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ON VALUES OF THE RIEM ANN ZETA FUNCTION 
AT INTEGRAL ARGUMENTS 

JOHN A. EWELL 

ABSTRACT. For each nonnegative integer r, 
OO 1 

is represented by a multiple series which is expressed in terms of rational 
numbers and the special values of the zeta function £ (2h), h — 1,2, — 
Thus, the set { £ (2/z) | h= 1,2,...} serves as a kind of basis for expressing 
all of the values C, (s), s — 2 ,3 , . . . . 

1. Introduction. Classically the Riemann zeta function £ is defined for each com
plex number s having real part greater than 1 as follows. 

CO 1 

(1) £ ( * ) : = £ - • 

As intimated in the title we are here concerned about the values £ (s) when s is restricted 
to N — { 0,1}, N = { 0 ,1 ,2 , . . .} . Each such value of £, except £ (2), is represented by a 
series different from the defining series. Since these series involve the Bernoulli numbers 
and a certain doubly indexed sequence of numbers defined in terms of the Bernoulli 
numbers, we collect these numbers in the following definition. 

DEFINITION 1.1. The Bernoulli numbers BjJ G N, are defined by the generating 
function: 

e*- 1 j=oJl 

For each pair (m, r) G TV x (N — { 0} ), we define Â2m(r) as follows: 
(i) Alm(\) '=B2m, and 

(ii) forr> 1, 

(2. £ 2. ) 
"-" {2ii + 1 } { 2 ( I I + I 2 ) + 1 } "'{2(i\ +ï2 + --- + ir-i) + l} 

where the sum is extended over all (M, 12» • • •, *V) G W such that z'i + j'2 + * * • + h — m, 

and (2i 2
2™ 2i ) is a multinominal coefficient. 

We are now prepared to state our main result. 
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REIMANN ZETA FUNCTION AT INTEGRAL ARGUMENTS 61 

THEOREM 1.2. For each integer r > 2, 

9 r _ 2 oo Tj-2/n 

(2) C(r) = ^—y £(-l)mA2m(r-2) 2 r - l ^ o '(2m+ 2) 

In Section 2 we prove this theorem. We then state and prove a corollary which shows 
that the values £ (r), r = 2 ,3 , . . . , are intimately related to each other. In fact, we show 
that the set {Ç(2h) \ h = 1,2,...} serves as a kind of basis for expressing all of these 
values. 

Thanks to Euler we know that for each positive integer ny £ {In) is expressible as a 
rational multiple of 7r2w. SO, the main interest in these matters turns on the possibility 
of finding formulas for some or all of the values (>(2n + 1),n > 1. In this direction 
Ramanujan [7] discovered (without proof) that: if a and f3 are positive real numbers 
such that a/3 = n2 and n is a positive integer, then 

{ i oo £-2/1-1 ] J" i oo £-2/1-1 1 

U ' (2ky.(2n + 2-2k)ia P -

For the particular value £ (3) we have the following three formulas due respectively 
to Grosswald [6], Terras [8] and Apery [1]: 

7 oo 

C(3)=^7r 3 -2£e- 2™<7_ 3 («) , 

2 °° 
^ ( 3 ) = Zs ̂  ~ 4 ^ e-2wV_3(n)(27r2n2 + Trn + 1 / 2), 

^ «=1 
5 oo ( _ iy i -1 

C(3)=2nÇ,^y 
[Of course, <r_3(n) = £ d~3, the sum extending over all positive integral divisors d of n.] 

In conjunction with other considerations, Apery used his formula to establish the irra
tionality of £ (3). Unfortunately, his method does not seem to generalize to £ (2n+1), n > 
1. Sadly, all of these formulas, including (2) of the present paper, are deficient in some 
way. E.g., when r > 3, (2) becomes rather complicated. It does not seem to be possi
ble to show that the series representation reduces to 7r4/90 when r — 4. [Of course, 
£ (4) = 7r4/ 90, as discovered by Euler.] 

2. Proof of Theorem 1.2. First of all, we establish a simple lemma. 

LEMMA 2.1. For each positive integer n and each real number t near t = 0, 

YÏ lV2 2 j g 2 y ' ( s i n"'°2 ; 

jU (2/)! 2j + n 
(3) /rW'^=C + & - A ^ 

./ t ^ (2/)! 2/ +rc 
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62 JOHN A. EWELL 

where C is an arbitrary constant. 

PROOF. Under the substitution 6 — sin~xt 

J r\sircxt)n dt = J en cote de. 
(3) then follows from termwise integration of the identity 

rcotfl = j2(-i)k^rr02k+n-\ \e\ < *. 
k=0 (2*)! 

Next, since each positive integer n has a unique expression as n = 2l(2j +1), for some 
(ij) £ N2, it follows (by absolute convergence) that 

oo 1 oo 1 oo 1 o r oo 1 

„r ^ lir 2-~> C)l _L 1 \ r /Or i\ -̂—' /o; W ,tj 2'> -^ (2/ + 1)' (2' - 1) £ j (2/ + i r 

1 
(Zj+\y Hence, it suffices to evaluate Ej^o (2-|1)r, r > 3. 

To evaluate £°?o n-+\y w e m0CQfy a method due to Boo Rim Choe [3], and proceed 
by induction on r. 

The Taylor series expansion of sin -11 near / = 0 is given by 

• - i , , v* 1 -3---(2#i- 1) tln+x 

(4) sin t = t + 2^ ~ i 2 • 4 • • • (In) In + 1 

With the aid of (3) we multiply both sides of (4) by t~x and integrate both sides of the 
resulting equation from 0 to x( \ x\ < 1) to get 

g l - 3 - (2n - l ) ^ = g ^ ^ 
to 2-4---(211) (2n+l) 2 to (2£+l)!V 

In (5) let A: = sinf, |f| < | , to get 

f l - 3 - - - ( 2 n - l ) sin2"+1r " k 22kB2k (2M 

to 2-4---(2n) (2n+l) 2 to (2*+l)! 

Integrating both sides of the foregoing equation from 0 to | , term by term, we get 

A oo „2k 

S ( 2 ^ ' 2.4.-.(2„) • A Sin tdt - T S ( - 1 } ^(2^2)! • 
By Wallis' formula [4, p. 223] 

[lsin2^tdt= 2 ' 4 ' - ^ , n = l , 2 , . . . , 
./o 1 -3---(2/1+1) 
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the last equation then reduces to 

2 oo 7J-2& 

£ T^TT^ = -T Ec-tfft* 
n t ï , (2«+l) 3 4 ^ " "(2ft+ 2)!' 

Multiplying both sides of the foregoing equation by n^T) ' w e t n e n &e t 

23 -2 oo ^-2w 

(6) C(3)= ^ - r ^ 2 E ( - 1 ) ^ ( 3 - 2 ) 
2 3 - l ^ 0 (2m+ 2)! 

Fix r > 3 and assume inductively that the sequence of operations which led from (4) 
to (5), (6) has been applied r — 3 times to yield: 

« l - 3 - - - ( 2 n - l ) ^ oo , 2 ^ ( r - 3 ) , 2,+1 
( 7 ) i 2-4- . . (2n) (2n+iy-* to ' (2*+l)! ( S m X) ' 

9 r ~ 3 oo 7I-2m 

(8) < ( r - l ) = r - ^ r i 2 E ( - l ) m ^ 2 m ( r - 3)-
2 - 1 - 1 mf0

x /(2m + 2)f 

In (7) we then letx —• ?, multiply the resulting equation by t~l, and antidifferentiate both 
sides of the last equation with respect to t to get 

~ l - 3 - - - ( 2 n - l ) 

B t i 2-4-••(2n) (2n+l) ' - 1 

= c+S(-1»'2TO5/'" ,<si"" ,'> ,'* ,* 
Again with the help of (3) we take the definite integral of the foregoing equation from 0 
tojt(|;c| < 1) to get 

1-3---(2/1-1) x2' ,n+\ 

S 2-4---(211) ( 2 n + i r > 

_ ° ° k2
2kA2k(r-3)™ ,2*By ( s in - ' x ) 2 ^ + 1 

,to (2ft+1)! ^ (2/)! ' 2y + 2ft+l 

oo ( « i n - 1 r> 2 m + 1 1 

= V ( - l f 2 2 ' " l S i n *J YJ A2k(r-3)B2i 

to 2m +1 ( /W)j^m(2ft+l)!(2/)! 2j 

= E(-ir2X(r-2)-'S *} . 
^ o (2m+1)! 
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That the inner sum in next to the last line equals A2m{r—2) follows from the definition of 
the sequence A2m(r). Now, in the last equation we let x = sin t, and integrate the resulting 
equation from 0 to | to get (in view of Wallis' formula): 

oo I Tj-2 oo 7T2m 

~ 0 ( 2 w + l ) r 4 ^ 0 (2m+ 2)! 

Multiplying both sides of the foregoing equation by T ^ U , we get the desired result for 
£ (r). Inductively this proves Theorem 1.2. 

COROLLARY 2.2. For each r G Af,, 

« ' + 2> = 2 ^ T l + £ (2m+ lX2m + 2)22- g ^ \p 
(9) l

 1 

x ^ C(2/nK(2/ i 2 )>--C(2/ i p ) I 
^ {2/zi + l}{2(/*!+/*2)+l} •••{2(/i, +/22 + --- + /ip_i) + l} J 

where on the right side the innermost sum is extended over all (h\, /z2,. • •, hp) G Jp, J : = 
TV — { 0} , such that h\ + h2 + - • - + hp = m. 

PROOF. For each pair (ra, r) £ N2, with m > 0, put 

C(ra, r) 

•= V f - 2 V V ^ C(2/z1)C(2/i2)-><(2/zp) 
" p=i ^ V / ^2 / îî + ^{^(/ i i +/z2)+ 1} •••{2(/z, + / ï 2 - h . . . + / î p_l)+ 1} ' 

where the range of summation of the innermost sum is as before described. By the vac
uous summation convention C(ra,0) = 0, and (9) then reduces to £(2) = 7r2/ 6, a well 
known formula of Euler. Hence, assume that r > 0, and in the definition of the coeffi
cient A2m(r), with m > 0 and r > 0, classify the r-tuples (i\, /2, • • •, ir) G Nr such that 
i\ + h + • • • + ir — m by the number y G { 0 , 1 , . . . , r — 1} of zero-coordinates among 
/1, / 2 , . . . , «V- Clearly, for each j G { 0 , 1 , . . . , r — 1}, there are (r) ways of assigning 0's 
to exactly j of the r coordinate spots. And, then for each of these ways the remaining 
r—j spots are filled with h\, /i2, • • •, hr-j G J in all possible ways. Therefore, we recall 
another result due to Euler [2, p. 266], viz., 

and write: 
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A2m(r) 

_ ^ M U£L» JC (2*.x-i)"+1)^f - < (2^x - i ) ^ l g^ 
;to W {2Ai + 1}{2(A, + A2) + 1} • • -{2(A, +A2 + • • - + hM-i)+ 1} 

( j) (2^U W 
C(2A,)C(2A2)"-<(2A^) 

E {2hx + 1}{2(Ai + A2) + 1} • • • {2(hi +h2--- + Ar-;-i) + 1} ' 

where the range of summation for the innermost sum is now clear. With a slight change 
in notation we write (2) as: 

2r-l7T2 f °° ,-2/n ] 

for each r G 7. We now replace A2m(r) by the foregoing finite double sum, and simplify 
to get 

U j 2 ^ - 1 \ i ^ (2m+l ) (2m + 2)22™J ' 

for each r G 7. This proves our corollary. 

REMARK 2.3. Our first observation is that the right side of (9) is conceptually not 
quite as complicated as it seems. For, the finite double sum which defines C(m, r), m, r G 
7, has the same range of summation as the right side of 

the multinomial expansion. In fact, upon classifying the (/i, 12, • • •, ir) £ Nr such that 
h + h + • • • + ir =

 m by number of zero-coordinates we get a similar finite double sum. 

Next, we can replace TT2 by 6£ (2) on the right side of (9) and realize that the resulting 
right side is expressed solely in terms of rational numbers and the values £ (2h), h = 
1,2,.... 

Finally, we display (9) for small values of r, say r G { 0,1,2,3}. As before observed, 
Ç (2) = \ . For r — 1,2,3 we get the following specializations: 
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< ( 3 ) = ^ { l - 4 £ C ( 2 W ) } , 
^ ' 1 X t x (2m + l)(2m + 2)22™ ' ' 

s w 15 l ^ 1 ( 2 m + l ) ( 2 m + 2)22m 

f, 1 m-lC(2hX(2m-2h) 
+ ^ i (2m + 1 )(2m + 2)22m ^ 2/i + 1 ' ' 

{ ( 3 ,= ^ { i - i 2 f «(2"> 
33 l ^ , (2m+l)(2m + 2)22m 

~ 1 ^ C(2/i)C(2m-2/i) 
+ ^ , (2m + 1 (2m + 2)22m ^ 2/i + 1 

1 6 f > 1 y- C(2/i)C(2QC(2j) 

m^1(2m+l)(2m + 2)22"' ^ { 2/z + 1} { 2(/i + 0 + 1} ' 
h+i+j= m 

In [5] the author has given a different derivation of the foregoing series representation 
of £ (3). There it is observed that: since £ (2n) —• 1 as n —• oo, the rate of convergence 
of the series is much faster than that of the defining series £ n~3. However, the rate of 
convergence is not as good as that of the series in the series representation of £ (3) due 
to Apery [1]. 

A natural question to ask is: Can irrationally of £ (3) be established in terms of the 
present series representation? For, such a proof, if possible, would likely extend to the 
values Ç(2fc+l),fc> 1. 
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