0.100 0.450 ©.45
T2 expected utility 0.050 0.300 0.050 0.100 0.100 0.450 ®.45
T1 probability gain 0.050 0.300 0.050 0.260 0.340 0.010 0.09
T2 probability gain 0.050 0.300 0.050 0.340 0.260 0.090 0.01
T1 information gain 0.167 0.289 0.280 0.212 0.383 0.212 D.23
T2 information gain 0.280 0.289 0.167 0.383 0.212 0.231 ».21
T1 impact 0.195 0.300 0.255 0.260 0.340 0.225 0.225
T2 impact 0.255 0.300 0.195 0.340 0.260 0.225 0.225
T1 diagnosticity 3.096 4.343 7.177 3.307 6.213 4771 3.914
T2 diagnosticity 7.177 4.343 3.096 6.213 3.308 3.914 4,771
T1 logo diagnosticity 0.480 0.615 0.816 0.507 0.749 0.657 0.573
T2 logio diagnosticity 0.816 0.615 0.480 0.749 0.507 0.573 0.657
SS’ prefs., T2 T&T2 T1 TI~T2 T1 T2 T1 T2
(percentage format) t=2.29 t=2.94 t=3.62 t=—3.50

SS’ prefs, T&T2 T1~T2 T1~T2 T1~T2 T1~T2 T1 T2
(odds format) t=3.18 t=—9.75

Note. The scenarios were described in terms of the prior prolghifithe disease, the true and false positive
rate of each test, the harm caused by treating a patient we® ot have the disease, and the cost of neglecting
to treat a patient who does have the disease. In each caseyahests had equal utility. OED models (Table
Al, see also Nelson, 2005, 2008) of the relative usefulnésach test were calculated. The two lowermost
rows give subjects’ preferences and thstatistic reported by Baron and Hershey, for cases in whidjects
significantly (uncorrected two-tafl < .05) preferred one of the tests. There are two numbers fdr seenario,
reflecting responses from different informational formdtke first version used a percentage (e.g., “75 percent”)
to denote the prior probability that the patient had the aliee the second version used odds (“three to one”) to
describe the probability that the patient had the diseasdods not appear that any of the OED models offer a
plausible explanation of subjects’ choices on this taskbBbility gain and information gain wrongly predict that
Test 2 will be preferred in Case 10, and that Test 1 will begarefl in Case 11. Impact predicts a preference in
Cases 8 and 9, which was not observed, and is tied in Case 10as®d11, where subjects showed preferences.
Bayesian diagnosticity and lggdiagnosticity show strong preferences in Case 8 and Caséi&eas subjects
were statistically indistinguishable from indifferende.Case 8 and Case 9, the trend (which Baron and Hershey
reported as nonsignificant in each instance) was for subjeqgirefer Test 1 in Case 8, and Test 2 in Case 9. All
the OED models, however, have the opposite preference,lndondest 2 in Case 8, and Test 1 in Case 9.
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Figure Al: Learning data from Environment 2, Experiments\dl 3. Each subject is one row; each column is one
feature configuration, sorted according to their frequdramy left to right. Trials are plotted from top to bottom, and
from left to right, for a particular subject and a particut@nfiguration. In each trial, a decision that is consistent
with which category is most probable (Experiment 1) or is tmesiarded (Experiment 2), is plotted with a white
rectangular pixel. Suboptimal decisions are plotted witltk rectangular pixels. The top two panels show learning
data from Experiment 1, in which people’s task was to clgsstimuli according to which category is most probable
(i.e., with no explicit reward function during learning). dgt people (38/40) achieved the learning criterion. The
bottom two panels show learning data from Experiment 2, irclvan explicit asymmetric reward function applied in
the learning phase. Only 19 out of 40 people achieved thailegcriterion. The results show that subjects struggled
a great deal with the conflict configuration (second colunemfteft), for which accuracy and reward conflict (i.e.,
subjects had to choose the less likely category in order tamize expected reward).

P(a,r;) = 0.38 P(a;r;) = 0.34 P(a;r:)=0.23 P(ayr;) =0.06

P(x | aprp) =0.81 P(x| as;ry) =0.15 P(x|asri)=0 P(x|ayry)=0
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