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Abstract

We find that the Campbell–Cochrane external-habit model can generate a value premium if
the persistence of the consumption surplus is sufficiently low. Such low persistence is
supported by micro evidence on consumption. If the mean and conditional volatility of
consumption growth are highly persistent, as in the Bansal–Yaron long-run risk model, then
fast-moving habit can also generate, without eroding the value premium: i) empirically
sensible long horizon return predictability; and ii) a price–dividend ratio for market equity
that exhibits the high autocorrelation found in the data. Fast-moving habit also delivers
several empirical properties of market-dividend strips.

I. Introduction

Several models have been developed that attempt to explain the moments of
the market equity price–dividend ratio, the market equity return, and the risk-free
rate. The two leading models are i) models with habit preferences and ii) long-run
risk models with Epstein–Zin–Weil preferences. Early habit articles include
Sundaresan (1989), Abel (1990), and Constantinides (1990). Assuming indepen-
dent and identically distributed (IID) consumption and a representative agent with
external habit preferences, Campbell and Cochrane (CC) (1999) allow the condi-
tional volatility of the log surplus (consumption in excess of habit, scaled
by consumption) to vary inversely with the log surplus in such a way that the
risk-free rate is constant, and price-of-risk shocks are close to perfectly negatively
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correlated with consumption growth shocks. CC specify the log surplus to be a
highly persistent process so that the market price–dividend ratio is highly persistent
and able to forecast long-horizon market returns, as in U.S. data. However, the high
persistence renders CC’s model unable to generate the value premium seen in the
data. In Bansal and Yaron’s (BY) (2004) long-run risk model, the market’s risk
premium and return volatility, the autocorrelation of the market price–dividend
ratio, and the average risk-free rate are all close to the data. Neither CC nor BY can
generate all the empirical properties of market-dividend strips.

Lettau and Wachter (LW) (2007) consider how the correlation between the
shock to the price of risk and the shock to log consumption growth affects the
expected return differential between value and growth stocks, when i) the state
variable driving the price of risk is highly persistent, ii) the mean of consumption
growth is a slowly mean-reverting process as in BY, and iii) the cash flows of value
stocks have shorter durations than those of growth stocks as documented in
Dechow, Sloan, and Soliman (2004) and Da (2009) (cf. Chen (2017), who argues
the difference may be smaller than previously documented). LW find that large
negative correlation between the shocks to the price of risk and consumption
growth generates a growth premium for expected excess return and CAPM alpha
(expected excess return and CAPMalpha are higher for the extreme growth than the
extreme value portfolio). This finding is in contrast to the value premium for
expected excess return and CAPM alpha (expected excess return and CAPM alpha
are higher for the extreme value than the extreme growth portfolio) found in
U.S. data. To produce a value premium, they set this correlation to 0. Their finding
raises the question whether habit preferences can generate a value premium as in
U.S. data.

A highly persistent log surplus implies a very slow-moving habit. When the
log surplus is as persistent as in CC and LW, the two most recent years of con-
sumption contribute less than 26% to the agent’s habit level (leaving all earlier
consumption to contribute more than 74%), which is much too low to be consistent
with the micro evidence. For this reason, our article examines how a less persistent
price of risk, which would be implied by a less persistent log surplus, affects the
moments of the market price–dividend ratio and return, the differentials in expected
return and in CAPM alpha between value and growth stocks, and the properties of
returns on market-dividend strips.

Matching the data Sharpe ratio and expected price–dividend ratio for market
equity at least as well as LW, we find that when the persistence of the price of risk is
low, a large negative correlation between the shock to the price of risk and the shock
to log consumption growth can generate a value premium for expected excess
returns and for CAPM alpha, consistent with U.S. data. We also find that, so long
as the conditional mean of log consumption growth is allowed to be slowly mean-
reverting as parameterized by LW and BY based on U.S. data, the market
price–dividend ratio exhibits high first-order autocorrelation comparable to that
in U.S. data even when the persistence of the price of risk is low. This is because the
expression for the price–dividend ratio of market-dividend strips suggests that the
autocorrelation of the aggregate market’s price–dividend ratio is approximately a
weighted average of the autocorrelations of the price-of-risk and the conditional
mean of log consumption growth, and the latter is more slowly mean-reverting than
the market price–dividend ratio in the data.
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Why can low habit persistence allow habit models to deliver a value premium
in expected excess return and in CAPM alpha? In LW and our model, a positive
shock to the price of risk causes a negative shock to the price–dividend ratios for
dividend strips, which in turn causes negative shocks to their returns. Because the
price-of-risk shock is negatively correlated with the consumption shock in habit
models, the shocks to dividend-strip returns caused by the price-of-risk shock are
positively correlated with the consumption shock, and so increase risk premia on
the dividend strips. This increase is hump-shaped in maturity. When habit persis-
tence is very high as in CC, the hump occurs far in the future, causing a growth
premium in expected excess return since empirical evidence suggests that value
stocks have shorter duration cash flows than growth stocks. Lowering habit per-
sistence causes the hump to occur earlier, which is the key piece of intuition to
understand why low habit persistence can deliver a value premium in expected
excess return: if the hump occurs early enough, the risk premia for the shorter-
maturity cash flows of value stocks become sufficiently high relative to the risk
premia for the longer-maturity cash flows of growth stocks to generate a value
premium in expected excess return. Because the CAPM betas for the extreme
value and growth deciles are very similar, the same intuition also delivers a value
premium in CAPM alpha.

Our baseline specification (Base case) follows LW and assumes that the
consumption process and the market dividend process are the same by calibrating
both to the market dividend process for U.S. stocks. It is unable to generate the
market return volatility found in the data. We also consider a specification (Wedge
case) that allows the consumption process to differ from the dividend process, by
calibrating the consumption process to data and leaving the dividend process the
same. This specificationmovesmarket return volatilitymuch closer to the data, and,
relative to the Base case, is able to generate a value premium in expected excess
return that is considerably larger, and a value premium in CAPM alpha that is
similar in magnitude.

Unfortunately, in contrast to LW, the Base andWedge cases, with their implicit
assumption that log consumption growth is homoscedastic, are unable to replicate
the strong predictability of long-horizon market returns found in the data using the
market price–dividend ratio as the predictor. To understand this result better, let x be
the price of risk and ϕx be its persistence level, and consider a setting in which log
consumption growth, Δd, is a homoscedastic process equal to log market dividend
growth, Δdm, as in LWand the Base case. Comparative static analysis confirms that
the ϕx that delivers a 10-year return predictability R2 equal to the 30% data value
is declining as the conditional correlation between Δd and x, ρd,x, becomes more
negative, and this decline in ϕx is typically associated with a declining value
premium in raw return. As a consequence, it is extremely difficult in this setting
to simultaneously obtain a value premium in raw return and market return predict-
ability of the magnitude observed in the data when ϕx is low and ρd,x is close to�1.

Consequently, we allow Δd to not only differ from Δdm, but also, in the spirit
of BY’s long-run risk in volatility model, exhibit very persistent AR(1) volatility.
This specification (LRR-Vol case) delivers long-horizon return predictability of a
magnitude much closer to that in the data, because future expected excess market
returns depend on future conditional consumption growth volatility. Consistent
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with this intuition, we find that the long-horizon return predictability in the LRR-
Vol case is completely driven by the predictive ability of current conditional
consumption growth volatility. The LRR-Vol case also delivers value premia in
expected excess return and CAPM alpha that are both larger than for the Base
or Wedge cases, though still lower than for LW. Moreover, the value premium in
expected excess return is closer to the one found in the data using a BM sort than the
one obtained by LW. This specification also generatesmarket return volatility that is
within 15% of the data value that LW matches almost exactly. Long-run risk in
consumption volatility also helps match the data along several other dimensions.

Our fast-moving habit model also delivers many of the empirical results for
market-dividend strips that have recently been documented by van Binsbergen,
Brandt, and Koijen (BBK) (2012) and van Binsbergen and Koijen (BK)
(2017). BBK find that the means, volatilities, and Sharpe ratios for monthly returns
on two portfolios of S&P 500 dividend strips with average maturities around 1 year
are all larger than for the S&P 500 index itself. BBK also find higher R2s for the
regressions that forecast the monthly returns on their two strip portfolios using their
own price–dividend ratios than for the regression that forecasts the monthly return
on the S&P 500 using its price–dividend ratio. Our three fast-moving habit models
deliver all these results for quarterly returns, while in contrast, LW only delivers
three of the four results (not the volatility result) and BBK find that neither the
external habit model with slow-moving habit nor the long-run riskmodel are able to
produce any of the first three results.Whenmarket model regressions are run for the
CAPM and a 2-factor model with market excess return and Fama–French’s HML
zero-cost portfolio as the factors, the LRR-Vol model is able to get quite close to the
CAPM alphas for short-maturity market-dividend strips in the data, and closer than
LW to both the CAPM and 2-factor alphas for these strips in the data. BK present
some new empirical evidence about the expected excess returns onmarket-dividend
strips which they obtain using monthly returns on S&P 500 dividend-strip futures.
They report that the expected monthly dividend-strip spot return in excess of the
market return is increasing in stripmaturity going from 1-year strips to 5-year strips.
This empirical result is much more consistent with the dividend-strip expected
excess return curve for the LRR-Vol case, which is hump-shaped, than the curve for
LW, which is downward-sloping.

In summary, our results suggest that an external habit model in the spirit of CC
can deliver an empirically sensible value premium, once the persistence of the log
surplus consumption ratio is allowed to be low rather than set to a value close to one.
Simultaneously allowing the conditional mean of consumption growth to be slowly
mean-reverting delivers a log price–dividend ratio that exhibits empirically sensible
persistence, without eroding the value premium. Also allowing the conditional
volatility of consumption growth to be slowly mean-reverting gives rise to empir-
ically sensible predictability of long-horizon returns using the price–dividend ratio,
again without eroding the value premium.Ourmodel with all three features can also
deliver some, but not all, of the empirical results for market-dividend strips that
have recently been documented.

The question arises as to why the persistence of the log surplus might be low in
the representative-agent external-habit model. There are two potential answers.
First, micro evidence on habit preferences suggests agents do not have slow-
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moving habit in the spirit of CC, which could be a micro-foundation for a
representative-agent external habit model with fast-moving habit, so long as
agents exhibit fast-moving habit rather than no habit. Because slow-moving habit
is like a subsistence level, it implies that risk-asset holding as a fraction of
financial wealth increases in response to wealth increases. In contrast, Brunner-
meier and Nagel (2008) do not find such a positive relation empirically, or any
other evidence supportive of slow-moving habit. However, their evidence does
not rule out fast-moving habit since the relation need not be positive if habit is
moving sufficiently fast (see Appendix A.1 in Brunnermeier and Nagel (2006)).
Using quarterly credit card purchases as a measure of consumption, Ravina
(2019) estimates a log-linearization of the Euler equation for households with
habit preferences and finds that the coefficient of lagged own consumption
(internal habit) is 0.5 while the coefficient on current household city consumption
(external habit) is 0.29. These coefficients are too high to be consistent with slow-
moving habit which implies that last period’s consumption has very little effect on
this period’s habit. Dynan (2000) uses a similar methodology to Ravina but a
different data set, namely annual PSID data, and finds coefficients on lagged own
consumption that are insignificantly different from 0. However, Ravina obtains
similar values to Dynan once she omits household-specific financial control
variables not available in Dynan’s data set.

Second, economies inhabited by agents with Epstein–Zin–Weil preferences
and heterogeneous risk aversion exhibit stochastic aggregate risk aversion just like
economies with a representative agent that has external habit preferences (e.g.,
Chabakauri (2013), (2015), Bhamra and Uppal (2014), and Garleanu and Panageas
(2015)). So heterogeneity in risk aversion as a micro-foundation for external habit
models like CC can be another micro-foundation for the habit being fast-moving,
so long as the consumption shares of agents exhibit low persistence. In particular,
Garleanu and Panageas consider an overlapping-generations economy with two
types of Epstein–Zin–Weil agents who differ in terms of risk aversion and possibly
intertemporal elasticity of substitution. Because their model delivers a nondegene-
rate stationary equilibrium, the consumption shares have stationary distributions.
While these shares are highly persistent in their baseline calibration, the persistence
can be reduced somewhat by simultaneously increasing the population share of the
less risk-averse agents, decreasing the fraction of output paid out as earnings, and
increasing the risk-aversion heterogeneity of the agents (i.e., by simultaneously
decreasing the risk aversion of the less risk-averse agents and increasing the risk
aversion of the more risk-averse agents). However, it is necessary to also increase
the birth/death rate substantially to lower the consumption-share persistence
enough to match the value assumed for our log surplus.

While our analysis shows that increasing risk-aversion heterogeneity can
reduce the persistence of consumption to a level more in line with the micro data,
Gomez (2022) highlights that it also increases wealth inequality, since the more
risk-tolerant agents hold riskier assets which tend to outperform the safer portfolios
held by the less risk-tolerant agents. He shows that his model, adapted from
Garleanu and Panageas, cannot match the excess volatility of asset prices unless
preference heterogeneity is increased so much that the right tail of the wealth
distribution is much thicker than in the data. Gomez resolves this tension by
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augmenting his model with purely redistributive wealth shocks between the two
investor types and “live-fast-die-young” risk-tolerant investors who transition to
more risk-averse investors after a short period of time. Interestingly, both these add-
ons are similar mechanisms to increasing the birth/death rate in Garleanu and
Panageas, which we find to be the most effective way to reduce the persistence
of the consumption shares. While the birth/death rate needed to reduce the persis-
tence to that assumed for our log surplus is unrealistically high, intuition suggests
that the persistence could be further reduced by extending their model to allow for
“live-fast-die-young” risk-tolerant investors, purely redistributive wealth shocks
between the two investor types, and idiosyncratic wealth and labor-income shocks.

Long-run risk models have had some success generating a value premium in
excess return and CAPM alpha. Calibrating the BY model by targeting aggregate
moments, Kiku (2007) and Bansal, Kiku, and Yaron (2016) find the value portfolio
to bemore sensitive to long-run consumption risks than the growth portfolio, which
generates a value premium in raw returns and CAPM alpha. Using a Bayesian
approach to estimate the long-run risk model, Schorfheide, Song, and Yaron (2018)
find the data moments related to the risk premium (the market price–dividend ratio)
to be roughly at the center (in the right tail) of the posterior distributions for the
model.

There are several other related articles. Consistent with LW, Santos and
Veronesi (2010) find that habit preferences deliver a growth premium rather than
a value premium when value firm cash flows have shorter durations than growth
firm cash flows, unless greater cross-firm cash flow heterogeneity than found in the
data is introduced. Bekaert and Engstrom (2017) consider an extension to the CC
external-habit model in which the log surplus continues to be very persistent, but
log consumption growth is comprised of positively skewed “good environment”
shocks and negatively skewed “bad environment” shocks, which allows them to
match higher moments of the time series of asset returns. Croce, Lettau, and
Ludvigson (2015) examine how incorporating limited information in a long-run
risk model can result in short-duration assets having higher expected returns than
long-maturity assets, as in the data. Finally, Hansen, Heaton, and Li (2008) report
that the cash flows of value but not growth stocks exhibit positive comovement with
macroeconomic risks in the long run.

Section II describes the model, while Section III presents the calibration
details. Results are in Section IV, and Section V concludes.

II. The Model

We consider a model that generalizes LW along two dimensions: i) the con-
sumption and dividend processes are allowed to differ; and ii) the conditional
volatility of log consumption growth is assumed to follow a highly persistent
AR(1) process. All proofs are in the appendices or Supplementary Material.

A. Specification

The model has five shocks which are assumed to be multivariate normal and
independent over time: a shock to consumption growth εdtþ1, a separate shock to
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dividend growth εutþ1, a shock to conditional expected dividend growth ε
z
tþ1, a shock

to the conditional volatility of consumption growth εwtþ1, and a shock to the price

of risk variable εxtþ1. Define σ2i � σ2 εi½ �, σi,j � σ εi,εj½ �, and ρi,j � ρ εi,εj½ � for
i, j= d,z,x,u,w.

Let Dm
t denote market dividends at time t, and define dmt � log Dm

t

� �
, which

evolves as follows:

Δdmtþ1 = g
mþ zmt þ εmtþ1(1)

with a time-varying conditional mean, gmþ zmt , where z
m
t follows anAR(1) process:

zmtþ1 = ϕzz
m
t þ εztþ1(2)

with 0≤ ϕz < 1. Let Dt denote consumption at time t, and setting g� gm=δm and
zt � zmt =δ

m, define dt � log Dtð Þ, which evolves as follows:

Δdtþ1 = gþ ztþσtε
d
tþ1,(3)

where

σtþ1 = σþϕσ σt�σð Þþ εwtþ1(4)

and εmtþ1 � δmεdtþ1þ εutþ1, with εwtþ1 and εutþ1 uncorrelated with each other and the
other shocks. This specification allows separation between themarket dividend and
consumption, with log dividend growth a levered version of log consumption
growth as in Abel (1999) and δm the leverage parameter. Finally, both the condi-
tional mean, gþ zt, and the conditional volatility, σt, of log consumption growth
are highly persistent AR(1) processes. This consumption specification is closely
related to BY, who specify that the variance, not the volatility, is an AR(1).1

The stochastic discount factor is driven by a single state variable xt which also
follows an AR(1) process:

xtþ1 = 1�ϕxð Þxþϕxxtþ εxtþ1(5)

with 0≤ ϕx < 1.
We specify that only the shock to consumption growth is priced, and that the

stochastic discount factor takes the form

Mtþ1 = exp aþbzt�1

2
xtσtð Þ2� xtσt

εdtþ1

σd

� �
:(6)

Using a first-order Taylor approximation, we can approximate the price of risk as
follows:

xtσt ≈ xσþ x σt�σð Þþσ xt� xð Þ,(7)

1We also calibrated a model where σ2t is an AR(1), using a first-order Taylor expansion for xt
ffiffiffiffiffi
σ2t

p
in

the stochastic discount factor, and the results were qualitatively the same.
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= x σt�σð Þþσxt,(8)

which gives us the following stochastic discount factor:

Mtþ1 = exp aþbzt�1

2
x σt�σð Þþσxtð Þ2� x σt�σð Þþσxtð Þε

d
tþ1

σd

� �
:(9)

The conditional log-normality ofMtþ1 implies that the log of the risk-free rate
from time t to tþ1 is given by

rft ��a�bzt:(10)

If b ≠ 0, the riskless rate is time varying. Since the most relevant articles to ours, LW
and CC, both assume that the risk-free rate is constant, we also assume that b= 0, so
we can directly compare our results to theirs.

B. Price–Dividend Ratio and Expected Return for Market-Dividend Strips
and Market Equity

Let Pm
n,t be the time-t price of a market-dividend strip, paying off in n periods.

Following LW, it can be shown that Pm
n,t takes the following recursive form for this

model:

Pm
n,t

Dm
t

=F xt,σt,z
m
t ,n

� �
= exp A nð ÞþBx nð ÞxtþBσ nð Þ σt�σð ÞþBz nð Þzmt

� �
:(11)

The log risk premium on a market-dividend strip can be shown to depend on Bx, Bσ ,
Bz, xt, σt, the variance of the consumption shock, and its covariances with the other
shocks:

log Et
Rm
n,tþ1

Rf
t

" # !
=Et rmn,tþ1� rft

h i
þ1

2
σ2t rmn,tþ1

h i
= δmσ2d þσd,uþBx n�1ð Þσd,xþBσ n�1ð Þσd,wþBz n�1ð Þσd,z
� �
σ

σd
xtþ x

σd
σt�σð Þ

	 

:

(12)

Market equity is the claim to all future market dividends. By the law of one
price, a claim to market equity is equal in price to the sum of the prices of market-
dividend strips over all future horizons. Dividends are paid at a quarterly frequency,
so we can calculate the annual market price–dividend ratio as follows:

Pm
tP3

τ = 0
Dm

t�τ

=
X∞
n= 1

Pm
n,tP3

τ = 0
Dm

t�τ

:(13)

Quarterlymarket returns can be calculated as a function of the quarterlymarket
price–dividend ratio and dividend growth:
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Rm
tþ1 =

Pm
tþ1þDm

tþ1

Pm
t

(14)

=
Pm
tþ1=D

m
tþ1þ1

Pm
t =D

m
t

	 

Dm

tþ1

Dm
t

	 

:(15)

We simulate at a quarterly frequency, and we calculate annual returns by com-
pounding quarterly returns, which is equivalent to reinvesting dividends at the end
of each quarter.2

C. Relation to the CC Model

CC assume that a representative agent maximizes the utility function:

E
X∞
t = 0

δt
Dt�Htð Þ1�γ�1

1� γ

" #
,(16)

where Ht is the level of external habit at time t and δ is the subjective discount
factor. Suppose the representative agent again maximizes the habit specification in
equation (16) and both the conditional mean and volatility of consumption growth
are slowly mean-reverting, as in equations (2)–(4). Define the log of the surplus-
consumption ratio at time t to be st � log Dt�Ht

Dt

� �
as in CC.We extend the dynamics

for the log consumption surplus in CC to the case in which there is long-run risk in
the mean and volatility of consumption growth, by assuming that the consumption
surplus evolves as follows:

stþ1 = 1�ϕsð Þsþϕsstþ λ sð Þztþ λ stð Þσtεdtþ1,(17)

where εd �N 0,σ2d
� �

and λ :ð Þ is the same sensitivity function as used by CC.3

This specification for the log consumption surplus in equation (17) implies
that the risk-free rate does not depend on st when σt = σ. It also implies the same
desirable properties for the habit process that CC’s setup delivers: at the consump-
tion surplus’s steady state, log habit is predetermined only by an exponentially
weighted sum of past lagged log consumption (see Section II.D); and, habit next
period moves positively with consumption next period irrespective of the con-
sumption surplus this period.

This specification implies the following stochastic discount factor:

2We reproduced all our tables using the return calculation that sums dividends within a year and the
results that we obtained were very similar to the ones we report in the article.

3CC specify the sensitivity function to be λðstÞ=
1
�S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2ðst ��sÞ

p
�1, st ≤ smax

0, st ≥ smax

8<
:

where s� log S
� �

and smax = sþ 1
2 1� S

� �2� �
. We set S� σσd

ffiffiffiffiffiffiffiffi
γ

1�ϕs

q
.
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Mtþ1 = exp �γgþ log δð Þ� γ 1þ λ sð Þð Þztþ γ 1�ϕsð Þ st� sð Þ� γ 1þ λ stð Þð Þσtεdtþ1

� �
:

Matching coefficients in the stochastic discount factor we see that the risk-free rate
is affine in zt and σ2t . So our model can be used to approximate CC with persistent
conditional mean and volatility of consumption growth by first using the same
approximation in equation (7) applied to γ 1þ λ stð Þð Þ and σt, and then setting
a= log δð Þ� γgþ γ 1�ϕsð Þ

2 , b= � γ 1þ λ sð Þð Þ, δm = 1, σu = 0, xt = γσd 1þ λ stð Þð Þ, and
σt equal to itself. Our model approximates γσd 1þ λ stð Þð Þ, a heteroscedastic
AR(1) process, with xt, a homoscedastic AR(1) process. So as long as the sensitivity
function is rarely 0, ρd,x ≈ �1 and ϕx ≈ ϕs.

4

D. Relation Between External Habit and Past Consumption

Following an earlier version of CC, we can show that log habit is approxi-
mately a moving average of lagged log consumption, for the specification of log
consumption growth and the log surplus consumption ratio in Section II.C. Defin-
ing ht � log Htð Þ, we can apply a log-linear approximation to the definition of st:

st ≈ log 1� eh�d
� �

þ ht�dtð Þ� h�d
� � � �eh�d

1� eh�d

 !
:

Substituting this into the law of motion for s described in equation (17), and
utilizing the imposed restriction that htþ1 is predetermined at the steady state, we
can show that:

htþ1 ≈ h�dþ 1�ϕsð Þ
X∞
j = 0

ϕsð Þjdt�jþ g

1�ϕs
,(18)

which is the same expression derived in an earlier version of CC for IID consump-
tion growth. Almost by definition, habit should only depend on lagged consump-
tion so this is an attractive property of the specification for st given in equation (17).

In equation (18), the coefficient on log lagged consumption, dt, is 1�ϕsð Þ: so
when ϕs is close to 1, as in CC, this coefficient is close to 0. Thus, equation (18)
highlights a point made in the introduction, namely that when the consumption
surplus ratio is very persistent with ϕs close to 1, recent consumption contributes
very little to current habit. It also shows clearly how the large coefficient on lagged
own consumption obtained by Ravina (2019) is consistent with a consumption
surplus ratio that’s not very persistent.

E. Specifying the Share Process and Forming the Value/Growth Deciles

Following LW, we specify that the market is made up of 200 firms whose
dividends aggregate to the market dividend. The share of the market dividend
produced by each firm is set deterministically. Let s be the minimum share of

4CC specify consumption to be IID, and our model approximates CC by setting
a= log δð Þ� γgþ γ 1�ϕsð Þ

2 , δm = 1, σu = 0, σz = 0, σw = 0, σ = 1, and xt = γσd 1þ λ stð Þð Þ.
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any firm, and without loss of generality, suppose firm 1 produces this share
initially. Following LW, we choose a growth rate of 5.5% per quarter for the share
process so that the cross-sectional distribution of dividend growth rates in the
model matches that in the data. Given this growth rate, firm 1’s share increases by
5.5% a quarter for 100 quarters to a maximum of 1:055100s, then declines at the
same rate for 100 quarters such that its share after 200 quarters exactly equals its
initial share. Firm 2 starts at the second point in the cycle, and so on, so that each
firm is at a different point in the cycle at any time. Here, s is set so that the shares of
the 200 firms add up to 1 at all times. So firm i, with share si of the market
dividend, pays a dividend sitDt at time t.

The law of one price determines that firm i’s ex-dividend price equals:

Pi
t =
X∞
n= 1

sitþnP
m
n,t:(19)

Quarterly returns for individual firms can be calculated similarly to the market, as a
function of the firm’s quarterly price–dividend ratio and quarterly dividend growth.

Recall that we specify a period in themodel to be a quarter as in LW.At the start
of each year, we sort firms into deciles from value to growth based on their annual
price–dividend ratios, which are given by Pi

t=
P3

τ = 0D
i
t�τ for firm i. We calculate

various annualized moments for the decile excess quarterly returns by simulating
the model at a quarterly frequency.

III. Calibration

We calibrate four versions of the model described in Section II.A. LW’s model
does not distinguish between consumption and market dividends, specifying a
stochastic discount factor of the form:

Mtþ1 = exp �rf �1

2
x2t �

xt
σd

εdtþ1

� �
,

where rf is the log of the risk-free rate, and is constant over time. LW’s model also
assumes that consumption growth is homoscedastic. Our model nests LW by
setting a= � rf , b= 0, δm = 1, σu = 0, σw = 0, and σ = 1. Our LW case replicates
LW by having the shocks to x and d be uncorrelated (ρd,x = 0), the x process highly
persistent (ϕx close to 1), and a consumption process that matches the dividend
process which has been calibrated to data. Our Base case also sets the consump-
tion process equal to the calibrated dividend process, but allows the x process to be
less persistent, as suggested by recent evidence about the persistence of habit, and
ρd,x = �0:99, as implied by the habit specification used in CC.5 Our Wedge case
resembles our Base case except that the consumption process is calibrated to data
rather than matched to the market-dividend process: δm is no longer set equal to
1, and σu is allowed to be positive. Allowing the consumption process to differ

5In the LWand Base cases, we set log consumption growth equal to log market dividend growth by
setting δm = 1 and σu = 0.
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from the market-dividend process, as is the case in the data, delivers higher excess
market return volatility that is closer to the data value. Our LRR-Vol case resem-
bles our Wedge case except that the conditional volatility of consumption growth
is allowed to be slowly mean-reverting as in BY: σw is no longer set equal to
0. Allowing the conditional volatility of consumption growth to be slowly mean-
reverting delivers considerably higher predictability of long-run excess market
return using the market price–dividend ratio that is nontrivial and much closer to
that in the data.

All four cases use exactly the same calibration used by LW for the zm process,
Δdm process, and rf . Table 1 reports the parameters used by the four cases. All the
parameters for the LW case are the same as those in LW, so the discussion of
parameter choices below pertains to the other three cases.

Our Base, Wedge, and LRR-Vol cases all depart from LW in the calibration of
the parameters of the price of risk, the x process. LW calibrate the autocorrelation of
x to equal the data autocorrelation of the log price–dividend ratio for the aggregate
market (0.87 annually). However, as discussed above, since the persistence of our
price of risk x is approximately equal to the persistence of the log surplus s in the CC
model, there are good theoretical reasons for why the x process might not be very
persistent. In particular, while CC themselves use a very large value for the auto-
correlation of the log surplus in their model, the use of such a large value implies
that habit dependsmuch less on consumption in the recent past than consumption in
the distant past. For example, Table 2 uses the expression in equation (18) that
relates log habit to past log consumption in CC to calculate the contribution of
lagged log consumption to log habit when x’s persistence parameter is set equal to
the LWannualized value of 0.87 and to the value in our other three cases. At the LW

TABLE 1

Model Parameters

Table 1 lists the parameter values used by LW (first column) and for our Base, Wedge, and LRR-Vol cases (final three
columns). All parameters are as defined in Section II. The model is quarterly, but the mean of the log dividend growth gm and
the log risk-free rate r f are converted into an annual number by multiplying by a factor of 4 and we express the persistence
parameters ϕx and ϕz at annual frequencies by raising each of them to the power of 4.

Variable Frequency LW Base Wedge LRR-Vol

gm Annual 2.28% 2.28% 2.28% 2.28%
r f = �a Annual 1.93% 1.93% 1.93% 1.93%
b or bm 0 0 0 0
x Quarterly 0.625 0.25 0.28 0.365
ϕz Annual 0.91 0.91 0.91 0.91
ϕx Annual 0.865 0.14 0.14 0.14
σm Quarterly 0.0724 0.0724 0.0724 0.0724
σd Quarterly 0.0724 0.0724 0.0160 0.0164
σz Quarterly 0.00165 0.00165 0.00165 0.00165
σx Quarterly 0.1225 0.16 0.3305 0.29
σu Quarterly 0 0 0.0435 0.037
ρm,z = ρd,z Quarterly �0.82 �0.82 �0.82 �0.82
ρd,x Quarterly 0 �0.99 �0.99 �0.99
ρz,x Quarterly 0 0.81 0.81 0.81
ρd,u Quarterly – – �0.30 �0.30
ρz,u Quarterly – – 0.0037 0.15
ρx ,u Quarterly – – 0.30 0.30
δm Quarterly 1 1 4.54 4.54
σ Quarterly 1 1 1 0.918
ϕσ Quarterly – – – 0.994
σw Quarterly 0 0 0 0.037
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value, the contribution of the most recent 5 years is just a little over 50% and so the
contribution of log consumption more than 5 years ago is almost 50%which seems
very high. We choose an annualized value for ϕx of 0.14 which is sufficiently low
that the most recent 2 years of log consumption contribute over 98% of all past
consumption to log habit, which is a much more reasonable number than the 25%
contribution generated by the LW value given the micro evidence.

The external habit model of CC implies a value close to �1 for ρ εd


, εx�, but
LW set this correlation equal to 0 so as to be able to generate a value premium for
both expected return and CAPM alpha. However, one of the main goals of our
article is to show that a value premium is possible for both expected return and
CAPM alpha when this correlation is close to �1 so long as the price of risk is not
too persistent (see Section IV.B.1 for intuition). For this reason, we set this corre-
lation to �0.99 in the Base, Wedge, and LRR-Vol cases.6

In the Base, Wedge, and LRR-Vol cases, we choose our x and σx to produce
a Sharpe ratio and an expected market price–dividend ratio with mean absolute
errors relative to the data values that are no larger than those obtained by LW.
Table 3 reports moments for excess annual market return, and annual market
price–dividend ratio, for the data and the four model cases, with one column for
each.Note that Pm=Dmð Þt =Pm

t =
P3

τ = 0D
m
t�τ is the annualmarket price–dividend ratio,

pm�dm � log Pm=Dmð Þ, SHARPEm is the unconditional Sharpe ratio for the excess
annual market return, and AC denotes autocorrelation. The expected
price–dividend ratio obtained from the Base case is as close to the data value as
the LW value, and the Base-case unconditional Sharpe ratio is virtually the same as
the LW value, while the Wedge and LRR-Vol cases both do a better job than LW
matching the former and a similar job to LW matching the latter.

TABLE 2

Contribution of Lagged Consumption to Habit: Model

Table 2 shows the percentage contribution of lagged log consumption to log habit in the external habit model of CC for
parameters implied by the LWcase (the first column) and our cases (the second column). Section II shows how to back out the
implied CC parameters from the models and presents the approximate relation between log habit and lagged log
consumption used to calculate the contributions:

htþ1 ≈ h�dþ 1�ϕsð Þ
X∞
j = 0

ϕsð Þj d t�j þ g
1�ϕs

:

Table 2 also decomposes habit into the proportion fromconsumptionwithin the last 5 years, and the proportion frommore than
5 years before, for LW and our calibrations.

Consumption Lag (Years) Habit Contribution (%)

LW Ours

1 13.50 86.00
2 11.68 12.04
3 10.10 1.69
4 8.74 0.24
5 7.56 0.03

1 to 5 51.57 99.99
>5 48.43 0.01

6Choosing �0.99 instead of �1 seems unimportant since the Base case results are unaffected by
setting this correlation to �0.995 or � 0.999.
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To ensure the covariance matrix of (εd , εz, εx) is positive definite, we specify
σ εx,εz½ � in all four cases so that εx and εz are correlated only through their correla-
tions with εd . Details are in the appendices. With ρ εd ,εz

 �
set equal to�0.82 for all

cases, the assumed value for ρ εx,εz½ � is 0.81.
While all four cases use the same Δdm process, only the Wedge and LRR-Vol

cases allow log dividend growth to be a levered version of log consumption growth.
For these cases, we set ρ εd ,εz

 �
= ρ εm,εz½ �, and following the literature (e.g., Abel

(1999)), we set δm equal to σm
σd
. The annual correlation of log consumption growth

with log dividend growth is 0.55 in BY’s sample period, but we choose a larger
correlation than in the data, 0.82 at a quarterly frequency, so that the price–dividend
ratio converges for a range of x> 0. Using the methods of Stambaugh (1997) and
Lynch and Wachter (2013), we estimate the unconditional volatility of annual log
consumption growth in the LW sample period to be 3.18% in the data; we match
this value in the Wedge and LRR-Vol cases. As with εx and εz, εx and εu are
correlated only through their correlations with εd .

When we calibrate the volatility process for Δd in the LRR-Vol case, σt, we
nail down the value for ϕσ by assuming that the conditional variance of monthly log
consumption growth follows the AR(1) specification used in Bansal, Kiku, and
Yaron (2007). However, we scale our volatility process σt to preserve the uncon-
ditional second moment of the shock to log consumption growth from the Wedge

case, i.e., E σtεdtþ1

� �2h i
in the LRR-Vol case equals E εdtþ1

� �2h i
in the Wedge case.

Following BY, we assume that εw is uncorrelated with all other shocks. The σt
process in the LRR-Vol case is negative less than 0.3% of the time.7

IV. Results

This section reports the results for U.S. data and for the four model cases.
The aggregate data are the same as that in LW, annual from 1890 to 2002,
and the data for the value and growth portfolios are quarterly from Kenneth

TABLE 3

Aggregate Moments: Data and Model

Table 3 reports moments for market return, market price–dividend ratio, andmarket dividend growth. The first column reports
moments for the data, the second reports simulatedmoments for the LWcase, and the final three report simulatedmoments for
the Base, Wedge, and LRR-Vol cases. The data are the same as that in LW and are annual from 1890 to 2002. Price–dividend
ratios are aggregated to annual frequencies: so Pm=Dmð Þt =Pm

t =
P3

τ = 0D
m
t�τ and pm �dmð Þt � log Pm=Dmð Þt

� �
.Rm �Rf is the

excess annual market return. SHARPEm is the unconditional Sharpe ratio of the annual market return, and AC is the
autocorrelation.

Moment Data LW Base Wedge LRR-Vol

E Pm=Dm½ � 25.55 20.06 30.97 23.02 25.15
σ pm �dm½ � 0.38 0.382 0.260 0.259 0.480
AC pm �dm½ � 0.87 0.884 0.897 0.839 0.945
E ½Rm �Rf � 6.33 8.096 4.484 6.183 6.824
σ½Rm �Rf � 19.41 19.42 10.69 14.69 16.54
AC½Rm �Rf � 0.03 �0.04 �0.13 �0.27 �0.10
SHARPEm 0.33 0.417 0.419 0.421 0.413

7See the appendices for more details of the calibration of Δd for the Wedge and LRR-Vol cases.
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French’s website (https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_
library.html) for the period 1952 to 2016, and the data for the market-dividend
strips are quarterly from 1996 to 2009. Quarterly returns are annualized by multi-
plying means by 4, volatilities by

ffiffiffi
4

p
, and Sharpe ratios by 4=

ffiffiffi
4

p
. Whenever one of

the models is simulated to obtain particular statistics of interest, it is simulated at a
quarterly frequency for at least 4 million quarters, and until those statistics have
converged; that is, until an additional 4 million simulated quarters causes the values
of all these moments and statistics to change by less than small prespecified
tolerances.

A. Base Case

This subsection discusses the results for the Base case and compares them to
the results from the data and for the LW case. As in LW, the consumption process is
assumed to be equal to the market dividend process, which is calibrated to data.

1. Aggregate Moments

Table 3 reports aggregate moments. The parameters of Δdm and z are chosen
by LW tomatch the data, and they show that their chosen parameters, whichwe use,
are able to match the volatility and autocorrelation of log annual market dividend
growth in the data. However, the Base case does deliver an expected excess market
return and a market excess return volatility that are too low relative to the data and
LWvalues. The delivered volatility of 10.69% is particularly low relative to the data
volatility of 19.41% which LW does a good job matching. While the LW case
matches the data log annual price–dividend ratio volatility quite closely, the Base
case delivers a value of 0.260 that is much lower than the data value of 0.38.
Equations (11) and (15) suggest that these two volatilities are much lower in the
Base case than the LW case because the unconditional volatility of the price-of-risk
variable x and magnitude of the Bx function are much lower in the Base case (see
Table 1 and Section IV.B.1, respectively).

Because parameter values were not chosen specifically to match the autocor-
relation of the market price–dividend ratio in the data, it is impressive that the Base-
case value of this autocorrelation, 0.897, is higher than, but close to, both the data
value of 0.87 and the LW value of 0.884. This correlation is high in the Base case
even though the autocorrelation of x is low because equation (11) suggests that it is a
weighted average of the autocorrelations of x and zm, where the latter is more
persistent than the market price–dividend ratio in the data.

2. Predictive Regressions

Tables 4 and 5 report results for market predictive regressions of the following
form:

XH
i = 1

Y tþi = β0þβ1INFOtþ εtþH ,(20)

where Y tþi equals future market excess log return rmtþi� rftþi�1

� �
in Table 4, and

future changes in log market dividend Δdmtþi in Table 5. In Panel A of both tables,
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INFOt equals the log annual market price–dividend ratio at time t, pm�dmð Þt, and in
Panel B, INFOt equals each of the three drivers of pm�dmð Þt separately: zmt ; xt; and
σt. The data are annual, spanning 1890–2016. The log consumption-market dividend
ratio at time t for annual data is used to measure zmt in the data.8 Results are reported
for return horizons Hð Þ of 1 year and 10 years for the data and the models. Newey–
West t-statistics are reported for a lag length of H�1ð Þ and themaximum-likelihood-
optimal lag length. AdjR2 is the adjusted regression R2.

Perhaps the most glaring inability of the Base case to match data moments
concerns the log excess market return predictability regressions that use pm�dmð Þt
as the predictor, which are reported in Panel A of Table 4. The data and the LW case
deliver R2s and negative predictability coefficients that are both larger in absolute
value at a 10-year return horizon than at a 1-year return horizon. However, while the
Base case is able to produce negative predictability coefficients, theirmagnitudes are
much smaller than those observed in the data, and the Base-case R2s at horizons of
1 and 10 years are both negligible. In contrast, the LW-case R2 for the 10-year return
horizon is 0.30, which is very close to the 0.27 found in the data. In the LWand Base
cases, the log market price–dividend ratio at time t is determined by the price of risk,

TABLE 4

Predictive Regressions for Future Market Excess Log Return: Data and Model

Table 4 reports results for the following regression:

XH
i = 1

rmtþi � r ftþi�1

� �
= β0 þβ1INFOt þ εtþH ,

where INFOt equals the log annual market price–dividend ratio at time t , pm �dmð Þt � log Pm
t =
P3

τ = 0D
m
t�τ

� �
, in Panel A, and

equals each of the three drivers of pm �dmð Þt in Panel B: zm
t , xt , and σt . rmtþi � r itþi�1 is the excess logmarket return for the year

ending at time t þ i . Results are reported for the data and the four model cases: LW, Base, Wedge, and LRR-Vol. The data are
annual, spanning 1890–2016. The log consumption-market dividend ratio at t for annual data is used to measure zm

t in the
data. Results are reported for return horizons Hð Þ of 1 year and 10 years for the data and the models. Newey–West t -statistics
are reported for a lag length of H�1ð Þ and the maximum-likelihood-optimal lag length. AdjR2 is the adjusted regression
R2.

Horizon
H (Years) Data t-Stat (NW) LW Base Wedge LRR-Vol LW Base Wedge LRR-Vol LRR-Vol

Lags

H�1 MLE-Opt

Panel A

INFOt : pm �dmð Þt
β1 1 �0.24 �4.10 �3.92 �0.12 �0.01 �0.04 �0.06

10 �1.19 �3.67 �3.27 �0.68 �0.05 �0.14 �0.49

AdjR2 1 0.09 0.07 0.00 0.01 0.03
10 0.27 0.30 0.00 0.02 0.27

Panel B

INFOt : zm
t x t σt

β1 1 2.82 1.27 1.26 �0.61 0.63 2.02 1.01 0.12 0.10 0.14 0.10 0.09
10 22.35 2.17 2.20 �4.18 �0.73 �1.08 �2.45 0.67 0.09 0.14 0.09 0.78

AdjR2 1 0.01 0.00 0.00 0.01 0.00 0.10 0.04 0.18 0.06 0.04
10 0.08 0.00 0.00 0.00 0.00 0.43 0.00 0.04 0.01 0.33

8Lettau and Ludvigson (2005) show that if consumption growth follows a random walk, then the
consumption-market dividend ratio, when stationary, is a linear transformation of zmt . We prove in the
Supplementary Material that the same result holds in our model. We demean the consumption-market
dividend ratio and endow it with the standard deviation of zmt as in LW.
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xt, and conditional mean log quarterly consumption growth, zmt . Panel B of Table 4
shows that the ability of pm�dmð Þt in the LW case to forecast future log excess
market return is solely due to the predictive ability of xt: the predictive coefficients
for xt are positive for both future return horizons, and their magnitude, as well as that
of the adjusted R2s, increase going from the 1- to the 10-year horizon, with the latter
topping out at 0.43 for the 10-year horizon. In contrast, the adjusted R2 for xt in the
Base case declines from 0.04 to 0.00 going from the 1- to the 10-year return horizon,
because the persistence of the x process is much smaller for the Base than the LW
case by construction. When zmt is used as the predictor, the adjusted R2s at both
horizons are indistinguishable from 0 for both the LW and Base cases.

Turning to Panel A of Table 5, both the LW and Base cases do a poor job of
reproducing the lack of predictability of 1- and 10-year log dividend growth found
in the data using the log market price–dividend ratio, especially for a future return
horizon of 10 years: the adjusted R2 is 0.00 for the data and at least 0.09 for both
cases. All the cases considered (LW and Base, as well as Wedge and LRR-Vol)
calibrate the joint process for logmarket dividend and zm in exactly the sameway as
LW. Consequently, when forecasting 1- or 10-year log dividend growth using zm

for the cases in Panel B of Table 5, all the cases considered here replicate LW’s
ability to roughly match the predictive coefficients and R2s of the regressions found
in the data when log annual consumption-market dividend ratio at time t is used as a
proxy for zm.

TABLE 5

Predictive Regressions for Future Changes in Log Market Dividend: Data and Model

Table 5 reports results for the following regression:

XH
i = 1

Δdm
tþi = β0 þβ1INFOt þ εtþH ,

where INFOt equals the log annual market price–dividend ratio at time t , pm �dmð Þt � log Pm
t =
P3

τ = 0D
m
t�τ

� �
, in Panel A, and

equals each of the three drivers of pm �dmð Þt in Panel B: zm
t , xt , and σt . Δdm

tþi is the change in the log annual market dividend
for the year ending at time t þ i . Results are reported for the data and the four model cases: LW, Base, Wedge, and LRR-Vol.
The data are annual, spanning 1890–2016. The log consumption-market dividend ratio at t for annual data is used tomeasure
zm
t in the data. Results are reported for dividend-change horizons Hð Þ of 1 year and 10 years for the data and the models.

Newey–West t -statistics are reported for a lag length of H�1ð Þ and the maximum-likelihood-optimal lag length. AdjR2 is the
adjusted regression R2.

Horizon
H (Years) Data t -Stat (NW) LW Base Wedge LRR-Vol LW Base Wedge LRR-Vol LRR-Vol

Lags

H�1 MLE-opt

Panel A

INFOt : pm �dmð Þt
β1 1 0.01 0.24 0.24 0.04 0.10 0.09 0.03

10 �0.08 �0.59 �0.58 0.30 0.69 0.64 0.19

AdjR2 1 �0.01 0.02 0.05 0.04 0.01
10 0.00 0.09 0.20 0.18 0.05

Panel B

INFOt : zm
t x t σt

β1 1 4.58 2.76 3.23 3.64 3.64 3.64 3.64 0.00 0.05 0.02 0.03 0.00
10 23.48 3.98 3.60 24.70 24.70 24.70 24.70 0.00 0.32 0.16 0.18 0.00

AdjR2 1 0.06 0.06 0.06 0.06 0.06 0.00 0.01 0.01 0.01 0.00
10 0.34 0.23 0.23 0.23 0.23 0.00 0.03 0.03 0.03 0.00
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3. Value Versus Growth Portfolios

Table 6 reports results for the extreme growth decile (portfolio 1), the extreme
value decile (portfolio 10), and the portfolio long portfolio 10 and short portfolio
1 (10M1 portfolio). Panel A reports expected excess return, the volatility of excess
return, and the unconditional Sharpe ratio. Panel B reports CAPM alpha, beta, and
adjusted regression R2. Panel C reports alpha, beta (the slope on the market factor),
gamma (the slope on the HML factor), and adjusted regression R2 from a 2-factor
regression. Data are from Ken French’s website and span 1952–2016. The HML
factor is long value deciles 8–10 (H) and short growth deciles 1–3 (L) in themodels,
and is the Fama–French HML factor in the data. The first three columns report
results for the data: deciles formed by sorting on earnings over market price (E=P),

TABLE 6

Value vs. Growth Portfolios: Data and Model

Table 6 reports results for the extreme growth decile (portfolio 1), the extreme value decile (portfolio 10), and the portfolio long
portfolio 10 and short portfolio 1 (10 M1 portfolio). Panel A reports expected excess return, the volatility of excess return, and
the unconditional Sharpe ratio. Panel B reports CAPM alpha, beta, and adjusted regression R2. Panel C reports alpha, beta
(the slope on themarket factor), gamma (the slope on the HML factor), and adjusted regressionR2 from a 2-factor regression.
Data are from Ken French’s website and span 1952–2016. The HML factor is long value deciles 8–10 (H) and short growth
deciles 1–3 (L) in themodels, and is the Fama–FrenchHML factor in the data. The first three columns report results for thedata:
deciles formed by sorting on earnings overmarket price (E=P), cash flow overmarket price (C=P), and book value overmarket
price (B=M). The remaining columns report results for the four model cases: LW, Base, Wedge, and LRR-Vol. For the models,
we sort the 200 firms into deciles at the start of each year from value to growth based on their annual price–dividend ratios,
which are given by P i

t =
P3

τ = 0D
i
t�τ for firm i . Returns are quarterly, but the results are annualized by multiplying the expected

excess return and alphas by 4, the volatility of the excess return by
ffiffiffi
4

p
, and the Sharpe ratio by 4=

ffiffiffi
4

p
.

Portfolio E/P C/P B/M LW Base Wedge LRR-Vol

Panel A:Ri �Rf

E Ri �Rf
h i

1 6.25 6.01 6.14 5.27 3.38 3.24 3.88
10 12.30 12.11 11.30 10.79 5.29 7.07 8.24
10 M1 6.05 6.10 5.15 5.51 1.91 3.83 4.36

σ Ri �Rf
h i

1 20.80 20.31 18.99 19.53 9.90 10.51 16.16
10 20.29 19.33 23.20 17.65 11.47 15.73 16.51
10 M1 15.17 14.80 18.16 8.82 4.46 8.25 8.58

SHARPE i 1 0.30 0.30 0.32 0.27 0.34 0.31 0.24
10 0.61 0.63 0.49 0.61 0.46 0.45 0.50
10 M1 0.40 0.41 0.28 0.63 0.43 0.46 0.51

Panel B:Ri �Rf = αi þβi ðRm �Rf Þþ εi

αi 1 �2.60 �2.68 �2.01 �2.72 �0.66 �0.82 �2.43
10 4.23 4.53 2.66 3.71 0.54 0.48 1.58
10 M1 6.83 7.20 4.67 6.43 1.20 1.30 4.01

βi 1 1.18 1.16 1.09 0.99 0.90 0.66 0.93
10 1.08 1.01 1.15 0.87 1.06 1.07 0.98
10 M1 �0.11 �0.15 0.06 �0.11 0.16 0.41 0.05

AdjR2
i 1 0.86 0.86 0.87 0.96 0.95 0.84 0.90

10 0.75 0.73 0.65 0.92 0.97 0.99 0.96
10 M1 0.01 0.03 0.00 0.06 0.14 0.53 0.01

Panel C: Ri �Rf = αi þβi ðRm �Rf Þþ γi R
HML þ εi

αi 1 �0.96 �0.98 �0.32 0.06 0.00 0.19 0.00
10 2.27 2.75 �1.15 0.06 0.00 0.09 �0.01
10 M1 3.23 3.73 �0.83 0.00 0.00 �0.10 �0.01

βi 1 1.14 1.12 1.05 0.93 0.99 0.95 0.96
10 1.13 1.06 1.25 0.95 0.99 0.95 0.96
10 M1 �0.01 �0.06 0.21 0.02 0.00 0.00 0.00

γi 1 �0.37 �0.38 �0.38 �0.18 �0.23 �0.29 �0.24
10 0.44 0.40 0.85 0.23 0.18 0.11 0.16
10 M1 0.81 0.78 1.23 0.41 0.42 0.40 0.40

AdjR2
i 1 0.90 0.91 0.92 1.00 1.00 0.99 1.00

10 0.81 0.78 0.84 1.00 1.00 1.00 1.00
10 M1 0.40 0.40 0.62 1.00 1.00 1.00 1.00
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cash flow over market price (C=P), and book value over market price (B=M). The
remaining columns report results for the four model cases: returns are quarterly, but
the results are annualized.

Table 6 shows that the Base case can generate a positive value premium in both
expected excess return and CAPM alpha, though the magnitudes of the two are less
than those found in the data or delivered by the LW case. In the data, using B=M to
sort stocks into deciles, the expected excess return spread between the value and the
growth portfolio is 5.15% versus the 1.91% per annum delivered by the Base case.
Similarly, the CAPM-alpha spread for these two extreme B=Mdeciles is 4.67% per
annum in the data, but only 1.20% per annum in the Base case. Moreover, both the
B=M deciles and the Base case deliver a CAPM-alpha spread between the extreme
value and the growth deciles that is smaller than the expected excess return spread,
while the converse is true for the E=P and C=P deciles and the LW case. The reason
is that the CAPM beta for the extreme value decile is higher than for the extreme
growth decile for the B=M deciles and the Base case, while the converse is true for
the E=P and C=P deciles and the LW case, as the rows labeled βi in Panel B of
Table 6 show.

In Panel A of Table 6, return volatility relative to the data is in the same ballpark
for the LW case but much smaller for the Base case with respect to the extreme
deciles, and is much smaller for both the LW and Base cases with respect to the
10 M1 portfolio. These results suggest that the returns on the extreme deciles are
much more correlated for the two model cases than for the data, which is not
surprising given that the market dividend shares received by the firms in the model
are deterministic. Both the LW and Base cases do a good job matching the Sharpe
ratio for the extreme growth decile in the data, while theLWcase does a better job for
the extreme value decile, and the Base case does a much better job for the 10 M1
portfolio.

Turning to the results of the 2-factor pricing model in Panel C of Table 6, both
the LWandBase cases produce counterfactual results: αs that are close to or equal to
0, and adjusted R2s that are indistinguishable from 1, for both extreme deciles and
the 10M1 portfolio. In contrast, sorting on E=P andC=P in the data produces αs that
are negative for the extreme growth decile and positive for the extreme value
portfolio, while sorting on any of the three measures produces adjusted R2s that
are no more than 0.92 for the extreme growth decile, 0.84 for the extreme value
decile, and 0.62 for the 10 M1 portfolio. Consistent with the data, the LWand Base
cases both produce 2-factor βs that are close to 1 for the extreme deciles and close to
or equal to 0 for the 10M1 portfolio, and 2-factor γs that are negative for the extreme
growth decile and positive for the extreme value decile, though the 2-factor γs in the
data are much larger in magnitude than for the LW or Base cases.

B. Intuition for the Base Case Results

This subsection provides intuition for the Base case results described in
Section IV.A.

1. How the Base Case Delivers a Value Premium

One of the main messages of Section IV.A is that the Base case can deliver
a value premium both in expected excess return and CAPM alpha. To better
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understand why the Base case delivers a value premium in expected excess return
despite a conditional correlation between consumption growth and the price of
risk that is close to �1, we now turn our attention to the market-dividend strips
described in Section II. Figure 1 plots the unconditional risk premium, the
unconditional return volatility, and the unconditional Sharpe ratio, all for quar-
terly returns, in Graph A, Graph B, and Graph C, respectively, for the market
portfolio as points on the left-hand side of the graphs, and for market-dividend
strips, as a function of maturity, on the right-hand side of the graphs. In each
graph, the solid line is the LW case, the dashed line is the Base case, the dotted line
is theWedge case, and the dot-dashed line is the LRR-Vol case. The risk premium,
volatility, and Sharpe ratio are all annualized.

It is worth noting that the excess return on the market portfolio is a weighted
average of the excess returns on the market-dividend strips, where all the weights

FIGURE 1

Returns on Market and Market-Dividend Strips: Model

Figure 1 plots the unconditional expected excess return (risk premium), the unconditional excess return volatility, and the
unconditional Sharpe ratio, all for quarterly returns, inGraphA,GraphB, andGraphC, respectively, formarket-dividend strips
as a function of maturity. The points to the left of each of the graphs represent values for the market portfolio. For each graph,
the circle to the left and the solid line are for the LW case, the triangle to the left and the dashed line are for the Base case, the
plus to the left and thedotted line are for theWedgecase, and the cross to the left anddot-dashed line are for the LRR-Vol case.
The risk premium, volatility, and Sharpe ratio are annualized by multiplying by 4,

ffiffiffi
4

p
, and 4=

ffiffiffi
4

p
, respectively.
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are positive. Further, the firms in the extreme value decile receive fractions of the
market dividend that are relatively larger in the near future than in the far future. The
converse is true for the firms in the extreme growth decile. Graph A of Figure 1
shows that in the LW case, the expected excess return on the market-dividend strip
is declining in the claim’s maturity, which explains why this case delivers a value
premium in expected excess return. For the Base case, it is hump-shaped as a
function of maturity, but the hump occurs at a sufficiently short maturity to still
deliver a value premium in expected excess return. Graph B shows that excess
return volatility is lower for the Base than the LW case for strip maturities longer
than about 3 years, and is hump-shaped in both cases, though the hump occursmuch
earlier for the Base case. Graph C shows that the Sharpe ratio declines monoton-
ically for both cases, though the relation is strongly convex for the LWcase at all but
the very shortest maturities, and concave at maturities out to about 20 years for the
Base case.

The expression for the log risk premium onmarket-dividend strips in equation
(13) simplifies to the following expression in the LW, Base, and Wedge cases by
setting εwtþ1 = 0 and σ = 1:

log Et
Rm
n,tþ1

Rf
t

" # !
=Et rmn,tþ1� rft

h i
þ1

2
σ2t rmn,tþ1

h i
= δmσ2d þσd,uþBx n�1ð Þσx,d þBz n�1ð Þσz,d
� � 1

σd
xt:

(21)

Using equation (21), the shapes of Bz nð Þ and Bx nð Þ as functions of n can be
used to better understand the relation between the expected excess return on a
market-dividend strip and its maturity plotted in Graph A of Figure 1. Figure 2 plots

FIGURE 2

Market-Dividend Strips Log Price–Dividend Ratio Coefficients Bz nð Þ and Bx nð Þ: Model

Figure 2 plots Bz nð Þ 1�ϕzð Þ and Bx nð Þ in Graph A and Graph B, respectively, for market-dividend strips with n quarters to
maturity, as a function of n=4 (maturity in years). In each graph, the solid line is the LW case, the dashed line is the Base case,
the dotted line is the Wedge case, and the dot-dashed line is the LRR-Vol case. For all four cases, Bz nð Þ and Bx nð Þ are,
respectively, the coefficient on zm and the coefficient on x in equation (11) of Section II for thequarterly logprice–dividend ratio
for the market-dividend strip paying out in n quarters. Bz nð Þ is multiplied by 1�ϕzð Þ.
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Bz nð Þ 1�ϕzð Þ andBx nð Þ in Graphs A andB, respectively, formarket-dividend strips
with n quarters to maturity, as a function of n=4 (maturity in years). In each graph,
the solid line is for the LW case and the dashed line is for the Base case. Bz nð Þ and
Bx nð Þ are, respectively, the coefficient on zm and the coefficient on x in equation (11)
for the price–dividend ratio of market-dividend strips paying out in n quarters.

As an expression for log Et Rm
n,tþ1=R

f
t

h i� �
, the right-hand side of equation (21)

is likely to be highly correlated with log Et Rm
n,tþ1�Rf

t

h i� �
, and so can be used to

understand how the unconditional expected excess return on a market-dividend

strip
�
E Rm

n,tþ1�Rf
t

h i�
varies with maturity, by evaluating it at the unconditional

mean for x, x, which is positive. Because the zm process is the same for all four cases,
Bz nð Þ is also the same for all four cases. Figure 2 shows thatBz nð Þ is always positive
and increasing in n, and Table 1 shows that ρd,z is negative and the same value for
all four cases. So using equation (21), the conditional risk premium evaluated at x
is declining in n whenever the covariance between shocks to x and d is assumed to

be 0. Since ρx,d is 0 in the LW case, it follows that Et Rm
n,tþ1�Rf

t

h i
is decreasing in n

as reported in Figure 1. Hence, the LW case delivers a value premium in expected
excess return as reported in Table 6 because value stocks have shorter cash flow
durations than growth stocks.

Figure 3 illustrates how, for the LWcase, the shape of log Et Rm
n,tþ1=R

f
t

h i� �
as a

function of maturity depends on the shape of Bz nð Þσz,d . Graphs A–D of Figure 3
show the decomposition of equation (12), the log risk premium onmarket-dividend
strips as a function of maturity, n. The equation is evaluated at xt,σtð Þ= x,σð Þ for all
cases, and each graph contains the decomposition for one case (see the graph label).
In each graph, the solid “Total” line represents the total log risk premium, while the
dashed “Constant” line represents the part which is constant in n. The three lines,
dotted “Bx,” dot-dashed “Bz,” and long-dashed “Bσ ,” represent the contributions
from Bx nð Þ, Bz nð Þ, and Bσ nð Þ, respectively. The log risk premium is for quarterly
returns, as in equation (12), and there is no annualization. Graph A is for the LW
case and shows that the Bx nð Þ term in equation (21) is 0 for all n, while the shape of
the total log risk premium is completely driven by the shape of the Bz nð Þ term.

Since Bz nð Þ is positive for any n, a positive shock to ztþ1 causes a positive
shock to Pm

n,tþ1=D
m
tþ1 which causes a positive shock to Rm

n,tþ1. Taking ρd,z to be
negative as in all four model cases discussed in this article, this positive shock to
Rm
n,tþ1 is typically associated with a negative shock to dtþ1 which makes a market-

dividend strip a hedge against shocks to consumption. Consequently, when ρd,x = 0
as in the LW case,9 the strip’s conditional premium evaluated at x as a function of
n is flat for ρd,z = 0 and becomes more negatively sloped as ρd,z becomes more
negative, which implies a stronger contribution to a value premium. Fixing ρd,z
and increasing ϕz causes Bz nð Þ to be higher for all n and since Bz nð Þ is increasing in
n for any given ϕz, the strip’s conditional premium evaluated at x as a function of
n becomes more negatively sloped as ϕz increases,

10 which also implies a stronger

9Note that when ρd,x = 0, the strip’s conditional premium evaluated at x is always the same for a
maturity n= 1 irrespective of ϕz or ρd,z.

10Note that Bz 1ð Þ is the same irrespective of ϕz.
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contribution to a value premium. This analysis suggests that a less negative ρd,z or a
lower ϕz, holding all else equal, makes it more difficult to obtain a value premium.

When the covariance between shocks to x and d is negative, its effect on the
conditional risk premia for n-periodmarket-dividend strips depends on the sign and
magnitude of Bx nð Þ. If Bx nð Þ is negative, which Figure 2 shows is so for all four
model cases, and the correlation between shocks to x and d is close to�1 as the CC
external habit model implies, the conditional risk premium for n-period market-
dividend strips increases in the absolute value of Bx nð Þ for all n. Moreover, the

FIGURE 3

Decomposition of Market-Dividend Strip Log Risk Premium: Model

Graphs A–D in Figure 3 show the decomposition of equation (12), the log risk premiumonmarket-dividend strips, as a function
of maturity, n. The equation is evaluated at xt ,σtð Þ = x ,σð Þ for all cases (LW, Base, Wedge, and LRR-Vol), and each graph
contains the decomposition for one case (see the graph title). In each graph, the solid “Total” line represents the total log risk
premium, while the short-dashed “Constant” line represents the part which is constant in n. The three lines, dotted “Bx,” dot-
dashed “Bz,” and long-dashed “Bσ ,” represent the contributions from Bx nð Þ, Bz nð Þ, and Bσ nð Þ, respectively. The log risk
premium is for quarterly returns, as in equation (12), and there is no annualization.

Graph C. Wedge Case

0 10 20 30 40

Maturity (years)

L
o

g
 R

is
k
 P

re
m

iu
m Wedge

0
0
.0

4 Total Constant Bx Bz

Graph B. Base Case

0 10 20 30 40

Maturity (years)

L
o

g
 R

is
k
 P

re
m

iu
m Base

0
0
.0

4 Total Constant Bx Bz

Graph A. LW Case

0 10 20 30 40

Maturity (years)

L
o

g
 R

is
k
 P

re
m

iu
m LW

0
0
.0

4

Total Constant Bx Bz

Graph D. LRR-Vol Case

0 10 20 30 40

Maturity (years)

L
o

g
 R

is
k
 P

re
m

iu
m LRR−Vol

0
0
.0

4

Total Constant Bx Bz Bσ

Lynch and Randall 3175

https://doi.org/10.1017/S0022109023000212 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109023000212


relation between the conditional risk premia for the n-period market-dividend strip
and itsmaturity n depends on howBx nð Þσx,d, which is positive, andBz nð Þσz,d , which
is negative, vary with n. We have already seen that Bz nð Þσz,d is decreasing in
maturity. Whether there is still a value premium when the correlation between
shocks to x and d is close to �1 depends on how Bx nð Þσx,d varies with n. When
the persistence of x is high, a shock to x today impacts the value of x for many
quarters in the future. Consequently, the absolute value of Bx nð Þ increases mono-
tonically for many quarters into the future, which causes a growth premium rather
than a value premium. However, when the persistence of x is low, a shock to x today
only affects the value of x for a few quarters into the future. Consequently, the
absolute value of Bx nð Þ increases monotonically for only a few quarters into the
future before starting to decline. If the persistence of x is sufficiently low, this
turning point can be sufficiently early that there is still a value premium in expected
excess return.

In the Base case, the persistence of x is sufficiently low that this intuition
causes negative-valued Bx nð Þ to have an inverted hump shape as shown in Figure 2.
Consequently,Bx n�1ð Þσx,d in equation (21) evaluated at x is hump-shaped, and the
implication is that Et Rm

n,tþ1�Rf
t

h i
can be hump-shaped, as reported in Figure 1.

Hence, the low persistence of the price of risk variable x is able to deliver a value
premium in expected excess return in the Base case as reported in Table 6, despite
a CC-habit conditional correlation between x and d of close to �1. Graph B
of Figure 3 is for the Base case and shows that the hump-shape as a function of
maturity for the total log risk premium on market-dividend strips is indeed being
driven by the Bx nð Þ term in equation (21) being hump-shaped as a function of
maturity nwith an early turning point, around 3 years, consistent with our intuition.

2. Trade-Off Between Value Premium and Market Return Predictability in Models
Without Long-Run Risk in Volatility

The other main message of Section IV.A is that the Base case is unable to
deliver the ability of the logmarket price–dividend ratio to predict future logmarket
excess returns that is found in the data. The reason is the assumed low persistence of
the price of risk variable x in the Base case. Equation (21) shows that in the LWand
Base cases, the time-series variation in the log risk premia for market-dividend
strips is driven by time-series variation in x. Since the market is a portfolio of the
market-dividend strips, it follows that the time-series variation in the log risk
premium for the market is also driven by time-series variation in x, and so the level
of predictability of future excess market returns using today’s information depends
on ϕx, the persistence of x. Because ϕx is low in the Base case by construction, it
follows that the log market price–dividend ratio must have little predictive ability
for future excess market returns.

But it is precisely the low persistence of the price of risk variable x that allows
theBase case to deliver a value premiumdespite a ρd,x, the conditional correlation of
d with x, of �0.99. LW argue that when ρd,x = �0:99 and ϕx is high, as in the CC
habit model, the economy produces a growth premium rather than a value premium.
Moreover, LW set ϕx high, which delivers market return predictability, but then are
forced to set ρd,x = 0 to obtain a value premium. For this reason, it is interesting to
analyze the trade-off between the value premium andmarket return predictability as
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a function of ϕx for various values of ρd,x. The trade-off for values of ρd,x between
�1 and 0 is also of interest because some recent pricing models allow ρd,x to lie in
this range (e.g., the external habit model of Bekaert, Engstrom, and Grenadier
(2010)).

To this end, Figure 4 shows how the value premium in annual raw return, and
the predictability of the market excess log return using the market portfolio’s log
price–dividend ratio, vary with ϕx and ρd,x. The trade-off likely depends on the
values of ϕz and ρd,z, since the analysis in Section IV.B.1. indicates that a less
negative ρd,z or a lower ϕz, holding all else equal, makes it more difficult to obtain a
value premium. Consequently, Figure 4 looks at the trade-off for various values of
these two parameters in the LW model. The measure of log return predictability is
taken to be the regression R2 at a 10-year horizon. The value premium and
price–dividend ratio are both annual. The benchmark at the top sets ϕz = 0:91,
and ρd,z = �0:82, as in the LW case. Graphs B and D, and then C and E, show
how the results vary as ϕz declines and ρd,z becomes less negative, respectively. On
each graph there are five lines, showing how the results vary with ρd,x.

11 The points
marked on each line show the ϕx values for which the adjusted R2 = 0:30, the LW
value. For lower ϕx values, the R

2 is lower than the LW value; for higher ϕx values,
it is higher. The thick-line ρd,x value is the cutoff ρd,x value such that the value
premium equals 0 at the ϕx value that delivers R

2 = 0:30. So for any ρd,x value that is
more negative than this critical ρd,x value, there is no ϕx value such that the value
premium is positive and R2 = 0:30. The closer to 0 is this critical ρd,x value for a
given ϕz and ρd,z pair, the more difficult it is to get a value premium when the
adjusted R2 needs to be 0.30.

Graph A of Figure 4 shows a cutoff ρd,x of �0.4455 for the cases in which
ϕz = 0:91, and ρd,z = �0:82 as in the LW case: at this cutoff ρd,x, a persistence
parameter for x of 0.49 annualized delivers an adjusted R2 of 0.30 and a value
premium of 0. For any ρd,x more negative than this cutoff, there does not exist a ϕx
value that delivers an adjusted R2 of at least 0.30 that is also able to deliver a value
premium. In contrast, for the LW value for ρd,x of 0, the cutoff ϕx value at which the
adjusted R2 is 0.30 is the LW value of 0.87, which delivers a large positive value
premium as reported in Table 6.

Going fromGraph A to B to D of Figure 4, ϕz declines from 0.91 in Graph A to
0.455 in Graph B to 0 in GraphD, andwe see a correspondingmove toward 0 by the
cutoff ρd,x from �0.4455 to �0.15 to �0.04, which implies that, as ϕz declines, it
becomes more difficult to get a value premium when the adjusted R2 needs to be
0.30. Going fromGraph A to C to E, ρd,z moves from�0.82 in Graph A to�0.41 in
Graph B to 0 in Graph E, and we see a corresponding move toward 0 by
the cutoff ρd,x from �0.4455 to �0.22 to �0.03, which implies that, as ρd,z
becomes less negative, it becomes more difficult to get a value premium when
the adjusted R2 needs to be 0.30. These two findings are consistent with the analysis
in Section IV.B.1 that suggests that a less negative ρd,z or a lower ϕz, holding all else
equal, makes it more difficult to obtain a value premium.

11σx and σz are adjusted to keep the unconditional variances of x and z constant across all cases
plotted.
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C. Wedge Case

This subsection discusses the results for the Wedge case, comparing them to
those for the LW and Base cases and the data. While the Base case takes the

FIGURE 4

Value Premium and Log Return Predictability as a Function of ϕx and ρd,x: Model

Figure 4 showshow (1) the value premium, and (2) the predictability of the logmarket excess return using themarket portfolio’s
annual log price–dividend ratio, varywith ϕx and ρd ,x for different ϕz and ρd ,z values in the LWmodel. Themeasure of log return
predictability is the adjusted regression R2 at a 10-year horizon. The value premium is the average annual return differential
between the valueand thegrowthdeciles. Thebenchmark at the top is the LWcase,where ϕz = 0:91, and ρd ,z = �0:82. The left
and right columns of graphs show how the results vary with ϕz and ρd ,z , respectively. On each graph there are five lines,
showing how the results varywith ρd ,x . σx and σz were adjusted to keep the unconditional variances of x and z constant across
the cases. The points marked on each line show the ϕx values where R2 = 0:30, the LW value. For lower ϕx values, the R2 is
lower than the LW value; for higher ϕx values, it is higher. The thick-line ρd ,x value is the ρd ,x value such that the value premium
equals 0 at the ϕx value that deliversR

2 =0:30. So for any ρd ,x value (i.e., more negative than this thick-line ρd,x value), there is
no ϕx value such that the value premium is positive and R2 is at least 0.30.

Graph A. ϕz = 0.91 and ρd,z = −0.82 (LW Case)

0.87
0.65

0.49

0.27

0.12

–35

–30

–25

–20

–15

–10

–5

0

5

10

15

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

V
a
lu

e
 P

re
m

iu
m

 (
a
n

n
u

a
l 
%

)

ϕz = 0.91 and ρd,z = −0.82LW:

ρ
d,x

 = 0

ρ
d,x

 = −0.25

ρ
d,x

 = −0.4455

ρ
d,x

 = −0.75

ρ
d,x

 = −0.99

ϕx (annual)

Graph B. ϕz = 0.455 and ρd,z = −0.82 Graph C. ϕz = 0.91 and ρd,z = −0.41

ϕz = 0.91 and ρd,z = −0.41ϕz = 0.455 and ρd,z = −0.82

0.68
0.62

0.45

0.25
0.11

–30

–25

–20

–15

–10

–5

0

5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

V
a
lu

e
 P

re
m

iu
m

 (
a
n

n
u

a
l 
%

)

0.76
0.64

0.49

0.29
0.14

–35

–30

–25

–20

–15

–10

–5

0

5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

V
a
lu

e
 P

re
m

iu
m

 (
a
n

n
u

a
l 
%

)

ϕx (annual) ϕx (annual)

ρ
d,x

 = 0

ρ
d,x

 = −0.15

ρ
d,x

 = −0.4455

ρ
d,x

 = −0.75

ρ
d,x

 = −0.99

ρ
d,x

 = 0

ρ
d,x

 = −0.22

ρ
d,x

 = −0.4455

ρ
d,x

 = −0.75

ρ
d,x

 = −0.99

Graph D. ϕz = 0 and ρd,z = −0.82 Graph E. ϕz = 0.91 and ρd,z = 0

ϕz = 0 and ρd,z = −0.82 ϕz = 0.91 and ρd,z = 0

0.66

0.56

0.44

0.25
0.12

–35

–30

–25

–20

–15

–10

–5

0

5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

V
a
lu

e
 P

re
m

iu
m

 (
a
n

n
u

a
l 
%

)

ϕx (annual) ϕx (annual)

0.72

0.61

0.49

0.29

–55

–45

–35

–25

–15

–5

5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

V
a
lu

e
 P

re
m

iu
m

 (
a
n

n
u

a
l 
%

)

ρ
d,x

 = –0.03

ρ
d,x

 = −0.25

ρ
d,x

 = −0.4455

ρ
d,x

 = −0.75

ρ
d,x

 = −0.99

ρ
d,x

 = –0.04

ρ
d,x

 = −0.25

ρ
d,x

 = −0.4455

ρ
d,x

 = −0.75

ρ
d,x

 = −0.99

3178 Journal of Financial and Quantitative Analysis

https://doi.org/10.1017/S0022109023000212 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109023000212


consumption process to be the market dividend process, the Wedge case instead
calibrates its consumption process to aggregate consumption data. By allowing the
process for consumption to differ from that for the market dividend, theWedge case
does a better job than the Base or LW cases matching the data value for the expected
excess market return, and is able to deliver an excess market return volatility that is
much closer to the data value than the very low value obtained by the Base case,
though still not as close as the value delivered by the LW case: Table 3 shows that
the volatility increases from 10.69 to 14.69 to 19.41 going from the Base case to the
Wedge case to the data. The magnitude of the Bx function and the unconditional
volatility of the price-of-risk variable x both increase going from the Base to the
Wedge case, which causes the autocorrelation of the log market price–dividend
ratio to decline, using equation (11), the low persistence of x relative to that of zm for
both cases, and the reasoning given for the high autocorrelation in the Base case.
Given that the volatility of the log market price–dividend ratio is unchanged going
from the Base to theWedge case (see Table 3), equation (15) and log-linearizations
show that a key driver of the higher log excess market return volatility in theWedge
case is this lower autocorrelation of the log market price–dividend ratio (see the
appendices for details). Table 3 also shows that the Wedge case does a poorer job
than the Base case matching the positive autocorrelation of the excess annual
market return found in the data, delivering a value that is even more negative than
the value obtained for the Base case.

Turning to the predictability results for future market excess log return and
future changes in log market dividend in Tables 4 and 5, respectively, all the results
for the Wedge case are qualitatively similar to those for the Base case. So just like
the Base case, the Wedge case is also unable to generate the predictability of the
future market excess log return found in the data, particularly at long horizons,
using the log market price–dividend ratio. Focusing on the 10 M1 portfolio (which
is long the extreme value decile and short the extreme growth decile), Table 6 shows
that, as compared to the Base case, theWedge case does a better job of matching the
data unconditional mean and volatility of excess quarterly return, but does a similar
job of matching the data Sharpe ratio for quarterly return and the value premium in
CAPM alpha found in the data. The Wedge case’s volatility of excess quarterly
return for the 10M1 portfolio is larger than that for the Base case, but comparable to
that for the LW case, which means that it is lower than in the data.

In summary, theWedge case shows that allowing a wedge between the market
dividend and consumption processes as in the data helps generate return volatility
for the market and the 10 M1 portfolio that is closer to the data, without destroying
the value premium in CAPM alpha obtained in the Base case. However, the wedge
does not remedy the inability of the logmarket price–dividend ratio to predict future
market excess log returns in the Base case.

D. LRR-Vol Case

This subsection discusses the results for the LRR-Vol case and compares them
to the results from the data and for the LW, Base, andWedge cases. Like theWedge
case, the LRR-Vol case allows the consumption process to differ from the market
dividend process. But unlike theWedge case, the LRR-Vol case allows the volatility
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as well as the mean of consumption growth to be slowly mean-reverting and
calibrated to the data.

1. Aggregate Moments

Table 3 shows that, by allowing the consumption process to have a different
generating process from the market dividend, both the Wedge and LRR-Vol cases
do a better job on the mean, but a poorer job on the volatility, of the excess market
return than the LW case: both generate lower volatility than in the data, with the
value for LRR-Vol case closer to the data value. While the Base and Wedge cases
severely understate the volatility of the market price–dividend ratio, the LRR-Vol
case has the opposite problem, producing a volatility of 0.480 that is much higher
than the data value of 0.38. This occurs, despite theBx function and σx being smaller
in magnitude for the LRR-Vol case than theWedge case, because the volatility of σt
in the LRR-Vol case generates volatility in both the log market price–dividend ratio
and the excess market return in Table 3, as equations (11) and (15) and some log-
linearizations show.

While the autocorrelation of the excess log annual market return is a problem
for the Wedge case, �0.27 versus 0.03 in the data, its value in the LRR-Vol case
decreases in magnitude to�0.10 which is much closer to the data value. However,
the higher excess log annual market return volatility in the LRR-Vol case can only
explain about 34% of this decline in magnitude; the remainder is due to a reduction
in the magnitude of the autocovariance. The volatility of σt in the LRR-Vol case is
also a key driver of this reduction, as equations (11) and (15) and some log-
linearizations show.

As would be expected given the high persistence of the σt process, equation
(11), and the reasoning provided for the Base case, the autocorrelation of the
price–dividend ratio is higher than in the Base and Wedge cases, taking a value
that is even higher than the data value. In summary, the LRR-Vol case does a
comparable job to LWand a better job than the Base and Wedge cases of matching
the aggregate moments reported in Table 3.

2. Predictive Regressions

Tables 4 and 5 report predictive regression results and the last column of each
reports results for the LRR-Vol case. Table 4 shows that the LRR-Vol case remedies
the most glaring weakness of the Base and Wedge cases, namely their inability to
generate the excess market log return predictability observed in the data using the
log market price–dividend ratio. The LRR-Vol case is able to produce much more
negative predictability coefficients and much larger R2s for these regressions than
those cases. For the 10 year return horizon regression, Panel A of Table 4 reports
that the R2 is 0.27 for the data and the LRR-Vol case, but only 0.02 or less for these
other cases. The implication is that allowing consumption growth to have volatility
that is slowlymean-reverting can help external habit models with fast-moving habit
to generate the return predictability in the data.

Panel B of Table 4 makes it clear that the log market price–dividend ratio’s
predictive ability for future market excess log return is being driven by the persis-
tence in the σt process. Of the drivers of themarket price–dividend ratio, virtually all
the predictive ability for future market excess return is coming from σt: the adjusted
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R2 for the 10-year return horizon regression is 0.33 for σt, but is counterfactually
0 for zmt as for the other three cases, and only 0.01 for xt.

Equation (13) shows that time-series variation in the time-t log risk premia on
market-dividend strips, and hence in the time-t market log risk premium, is driven
by variation in xt and σt in the LRR-Volmodel, but is totally driven by variation in xt
in the other three cases. Given the chosen parameters for xt and σt for the LRR-Vol
case, 88.7% of the time-series variation in the time-t log risk premia on market-
dividend strips is driven by time-series variation in xt, while only 11.3% is driven by
time-series variation in σt (see the appendix A for details). The reason that the LRR-
Vol case can generate similar 10-year market excess log return predictability to that
generated by the LW case despite σt driving such a small fraction of the variation in
the time-tmarket log risk premium is the higher persistence of σt relative to that of xt
in the LW case (0.994 vs. 0.964 using quarterly data).

Panel A of Table 5 shows that the predictability of future market dividend
growth using the log market price–dividend ratio is much reduced for the LRR-Vol
case as compared to the Base and Wedge cases, so much so that the R2s are lower
than for LWand closer to the data R2s which are indistinguishable from 0. Turning
to the drivers of log market price–dividend ratio in Panel B of Table 5, xt has similar
predictive ability as in the Base and Wedge cases: small, but nonzero. As to be
expected since cov zmt ,σt

 �
= 0, σt has no predictive ability for future log market

dividend growth. Using equation (11), this explainswhy, in Panel A, the adjustedR2

using log market price–dividend ratio as the predictive variable is considerably
lower than for the Base and Wedge cases.

3. Value Versus Growth Portfolios

The last column of Table 6 shows that the LRR-Vol case generates value
premia in both expected excess quarterly return and CAPM quarterly return alpha
that are higher than those obtained for the Base and Wedge cases, but still a little
lower than those for the LW case: the expected excess quarterly return spreads
between the extreme value and the extreme growth portfolio is 4.36% annualized
which is quite close to the data value of 5.15% annualized when sorting on B=M,
while the CAPM-alpha value spread is 4.01% annualized which is closer to the
4.67% annualized in the data for the B=Msort than the 6.43% annualized in the LW
case. Like the Base and Wedge cases, the LRR-Vol case delivers a CAPM-alpha
value spread that is smaller than the expected excess return value spread, which is
consistent with the results for the B=M data sort but not the other two data sorts.

Graph A of Figure 1 shows that the unconditional expected excess quarterly
return on the market-dividend strips for the LRR-Vol case is hump-shaped in
maturity with the hump occurring at a maturity less than 6 years, same as for the
Base and Wedge cases. This hump-shape delivers a value premium in expected
excess quarterly return for the same reason that the hump-shape for the Base and
Wedge cases also delivered such a premium: firms in the extreme value decile
receive fractions of the market dividend that are relatively larger in the near future
than in the far future while the converse is true for the firms in the extreme growth
decile. The unconditional expected excess quarterly return on the market-dividend
strips is hump-shaped in maturity because Bx nð Þ plotted in Figure 2 as a function of
strip maturity n is u-shaped for the LRR-Vol case just as it is for the Base andWedge
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cases, and this result is illustrated in Graph D of Figure 3. For all n in Figure 2, the
Bx nð Þ curve for the LRR-Vol case is smaller in magnitude than the Bx nð Þ curve for
the Wedge case, but x for the LRR-Vol case is higher than for the Wedge case.
Relative to the Wedge case, the lower ∣Bx nð Þ∣ curve lowers the dividend strip
expected excess return curve, while the higher x moves it up.

The shape of Bσ nð Þ does not matter for the value premium in expected excess
return, because the LRR-Vol case imposes ρd,w = 0, and equation (13) shows that
ρd,w = 0 means that Bσ nð Þ does not matter for unconditional mean excess market
returns. Graph D of Figure 3 confirms this, showing that the Bσ nð Þσd,w term in
equation (13) is 0 at all maturities for the LRR-Vol case.

The zero correlation between Δdt and σt explains why, for the LRR-Vol case,
the dividend strip expected excess return curve remains hump-shaped and is able to
deliver value premia in both expected excess quarterly return and CAPM quarterly
return alpha. So the role of the conditional consumption growth volatility process,
σt, in the LRR-Vol model is similar to that of xt in LW. In LW, the high persistence
of xt generates equity return predictability, while its zero conditional correlation
with log aggregate consumption growth, Δd, leaves unaffected the value premium
delivered by the conditional mean process for Δd assumed by LW. Similarly, the
high persistence of σt in the LRR-Vol case generates equity return predictability,
while its zero conditional correlation with Δd ensures that the value premium
delivered by our habit model with fast-moving habit and homoscedastic Δd is
not compromised.

LRR-Vol’s excess-return volatility numbers for the two extreme deciles and
the 10M1 portfolio, though lower than the data values, are higher than the numbers
produced by the Base and Wedge cases, and in the same ballpark as the numbers
produced by the LW case. Averaging the absolute Sharpe ratio errors relative to the
three data sorts, the LRR-Vol case does a poorer matching job relative to the LW
case for the extreme deciles, but a much better job for the 10 M1 portfolio.

As with the LW case, the adjustedR2 of the CAPMmarket model regression in
the LRR-Vol case is slightly higher than the data adjusted-R2 values for the growth
decile, but much larger than the data adjusted-R2 values for the value decile. While
the LW case produces an adjusted R2 for 10 M1 portfolio that is quite close to the
adjusted-R2 values for the three data sorts, the LRR-Vol case produces an even
closer value, one that is also much lower and closer to the data values than is
produced by theBase orWedge case. Turning to the 2-factor HML regressions, both
the LW and LRR-Vol cases do a disappointing job replicating the data along a
number of dimensions. While both cases, like the Base and Wedge cases, deliver a
2-factor alpha for the 10 M1 portfolio that is close to 0, this alpha is more than 3%
annualized for the data E=P and C=P sorts, and equal to �0.83% for the data B=M
sort. For the two extreme deciles and the 10 M1 portfolio, the magnitudes of the
HML γ coefficients are higher, and the adjustedR2s are lower, for all three data sorts
than for any of the cases, including LRR-Vol and LW.

4. Return Properties of Market-Dividend Strips

Recent empirical work by BBK examines the properties of short-horizon
returns on two portfolios of S&P 500-dividend strips with average maturities of
around 1 year. An interesting question is whether the LW case or any of our fast-
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moving habit cases can replicate the empirical properties that BBK document
for these strip portfolios. Table 7 shows the quarterly return performance of the
S&P 500 and BBK’s two portfolios of S&P 500-dividend strips over their data
period fromApr. 1996 to Sept. 2009. Strategy 1 is long a portfolio of short-maturity
S&P 500-dividend strips, while Strategy 2 is long a portfolio of dividend steep-
eners; a steepener pays out all dividends received between two specified short-
maturity horizons. Strategy 2 has a longer average dividend maturity than Strategy
1. Panel A reports expected excess return, the volatility of excess return, and the
unconditional Sharpe ratio, and shows that all three are higher for the two short-
maturity strip strategies than for the S&P index itself, consistent with results in BBK
formonthly returns. In Figure 1, comparing the strips with amaturity of 1 year to the
market points on the left of the graphs shows that all our fast-moving habit cases are
able to deliver these same three results for quarterly returns, while the LW case only
delivers two of the three results (not the excess-return volatility result). Moreover,
BBK find that neither the external habitmodelwith slow-moving habit nor the long-
run risk model can produce any of the three results.

When BBK uses the log annual price–dividend ratio of Strategy 1 to forecast
its monthly return, and log annual price–dividend ratio for the S&P 500 to forecast
its monthly return, they find a higher R2 and larger slope coefficient in absolute
value for the Strategy 1 regression than for the S&P regression. The LW case and
all our fast-moving habit models are able to deliver an equivalent result. Figure 5
plots, as a function of maturity, the results from the regression of future excess log
quarterly returns of market-dividend strips on their own log annual price–dividend

TABLE 7

Return Performance for van Binsbergen et al.
Two Market-Dividend Strip Portfolios: Data

Table 7 shows the quarterly return performance of the S&P 500 and two portfolios of S&P 500-dividend strips from van
Binsbergen et al. (2012). Strategy 1 is long a portfolio of short-maturity S&P 500-dividend strips, while Strategy 2 is long a
portfolio of dividend steepeners; a steepener pays out all dividends received between two specified short-maturity horizons.
While Strategy 2 has a longer average dividend maturity than Strategy 1, each strategy pays dividends whose average
maturity is around 1 year. Panel A reports expected excess return, the volatility of excess return, and the unconditional Sharpe
ratio. Panel B reports CAPM alpha, beta, and adjusted regression R2. Panel C reports alpha, beta (the slope on the market
factor), gamma (the slope on the HML factor), and adjusted regression R2 from a 2-factor regression. The data span Apr.
1996–Sept. 2009. Returns are quarterly, but the results are annualized by multiplying the expected excess return and alphas
by 4, the volatility of the excess return by

ffiffiffi
4

p
, and the Sharpe ratio by 4=

ffiffiffi
4

p
.

Strategy 1 Strategy 2 S&P 500

Panel A: Ri �Rf

E ½Ri �Rf � 8.09 6.53 3.48
σ½Ri �Rf � 19.74 22.60 18.33
SHARPE i 0.41 0.29 0.19

Panel B: Ri �Rf = αi þβi ðRm �Rf Þþ εi

αi 7.03 4.81
βi 0.30 0.49
AdjR2

i 0.08 0.16

Panel C:Ri �Rf = αi þβi ðRm �Rf Þþ γi R
HML þ εi

αi 7.66 5.11
βi 0.28 0.48
γi �0.11 �0.05
AdjR2

i 0.09 0.16

Lynch and Randall 3183

https://doi.org/10.1017/S0022109023000212 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109023000212


ratios today as a function of maturity. The regression coefficient and R2 are reported
in Graphs A and B, respectively. The points to the left of each of the graphs
represent the values for the regression of future excess log quarterly market return
on its log annual price–dividend ratio today. For the LW case and all our fast-
moving habit cases, both the R2 and themagnitude of the slope coefficient are much
larger for the 1-year market-dividend strip (see Figure 5 at a maturity of 1 year) than
for the market (see the points in Figure 5).

BBK also run CAPM market-model regressions for monthly returns on the
two short-maturity S&P 500-dividend-strip portfolios and find very low CAPM
betas of around 0.5. Panel B of Table 7 reports similar values for quarterly returns,
though the CAPM beta for Strategy 1 is even lower at 0.3. Figure 6 plots CAPM
market-model regression results for quarterly market-dividend strip returns as a
function of maturity, for our four model cases. For all four model cases, the 1-year
strips have higher CAPM betas and R2s than those for BBK’s two short-maturity
S&P 500-dividend-strip portfolios, with the LW and LRR-Vol cases producing
CAPM betas and R2s closest to those for the data portfolios. From Table 7, the
average quarterly CAPM alpha for the two BBK strategies is 5.92% annualized,
while Figure 6 shows that all four cases produce quarterly CAPM alphas for the

FIGURE 5

Predictability of Market and Market-Dividend Strips: Model

Figure 5 plots, as a function of maturity, the results from the regression of future excess log return of market-dividend strips on
their own log price–dividend ratio today:

rmn,tþ1� r f = β0þβ1 pm
n �dm� �

t þ εn,tþ1 :

The return is calculated as thequarterly return fromholding themarket-dividend stripwithn quarters tomaturity at the start

of the quarter. The log price–dividend ratio pm
n �dm� �

t � log Pm
n,t=
P3

τ = 0D
m
t�τ

� �
is the annual log price–dividend ratio of the

market-dividend strip with n quarters to maturity at the start of the return period. The regression coefficient β1 and R2 are
reported in Graph A andGraph B, respectively. The points to the left of each of the graphs represent values for the regression
of future excess logquarterlymarket return from time t to time t þ1, rmtþ1, on the log annualmarket price–dividend ratio at time t ,

pm �dmð Þt � log Pm
t =
P3

τ = 0D
m
t�τ

� �
. For each graph, the circle to the left and the solid line are for the LWcase, the triangle to the

left and thedashed line are for theBasecase, theplus to the left and thedotted line are for theWedgecase, and the cross to the
left and dot-dashed line are for the LRR-Vol case.
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1-year market-dividend strip that are positive, with the alpha for the LRR-Vol case
being closest to the alphas for the data strategies.

Panel C of Table 7 reports 2-factor market-model regressions for quarterly
returns on BBK’s two short-maturity S&P 500-dividend-strip portfolios, using
Fama and French’s HML portfolio as the second factor over BBK’s data period,
Apr. 1996 to Sept. 2009. The two BBK strategies have 2-factor alphas, market
betas, and adjusted R2s that are comparable to those for the CAPM market-model
regressions, while the slope coefficient on HML, γ, is negative for both. Figure 7
shows 2-factor market-model regression results for quarterly market-dividend strip
returns as a function of maturity, for our four model cases. Again, the second factor
is the HML portfolio, which is constructed by going long the three extreme value
deciles, equal-weighted, and short the three extreme growth deciles, also equal-
weighted. For all four model cases, the 1-year strips have higher 2-factor betas and
R2s than those for BBK’s 2 short-maturity S&P 500-dividend-strip portfolios, while

FIGURE 6

CAPM Regressions for Market-Dividend Strips: Model

Figure 6 shows results from time-series regressions of excess market-dividend strip returns on excess market returns, as a
function of maturity, for our four model cases. The intercept α, slope β, and R2 are in Graph A, Graph B, and Graph C,
respectively. In each graph, the solid line is the LW case, the dashed line is the Base case, the dotted line is theWedge case,
and the dot-dashed line is the LRR-Vol case. Returns are quarterly, but α is annualized by multiplying by 4.
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γ is counterfactually positive for all four model cases. All four model cases produce
2-factor alphas for the 1-year market-dividend strip that are positive, but much
smaller than the 2-factor alphas for the two data strategies, with the alpha for the
LRR-Vol case being closer to the alphas for the data strategies than the alpha for the
LW case.

Finally, BK present some new empirical evidence about the expected excess
returns on market-dividend strips which they obtain using monthly returns on S&P
500 dividend-strip futures. They report that, in the United States, the expected
monthly dividend-strip spot return in excess of the market return is increasing in

FIGURE 7

Two-Factor (Market and HML) Regressions for Market-Dividend Strips: Model

Figure 7 shows results from time-series regressions of excess market-dividend strip returns on excess market and HML
returns, as a function of maturity, for our four model cases. The HML portfolio is constructed by going long the three extreme
value deciles, equal-weighted, and short the three extreme growth deciles, also equal-weighted. The intercept α, slope on the
market β, slope on HML γ, and R2 are plotted in Graph A, Graph B, Graph C, and Graph D, respectively. In each graph,
the solid line is the LWcase, the dashed line is the Base case, the dotted line is theWedge case, and the dot-dashed line is the
LRR-Vol case. Returns are quarterly, but α is annualized by multiplying by 4.
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strip maturity going from 1-year strips to 5-year strips. According to GraphA in our
Figure 1, this empirical result is much more consistent with the hump-shaped
dividend strip expected excess return curve for the LRR-Vol case than the down-
ward sloping curve in the LW case.

In sum, the results described in this subsection show that models with fast-
moving habit can deliver some, but not all, of the empirical properties of market-
dividend strips that have been recently documented.Moreover, the LRR-Vol model
better fits the empirical properties than LWalong several dimensions: excess return
volatility is higher for 1-year market dividend strips than for the market in the data
and the LRR-Vol model, but not in LW, while compared to LW, the LRR-Vol model
delivers alphas for the CAPM and 2-factor market-model regressions that are much
closer to the data values for the two BBK dividend-strip portfolios. However, both
the LRR-Vol model and LW do a poor job matching the data values for the risk
loadings and R2s for these regressions. Since parameters for the LRR-Vol case are
not chosen to match the recently documented empirical properties of market
dividend strips, it is encouraging that the LRR-Vol case can match some empirical
properties that LW cannot, and understandable that neither are able to match all
of them.

5. Time-Series Behavior of the Implied xt and σt Processes and Macroeconomic
Variables

Variation in conditional expected equity returns in LW’s model is driven by
variation in the price-of-risk state variable xt. Consequently, in LW’s model, infor-
mation variables that are able to forecast future equity returns empirically would be
expected to covary with the price-of-risk state variable xt. Variation in conditional
expected equity returns in our LRR-Vol model is driven by variation in the price-of-
risk state variable xt and the consumption-volatility state variable σt. Consequently,
in our LRR-Vol model, information variables that are able to forecast future equity
returns empirically would be expected to covary with the price of risk state variable
xt and the consumption-volatility state variable σt.

Table 8 reports the results from regressing, over the period 1947 to 2002, three
macroeconomic variables (Lustig and Van Nieuwerburgh’s (2005) my; Lettau and
Ludvigson’s (2001) cay; and Piazzesi, Schneider, and Tuzel’s (2007) alpha) on
state variables imputed for the LW and LRR-Vol cases. For the LRR-Vol case,
quarterly price–dividend ratios for the market, log Pm

t =D
m
t

� �
, and value decile,

log Pv
t =D

v
t

� �
, are used to impute xt and σt using log-linearizations of equation

(11) applied to the market and the value decile, while for the LW case,
log Pm

t =D
m
t

� �
is used to impute xt using equation (11) applied to the market.

Regression slopes, labeled as βs, are reported for my, cay, and alpha. For each
variable, LW’s xt process is the independent variable in the top row, LRR-Vol’s xt
and σt processes are the independent variables in the second and third rows,
respectively, and LRR-Vol’s xt and σt processes are the independent variables of
a joint regression in the last row. In addition to OLS t-statistics, Newey–West
t-statistics for the maximum-likelihood-optimal lag length are also reported. The
far-right column shows the adjusted R2 for each row’s regression.
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Table 8 shows that LRR-Vol’s state variables xt and σt together have strong
forecasting power for my and cay, as does LW’s state variable xt. With my as the
dependent variable, the adjusted R2 is higher when LW’s xt is the independent
variable thanwhen LRR-Vol’s xt and σt are the independent variables, though in the
latter regression, the adjusted R2 is still 0.30. In contrast, with cay as the dependent
variable, the adjusted R2 is higher when LRR-Vol’s xt and σt are the independent
variables than when LW’s xt is the independent variable: an adjusted R2 of 0.44 for
the former compared to 0.35 for the latter.

Figure 8 shows time-series graphs of the implied state variables from the LW
model and our LRR-Vol model, the three macroeconomic variables, and forecasts
of the three macroeconomic variables using the two implied state variables from
the LW model. Graph A plots my, Graph B plots cay, and Graph C plots alpha. In
all three graphs, the xt process implied by the LWmodel is labeled “xt (LW),” the
xt process implied by our LRR-Volmodel is labeled “xt (LRR-Vol),” the σt process
implied by our LRR-Vol model is labeled “σt (LRR-Vol),” and the fitted value
from regressing the graph’s macroeconomic variable on xt and σt simultaneously
is labeled “xt and σt (LRR-Vol).” In Figure 8, as in Table 8, all variables are
standardized by subtracting their mean, and dividing by their volatility. Graph C
of Figure 8 confirms one of the main results in Table 8: The best linear forecast of
cay using LRR-Vol’s xt and σt tracks cay better than LW’s xt.

TABLE 8

Implied xt and σt Processes and Macroeconomic Variables

Table 8 shows the results of regressing three macroeconomic variables (my, cay, and alpha) on the state processes implied
by Lettau–Wachter’s (2007) model (LW) and our LRR-Vol model. Regression betas (βs) are reported for Lustig and Van
Nieuwerburgh’s (2005) my, Lettau and Ludvigson’s (2001) cay, and Piazzesi et al.’s (2007) alpha. For each panel, LW’s xt
process is the independent variable in the top row, LRR-Vol’s xt and σt processes are the independent variables in the second
and third rows, respectively, while LRR-Vol’s xt and σt processes are the independent variables of a joint regression in the last
row. All variables are standardized by subtracting their mean and dividing by their standard error. OLS and Newey–West
t -statistics for the maximum-likelihood-optimal lag length are both reported. The right column shows the adjusted R2 for each
row’s regression. The data covers the period 1947 to 2002. For the LRR-Vol case, quarterly log price–dividend ratios for the
market ( log Pm

t =D
m
t

� �
) and value decile ( log Pv

t =D
v
t

� �
) are used to impute xt and σt using log-linearizations of equation (11)

applied to the market and the value decile, while for the LW case, log Pm
t =D

m
t

� �
is used to impute xt using equation (11)

applied to the market. The log price–dividend ratios are sampled at an annual frequency at the end of each year, since the
imputation requires zm

t , which is only available at an annual frequency from annual consumption data.

LW LRR-Vol Adj

xt x t σt R2

β t-Stat β t-Stat β t-Stat

OLS NW OLS NW OLS NW

0.74 8.13 3.62 0.55
my 0.16 1.18 0.69 0.01

�0.11 �0.82 �0.53 �0.01
5.94 4.60 2.47 5.80 4.49 2.52 0.30

0.60 5.52 4.03 0.35
cay 0.34 2.60 2.01 0.10

�0.28 �2.15 �1.87 0.06
6.63 5.74 13.71 6.32 5.47 13.02 0.44

0.58 5.23 1.88 0.33
alpha 0.33 2.57 1.42 0.09

�0.31 �2.36 �1.37 0.08
3.08 2.20 1.15 2.76 1.97 1.08 0.17
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V. Conclusion

This article finds that the external-habit model of Campbell and Cochrane
(1999) can generate the value premium in both CAPM alpha and expected excess

FIGURE 8

Implied xt and σt Processes and Macroeconomic Variables

Figure 8 shows the time-series graphs of state variables fromLWandour LRR-Volmodel, threemacroeconomic variables, and
forecasts of the three macroeconomic variables using two state variables from the LRR-Vol model. Graph A plots Lustig and
Van Nieuwerburghmy, Graph B plots Lettau and Ludvigson cay, andGraph C plots Piazzesi et al. alpha. Each is represented
by a solid line. In all graphs, the xt process implied by the LWmodel is labeled “xt (LW)” and represented by the short-dashed
line, the xt process implied by the LRR-Vol model is labeled “xt (LRR-Vol)” and represented by the dotted line, the negative of
the σt process implied by our LRR-Vol model is labeled “�σt (LRR-Vol)” and represented by the dot-dashed line, and the fitted
value from regressing the graph’s macroeconomic variable on xt and σt simultaneously is labeled “xt and σt (LRR-Vol)” and
represented by the long-dashed line. All variables are standardized by subtracting their mean, and dividing by their volatility.
The data covers the period 1947 to 2002. For the LRR-Vol case, quarterly price–dividend ratios for the market ( log Pm

t =D
m
t

� �
)

and value decile ( log Pv
t =D

v
t

� �
) are used to impute xt and σt using log linearizations of equation (11) applied to themarket and

the value decile, while for the LW case, log Pm
t =D

m
t

� �
is used to impute xt using equation (11) applied to the market. The

price–dividend ratios are sampled at an annual frequency at the end of each year.
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Graph C. Piazzesi, Schneider, and Tuzel alpha
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return seen in the data, as long as the persistence of the consumption surplus is
sufficiently low. In contrast, Lettau and Wachter (2007) find that when it is highly
persistent as in Campbell–Cochrane (by assuming that the price of risk is highly
persistent), the external-habit model generates, counterfactually, a growth premium
in expected excess return.

Recent micro evidence by Brunnermeier and Nagel (2006) and Ravina
(2019) rules out slow-moving habit and suggests that the persistence of the
consumption surplus is likely to be quite low. Moreover, the high persistence
assumed by Lettau–Wachter’s specification implies that the contribution to log
habit of log consumption frommore than 5 years ago is almost 50%, which seems
too high. We choose a value for this persistence that is more in line with the micro
evidence, and sufficiently low that the most recent 2 years of log consumption
contribute over 98% of all past consumption to log habit, which seems more
reasonable.

In our specification, expected consumption growth is slowly mean-reverting,
as in the long-run riskmodel of Bansal andYaron (2004), which is why ourmodel is
able to generate a market price–dividend ratio that exhibits the high autocorrelation
found in the data, despite the low persistence of our price of risk. When consump-
tion growth is homoscedastic, fast-moving habit has difficulty replicating the
ability of the price–dividend ratio to predict long-horizon market return in the data.
However, allowing the conditional volatility of consumption growth to be highly
persistent, we obtain long-horizon market return predictability of a magnitude
much closer to the data, without sacrificing the value premium. Fast-moving habit
also delivers several empirical properties of market-dividend strips documented in
van Binsbergen et al. (2012) and van Binsbergen and Koijen (2017). Overall, our
results suggest that external-habit preferences and long-run risk in the mean and
volatility of consumption growth may both play important roles in explaining the
time-series and cross-sectional properties of equity returns and prices.

Appendix A. Correlation of εx and εz

To ensure the covariance matrix of (εd , εz, εx) is positive definite, we specify
σ εx,εz½ � so that εx and εz are correlated only through their correlations with εd . That
is, σ εx,εz½ � is calculated as follows: i) regress εd on εz, yielding εd = βd,zε

zþud , where
ρ εz,ud
 �

= 0; and ii) regress εx on εd , yielding εx = βx,dε
d þux, where ρ εd ,ux

 �
= 0. The

following expression can be derived:

σ εx,εz½ � = σ βx,dβd,zε
zþβx,du

d þux,εz
 �

= ρ εd ,εx
 �

ρ εd


,εz�þ 1�ρ εd ,εx
 �2h i1

2
ρ

ux,εz

�
	
σzσx:

(A-1)

When ρ εd ,εx
 �

= �0:99, the chosen value for ρ ux,εz½ � does notmuch affect ρ εx,εz½ �
or σ εx,εz½ �, so we use equation (A-1) with ρ ux,εz½ �= 0 to calculate σ εx,εz½ �. Notice this
specification has the attractive property that when σ εd ,εz

 �
is set equal to 0, σ εx,εz½ � is set

equal to 0 as well.With ρ εd ,εz
 �

set equal to�0.82, the implied value for ρ εx,εz½ � is 0.81.
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Appendix B. Distinguishing Between Consumption and
Dividends

Since LW calibrate their dividend/consumption process to U.S. dividend data,
we keep the joint {zm, Δdm} process unchanged from the Base case for the Wedge and
LRR-Vol cases (i.e., ϕz, σz, σm, g

m, ρm,z remain the same). We match the following to
LW’s data moments:

σ2 εm½ �= δmð Þ2σ2d þσ2uþ2δmσd,u,(B-1)

σ εmtþ1,ε
z
tþ1

 �
= δmσd,zþσu,z:(B-2)

We set ρ εd ,εz
 �

= ρ εm,εz½ � which has a couple of attractive features in our setting,
when the Base and Wedge cases have the same x parameters. First, there is an asset in the
Wedge case with the same cash-flows and price as produced by the market dividend in the
Base case. Second, keeping σz and σm fixed and given δm = σm

σd
, then as ρ εd ,εm

 �
tends to

1, the pricing implications for theWedge case, inwhich consumption andmarket dividends
are allowed to differ, converge to those for the Base case in which the two are the same.

The annual correlation of log consumption growth with log dividend growth is
0.55 in Bansal–Yaron’s sample period. This value for the annual correlation requires
x < 0 for the price–dividend ratio to converge, which is a problem since the x process is
positive in CC. The correlation of log consumption growthwith log dividend growth at a
quarterly frequency is a simple expression:

ρ εmtþ1,σtε
d
tþ1

 �
=

δmσ2d þσd,u
� �

σ

σmσd
ffiffiffiffiffiffiffiffiffiffiffiffi
E σ2t
 �q :(B-3)

Simulations suggest that the annual and quarterly correlations are very similar, at
least for the range of parameter values we consider, so we focus on the quarterly number
because its expression is much simpler. Since the x process is positive in CC, we instead
chose a larger correlation than in the data, 0.82 at a quarterly frequency, for which the
price–dividend ratio converges for a range of x > 0.

Using themethods of Stambaugh (1997) andLynch andWachter (2013), and given
the volatility of annual log consumption and dividend growth and their correlation in the
Bansal–Yaron sample period (1929–1998), and the volatility of annual log dividend
growth for the LW sample period (1890–2002), we can estimate the volatility of annual
log consumption growth in the LW sample period. TheBansal–Yaronmoments allow us
to regress annual log consumption growth on annual log dividend growth, estimating
the regression coefficient and the variance of the residuals. Using these and the volatility
of annual log dividend growth for the LWsample period, we can back out an estimate for
the volatility of annual log consumption growth for this period. This comes out to be
3.18%, and we square this and match it to our analytical expression for the variance of
annual log consumption growth:

σ2
X4
i = 1

Δdtþi

" #
=

1þϕzþϕ2z þϕ3z
� �2

1�ϕ2z
þ1þ 1þϕzð Þ2þ 1þϕzþϕ2z

� �2 !
σ2z
δmð Þ2

þ 4σ2dE σ2t
 �þ2σd,z 3þ2ϕzþϕ2z

� �
δm

σ:

(B-4)
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To ensure that the covariance matrix of εd ,εz,εx,εu
� �

is positive definite, σ εx,εu½ � is
calculated similarly to σ εx,εz½ � using

σ εx,εu½ � = σ βx,dβd,zε
uþβx,du

d þux,εu
 �

= ρ εd ,εx
 �

ρ εd


,εu�þ 1�ρ εd ,εx
 �2h i1

2
ρ

ux,εu

�
	
σzσx

(B-5)

with ρ ux,εu½ � set equal to 0. Typically in the literature (e.g., Abel (1999)), δm is set equal
to σm

σd
. Our set-up allows δm to be different from this, but we chose this value as the natural

point of departure.
For the Wedge case, we set σ = 1 and σw = 0, which implies E σ2t

 �
= 1. Given a δm

value and ρ εd ,εz
 �

= ρ εm,εz½ �, the system of equations defined in equations (B-1)–(B-4)
yields σd ,σu,σd,u, and σz,u. The resulting σd can be used to calculate

σm
σd
, which becomes

the new δm value. We iterate until convergence, namely, until the obtained σm
σd

value
equals the δm used to obtain it.

Appendix C. Making the Conditional Volatility of Log
Consumption Growth Stochastic

When we calibrate the process for σt in the LRR-Vol case, we want the shock to
monthly log consumption growth tomatch that used byBansal, Kiku, andYaron (2007).
To do this, we start by simulating the conditional variance of monthly log consumption
growth using the AR(1) specification and parameters fromBansal, Kiku, andYaron.We
discard any negative draws, as they do. We approximate the quarterly variance by the
sum of the variance for the three consecutivemonths in the quarter.We then compute the
quarterly volatility as the square root of this quarterly time series, and fit the volatility to
an AR(1) process. This nails down the value for ϕσ.

Since εd in Bansal, Kiku, and Yaron is scaled to have unit variance, while ours is
not, we scale our volatility process to preserve the unconditional second moment of the

shock to log consumption growth from the Wedge case (i.e., E σtεdtþ1

� �2h i
in the LRR-

Vol case equals E εdtþ1

� �2h i
in the Wedge case). Combining this with the four moment

conditions in equations (B-1)–(B-4), we solve for the volatility scaling factor, σd , σu,
σd,z, and σz,u. These values nail down the values for σ and σw. It follows that the
unconditional correlation between the shock to log consumption growth and the shock
to the mean of log consumption growth is the same as in the Wedge case
(i.e., ρ σtεdtþ1,ε

z
tþ1

 �
in the LRR-Vol case equals ρ εdtþ1,ε

z
tþ1

 �
in theWedge case). Finally,

we follow Bansal and Yaron (2004) and impose that εw is uncorrelated with all other
shocks.

Appendix D. Variance Decomposition of Equation (13) for
LRR-Vol Case

From equation (13), the log risk premium on a market-dividend strip is equal to
a constant that depends on the strip’s maturity times σxtþ x σt�σð Þ½ �, which means that
the variance decomposition of the log risk premium on a market-dividend strip is the
same for all strip maturities and equal to

3192 Journal of Financial and Quantitative Analysis

https://doi.org/10.1017/S0022109023000212 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109023000212


Var σxtþ x σt�σð Þ½ � = σ2Var xt½ �þ x2Var σt½ �

=
σσxð Þ2
1�ϕ2x

þ xσwð Þ2
1�ϕ2σ

=
0:918 × 0:29ð Þ2
1� 0:140:25
� �2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
88:7%

þ 0:365 × 0:037ð Þ2
1�0:9942|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

11:3%

:

Appendix E. Variance of Log Annual Market Return

From equation (15), the log quarterly market return from time t to tþ1 is

log Rm
tþ1

� �
= log

Pm
tþ1=D

m
tþ1þ1

Pm
t =D

m
t

	 

Dm

tþ1

Dm
t

	 
	 

≈ pdmtþ1�pdmt þΔdmtþ1,

where pdmt � log Pm
t =D

m
t

� �
. The log annual market return from time t to tþ4 is

log
Q4

τ = 1R
m
tþτ

� �
=
P4

τ = 1 log Rm
tþτ

� �
, and its variance is

σ2
X4
τ = 1

log Rm
tþτ

� �" #
= σ2 pdmtþ4�pdmt þ

X4
τ = 1

Δdmtþτ

" #

≈ 2σ2 pdmt
 �

: 1�ρ pdmtþ4,pd
m
t

 �� �
þ σ2

X4
τ = 1

Δdmtþτ

" #
þ2σ pdmtþ4�pdmt ,

X4
τ = 1

Δdmtþτ

" #
:

Supplementary Material

The supplementary material for this article can be found at http://doi.org/
10.1017/S0022109023000212.
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