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Debris and pyroclastic flows often have bouldery flow fronts, which act as a natural
dam resisting further advance. Counter intuitively, these resistive fronts can lead to
enhanced run-out, because they can be shouldered aside to form static levees that
self-channelise the flow. At the heart of this behaviour is the inherent process of
size segregation, with different sized particles readily separating into distinct vertical
layers through a combination of kinetic sieving and squeeze expulsion. The result is
an upward coarsening of the size distribution with the largest grains collecting at the
top of the flow, where the flow velocity is greatest, allowing them to be preferentially
transported to the front. Here, the large grains may be overrun, resegregated towards
the surface and recirculated before being shouldered aside into lateral levees. A key
element of this recirculation mechanism is the formation of a breaking size-segregation
wave, which allows large particles that have been overrun to rise up into the faster
moving parts of the flow as small particles are sheared over the top. Observations
from experiments and discrete particle simulations in a moving-bed flume indicate
that, whilst most large particles recirculate quickly at the front, a few recirculate very
slowly through regions of many small particles at the rear. This behaviour is modelled
in this paper using asymmetric segregation flux functions. Exact non-diffuse solutions
are derived for the steady wave structure using the method of characteristics with
a cubic segregation flux. Three different structures emerge, dependent on the degree
of asymmetry and the non-convexity of the segregation flux function. In particular,
a novel ‘lens-tail’ solution is found for segregation fluxes that have a large amount
of non-convexity, with an additional expansion fan and compression wave forming
a ‘tail’ upstream of the ‘lens’ region. Analysis of exact solutions for the particle
motion shows that the large particle motion through the ‘lens-tail’ is fundamentally
different to the classical ‘lens’ solutions. A few large particles starting near the bottom
of the breaking wave pass through the ‘tail’, where they travel in a region of many
small particles with a very small vertical velocity, and take significantly longer to
recirculate.

† Email address for correspondence: parmesh.gajjar@alumni.manchester.ac.uk
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1. Introduction

Debris and pyroclastic flow deposits often show evidence of bouldery fronts that
have a high proportion of large particles (e.g. Sharp & Nobles 1953; Johnson 1970,
1984; Takahashi 1980; Costa & Williams 1984; Pierson 1986; Iverson 2014; Turnbull,
Bowman & McElwaine 2015). Figure 1 shows large boulders deposited at the front
of a debris flow in Arizona, USA. These large grains tend to be more resistive to
downslope motion than the fines, and consequentially have a significant influence on
the overall flow dynamics by acting as a ‘dam’ that resists the flow behind (Pierson
1986). The advancing, more mobile, fine grains from within the interior of the flow
(Major & Iverson 1999) shoulder the large particles at the front to the sides (Johnson
et al. 2012), forming coarse-grained levees that channelise the flow. The inside of
this channel is lined by a layer of deposited fine grains, further reducing the friction
and increasing the run-out distance (Kokelaar et al. 2014). All of this behaviour is
readily reproduced in both large- and small-scale experiments (Iverson & Vallance
2001; Iverson et al. 2010; Johnson et al. 2012). In particular, Pouliquen, Delour &
Savage (1997) observed that the interaction of the resistive front with the mobile
interior also causes a lateral instability where the flow-front fingers and breaks into
a number of different confining channels (Sharp & Nobles 1953; Pouliquen et al.
1997; Woodhouse et al. 2012). The development of the bouldery fronts is thus key
to understanding how segregation feeds back on the bulk flow field.

A key component within the formation of coarse-grained fronts and lateral levees is
the inherent process of size segregation that is common to all polydisperse granular
media. Whilst flowing, granular mixtures dilate sufficiently to allow the flow to
act like a sieve that naturally sorts the different sized constituents. Small gaps in
the grain matrix allow the finer grains to preferentially percolate downwards under
gravity, whilst there is a return flow of coarse grains towards the surface. The exact
mechanism for the rising of large grains is under investigation (van der Vaart et al.
2015), although the net result is an upward coarsening in the particle-size distribution
that is often called inverse grading. For example, a bidisperse mixture containing just
two grain sizes would separate into two separate layers in the absence of diffusion,
with the large particles on top of the small ones, as shown in figure 2(a). The surface
layers have the highest velocities, and so the larger particles are transported to the
front of the flow. These coarse grains may then be pushed en masse at the front
if massive enough (Pouliquen & Vallance 1999), or otherwise may be overrun by
the advancing flow. They are able to rise up back towards the surface as they are
resegregated, creating a complex recirculating motion that connects the upstream
inversely graded body of the flow to the coarse-rich flow front. As more large grains
are supplied towards the front, the coarse-grained margin grows in size, with the
interface propagating forward at a slower speed than the advancing front (Gray &
Kokelaar 2010a,b). The front may obtain a steady size in two dimensions if there is
no further upstream supply of large particles, or alternatively, if the upstream supply
of large particles is matched by the rate of deposition on the lower basal surface
(Gray & Ancey 2009). The front may also obtain a finite-size steady state in three
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FIGURE 1. Photograph of the front of a debris flow that has stopped in the channel of
Rattlesnake Creek, Arizona, USA. The large boulders seen here in the front are typical
of many debris and pyroclastic flows, with larger particles segregating upwards to the
faster moving surface layers and preferentially transported towards the front, where they
accumulate. Photo courtesy of C. Magirl and USGS.

dimensions by shouldering the large grains, transported to the front, laterally outwards
to the sides to produce static coarse-grained levees (Johnson et al. 2012; Kokelaar
et al. 2014).

1.1. Recirculating particle motion
The first real insights into the structure of the recirculation zone were provided
by Pouliquen et al. (1997) and Pouliquen & Vallance (1999), who used a moving
camera to approximately measure the lateral recirculating motion of a line of large
black crushed fruit stones placed on the surface of a flow of translucent glass
beads. Their observations, however, lacked spatial resolution, and further direct
experimental observation of the recirculation has been challenging due to its complex
time dependence. The recirculation zone propagates quickly downstream at speed
uwave as the front advances forward at speed ufront, meaning that there is the difficulty
of capturing the motion using a camera moving with the recirculation zone. Long
chutes are also required before a steady recirculation regime emerges.

An alternative approach is to use the moving-bed flume set-up shown in figure 3,
that is similar to that used by Davies (1990). The flume is 104 cm in length with
a rough 10 cm wide upward moving conveyor belt positioned between the four
stationary vertical walls. The inclination of the channel was set at 19.8◦ to establish
a uniform flow height along the channel. Higher or lower angles were found to
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FIGURE 2. (a) A vertical section through a steadily propagating avalanche travelling
down an inclined plane. In the body of the flow, the large grains segregate to the upper
layers, where the velocity u(z) is greatest, and hence are transported towards the front
of the avalanche, where they are overrun, resegregated upwards and recirculated to form
a coarse-rich particle front. A complex recirculating motion is created that links the
vertically segregated flow in the rear of the avalanche from the coarse-grained front, with
the recirculating region known as a ‘breaking size-segregation wave’ (Thornton & Gray
2008). Although the front increases in size as more large particles are supplied from the
inversely graded flow upstream, the recirculation region shown with dotted lines reaches a
steady structure that travels at the average speed uwave. (b) A convenient way of studying
this steady recirculation regime is to use a moving-bed flume, which can establish a steady
motion within a short chute length. The belt moves upstream at a speed ubelt, driving an
upstream flow in the lowest layers, whilst the upper layers move downstream under gravity.
This generates a net velocity profile û(z)= u(z)− uwave and is the same as examining the
recirculation zone within (a) from a frame advecting at speed uwave. There is no upstream
supply of large particles in this configuration (b), and so, provided that the segregation
and diffusion rates are constant (Thornton & Gray 2008), it is mathematically equivalent
to the subset of figure (a) marked by the dotted lines. Large particles rise towards the
surface, and are sheared towards the downstream end of the flume. Some large grains are
driven back upstream by the belt, segregate back towards the surface and are recirculated.

cause an accumulation towards the front or rear of the channel, respectively. The
belt moves upstream at a velocity ubelt = 72 mm s−1. This generates the experimental
configuration shown schematically in figure 2(b), where the lower layers of the flow
are forced upstream by the belt, while the upper layers move downstream under
gravity. While this flow is not itself inversely graded, it is mathematically equivalent
to the section of an inversely graded avalanche shown in figure 2(a), provided that the
segregation and diffusion rates are constant (Thornton & Gray 2008). The absence
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FIGURE 3. A schematic diagram of the moving-bed flume set-up. The flume is 104 cm in
length and 15 cm high, with a rough 10 cm wide conveyor belt at the base that moves
upstream at velocity ubelt = 72 mm s−1. This generates the flow configuration sketched
in figure 2(b), with the particles in the lower layers of the flow forced upstream by the
belt, whilst those in the upper layers of the flow move downstream under gravity. The
entire set-up is submerged in a larger tank containing a mixture of benzyl-alcohol and
ethanol. This acted as the index matched interstitial fluid, and had a viscosity µ=3 mPa s
and fluid density of 995 kg m−3. The motor unit was mounted outside of the tank and
drove the belt through a chain mechanism. A dye (rhodamine) was added to the fluid
and the flow illuminated with a laser sheet of wavelength 532 nm. A camera positioned
at one of the glass side walls captured the temporal evolution, with particles appearing as
dark circles. The diameters of these circles could be tracked in time to determine whether
the particle was small or large. An example snapshot at one moment in time, and the
time-averaged concentration fields are shown in figure 6.

of the layer of large particles also allows a steady state to develop within the
experimental configuration. Both the experimental configuration and the full problem
are assumed to be two-dimensional, meaning that there are no side-wall effects. Just
as in the full problem, the large grains in the experimental configuration (figure 2b)
initially segregate upwards and are sheared towards the downstream end of the flume,
as shown in the normal exposure photograph in figure 4(a). However, the motion of
the belt forces some large grains to be carried upstream, where they subsequently
lie below small grains. The large grains resegregate upwards, and once they reach
the surface, they are carried back towards the downstream end of the flume. The
oblique view in figure 5 looking upstream from the end of the flume clearly shows
the accumulated large particles, and resembles the bouldery front shown in figure 1.
This moving-bed flume allows the structure of the steady recirculation regime to be
examined in greater detail. For example, the long time exposure photograph in 4(b),
taken with an exposure time of 133 s, illustrates the time-averaged concentration field
of the recirculation zone.
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(a)

(b)

FIGURE 4. Photographs showing the steady recirculation regime established within the
104 cm long moving-bed flume set-up sketched in figure 3. The particle diameters were
5 and 14 mm. The normal exposure photograph (a) shows the large blue and white
marbles collecting towards the right, forming a coarse-rich flow region at the downstream
end of the flume, whilst the long exposure photograph (b) shows a time-averaged
concentration field and the structure of the breaking size-segregation wave. An exposure
time of 133 s was used to capture (b).

The individual motion of the particles on the centre line was revealed using
refractive index matched scanning (‘RIMS’: Wiederseiner et al. 2011a; Dijksman
et al. 2012; van der Vaart et al. 2015). Spherical borosilicate glass beads of density
2230 kg m−3 and diameters 14 and 5 mm were used, with the volume ratio of large
particles to small particles being 2 : 5. As shown in figure 3, the entire flume set-up
was submerged in a tank containing a mixture of benzyl-alcohol and ethanol, which
acted as the index matched interstitial fluid of viscosity µ = 3 mPa s, with a fluid
density of 995 kg m−3. The motor unit for the belt was positioned outside of the
tank and drove the belt through a system of chains. A fluorescent dye (rhodamine)
was added to the liquid, which was excited by a laser sheet of wavelength 532 nm
in a thin plane parallel to the flow direction. As the particles contain no dye, they
appear as dark circles on a bright background. The result is a cross-sectional image
of the interior of the flow, which is captured through the glass side wall using a
high-speed camera. The laser and camera were positioned to capture the section of
the flow containing the recirculation zone. The dark circles are tracked over time,
with the minimum and maximum diameters used to determine whether that circle
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FIGURE 5. An oblique upstream view from the surface of steady-state coarse-rich front
established in the moving-bed flume of figure 3. The large blue and white marbles
congregate towards the front of the picture, with the smaller clear glass beads towards
the rear.

corresponds to a small or large particle. The large size ratio between the grains
minimised identification errors, although there was a small possibility that a large
particle may be mistaken for a small particle. This, however, would only happen if
the particle was sliced close to its edge and never moved closer to the plane of the
laser. A typical snapshot of the particle motion is shown in figure 6(a), where it
can be seen that there are a few large particles in regions of many small particles
at the upstream (left) end of the flow. These large particles are seen to move very
slowly, compared with the majority of the large particles which recirculate very
quickly towards the front. Figure 6(c) shows a time-averaged concentration plot,
which was averaged over a 40 min period, with 1 image taken every 2 s. The slow
movement of the large particles through the upstream region of small particles lowers
the concentration there, and causes the ‘white’ ‘tail’-like region.

It is worthwhile considering what influence the interstitial fluid has on the particle
behaviour. The presence of a fluid (rather than air) not only modifies the interstitial
pore pressures, but also couples the stress carried by the particles to that carried by
the fluid flowing through gaps in the grain matrix (Iverson & LaHusen 1989; Iverson
1997, 2005). This coupling is particularly significant in unsteady flows, since local
changes in the particle volume fraction allow large excess pore pressures to develop,
which in turn feedback on the granular motion (du Pont et al. 2003; Muite, Hunt &
Joseph 2004; Pailha, Nicolas & Pouliquen 2008; Pailha & Pouliquen 2009). However,
for steady, dense granular flows such as those sketched in figure 2, the large number
of particle–particle contacts mean that frictional interactions are still dominant in
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FIGURE 6. (a) An experimental snapshot of the recirculation zone, captured using the moving-bed
flume of figure 3 with refractive index matched scanning. The white label indicates the length
scale of 14 mm. (b) Structure of the recirculation zone found using DPM simulations. The fixed
base particles are shown in grey. Both the experimental and simulation results show several large
particles positioned towards the rear, where they are surrounded by many small particles. These
large particles are seen to move very slowly, and take a long time to recirculate. (c) Shows the
experimental time-averaged concentration field, which was produced by averaging the individual
particle positions over a 40 min period, with 1 image every 2 s. The time-averaged concentration
field for the simulations was produced by coarse graining all of the particle positions from 749
subsequent time frames, and is shown in (d). Both of the time-averaged concentration plots indicate
a ‘tail’ upstream, where the concentration is lower due to the slow motion of a few large grains.
This is similar to asymmetric behaviour observed within a linear shear cell (van der Vaart et al.
2015), and motivates a continuum breaking wave structure with an asymmetric flux function, shown
in (e) for a cubic flux. The solid lines mark the boundaries of the recirculation zone, with two
distinct ‘lens’ and ‘tail’ regions (see § 2). The downstream ‘lens’ region with a strong green hue
is where most of the large particles recirculate, whilst the red hue of the upstream ‘tail’ region
shows how only a few large particles recirculate through that area. The theory does not account for
spatial velocity variations, diffusive remixing or differential particle friction, and finite-size effects are
also significant. These may all contribute to the difference in the ‘tail’ structure between the theory
and the experiments and simulations. Without calibrating the segregation flux for this particular flow
regime, it is remarkable that the asymmetric flux produces a ‘tail’ region, and it is of interest to
further understand the asymmetric breaking-wave structure and particle recirculation within it. In all
of the above plots, the lower belt moves from right to left, with gravity acting to cause particles to
flow downstream towards the right.
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determining the rheological behaviour (Ancey, Coussot & Evesque 1999) even when
an interstitial fluid is present. Cassar, Nicolas & Pouliquen (2005) showed that, in
steady flows submerged in water, at least 75 % of the overburden pressure is borne
by the contact network. They also showed that the same rheology used to describe
dense steady aerial flows (GDR Midi 2004) also applies to immersed flows, with
the interstitial fluid changing the time scale of the particle rearrangements. This is
consistent with the experimental results of Vallance & Savage (2000) and the theory
of Thornton, Gray & Hogg (2006) who both showed that the role of the interstitial
fluid in flows containing different sized constituents is to modify the segregation
time scales. These results would suggest that the physical phenomena observed in
the experiments above, with a few large particles recirculating very slowly in regions
of small particles, are indicative an underlying asymmetry in the particle motion
that occurs whether the flow is dry or submerged. Further experimental work, using
techniques such as X-ray tomography (e.g. McDonald, Harris & Withers 2012), is
needed to compare the particle scale dynamics in dry flows with those containing an
interstitial fluid.

Discrete particle method (DPM) simulations of a moving bed-flume set-up were also
performed using the MercuryDPM code (MercuryDPM.org; Thornton et al. 2013a,b).
A dry bidisperse mixture of spherical particles was used, with all of the particles of
the same (non-dimensional) density ρ∗ =π/6, but of two different (non-dimensional)
diameters, ds = 1 and dl = 2.4, for small and large particles, respectively. All of the
simulation parameters were non-dimensionalised so that g = 1. A frictional spring-
dashpot model (Cundall & Strack 1979; Weinhart et al. 2012) with linear elastic and
linear dissipative contributions was used for both the normal and tangential forces.
The tangential force models the effects of particle surface roughness, and its spring
stiffness was taken to be 2/7 of the spring stiffness for the normal direction. The
tangential force also truncates so that it is always less than 1/2 of the normal force.
The particles all had the same coefficient of restitution rc= 0.1538, which was chosen
to be less than typical known values for glass (∼0.9) in order to model the dissipative
effects of the interstitial fluid removing energy from the system. The contact time for
all head on collisions was fixed at 0.0054, with the collision properties chosen to be
different for small/small, small/large and large/large collisions so that both the contact
time and the coefficient of restitution were the same even in the mixed case. Further
details of the precise DPM implementation may be found in Thornton et al. (2012b)
and Weinhart et al. (2012). The simulations were conducted in a box of length 300ds

with fixed end walls and width 8.4ds. The side walls were periodic in order to bring
the simulations closer to the assumptions of the analytic model in figure 2(b), which
is two-dimensional and has no side-wall effects. A small inclined wall was placed
between the base and the vertical upstream wall in order to prevent small particles
being crushed by the wall or shooting away from it. This was seen to only affect
the dynamics very close to the wall, and did not affect the recirculation zone. A
rough moving base was created in several steps. Firstly, particles of diameter db =
1.7 were stuck randomly to a horizontal plate. Particles of diameter db were slowly
dropped onto this plate and allowed to settle. Once a thick layer of height 12db was
produced, a slice of particles was taken whose centres lay between 9.3db and 11db.
These particles were endowed with infinite mass and inclined at an angle of 23◦ to
form the base for the moving-bed flume simulations. The layer is thick enough to
ensure that no flowing particles can fall through the rough base during the simulations.
More details of this base creation process can be found in Weinhart et al. (2012)
whereas a detailed description of different bed creation methods and their effect on the
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macroscopic friction experienced by the flow can be found in Thornton et al. (2012a).
Before each time step 1t= 10−4√ds/g, the base was moved upstream by a distance
ubelt1t= 1.5× 10−4ds. The system was allowed to evolve until a steady recirculation
zone was formed.

Figure 6(b) shows a snapshot from the simulations, which have a very similar
structure to the experimental results: most large particles recirculate quickly at the
front but a few large particles recirculate slowly at the rear. This behaviour is also
evident in the time- and width-averaged concentration plot shown in figure 6(d), which
was produced by employing the micro–macro coarse-graining technique (Goldhirsch
2010; Weinhart et al. 2013) on the individual particle positions from 749 subsequent
time steps. The new extension by Tunuguntla, Thornton & Weinhart (2015), based
on a mixture theory formulation (Morland 1992), allowed the (partial) densities for
the bulk (ρ), small (ρs) and large particles (ρ l) to be separately extracted, with the
small particle concentration defined as ρs/ρ, i.e. the local small particle material
density over the local granular material density. The coarse-graining method used
two-dimensional Gaussian functions at each of the particle positions and generated
the continuum field at every point in space; however, for ease of computing, the
data is shown on a 250 × 250 grid. As was seen in the experimental concentration
field in figure 6(c), the slow moving large particles have lowered the upstream
concentration and produced a white ‘tail’ protruding backwards from the main region
of recirculation. This qualitative similarity between the concentration field of the
simulations that were laterally periodic (figure 6d) and the concentration field of the
experiments (figure 6c) indicates that there are only minimal effects arising from the
side walls and justifies the two-dimensional approximation of the analytic solution.
Dry simulations, using a much higher restitution coefficient, also gave a similar
concentration field, indicating that the behaviour is not an artefact of the presence
of the fluid nor the exact particle properties. Despite the fact that no attempt was
made to calibrate the simulations and experiments, both show very similar behaviour
using different sized particles in different sized flumes. The presence of the ‘tail’, in
which large particles recirculate very slowly through regions of many small particles,
points towards a fundamental asymmetry in the interactions between the large and
small particles. Recently, van der Vaart et al. (2015) uncovered a similar asymmetry
in a linear shear cell, and showed how the asymmetry could be modelled using a
continuum approach.

1.2. Continuum segregation equation for bidisperse mixtures
Non-dimensional continuum models for segregation in bidisperse mixtures (e.g.
Bridgwater, Foo & Stephens 1985; Savage & Lun 1988; Bridgwater 1994; Dolgunin
& Ukolov 1995; Gray & Thornton 2005; Gray & Chugunov 2006; Thornton et al.
2006; May, Shearer & Daniels 2010) all share a similar advection–diffusion structure

∂φ

∂t
+∇ · (φu)− ∂

∂z
(SrF(φ))= ∂

∂z

(
Dr
∂φ

∂z

)
, (1.1)

where the z coordinate is the upward pointing normal to the flume bed, the x
coordinate points down the flume and the y coordinate points horizontally across
the flume bed. The bulk velocity field u = (u, v, w) has components in the above
directions, the small particle concentration is φ, and Sr and Dr are the non-dimensional
segregation and diffusive-remixing coefficients, respectively. As the typical length
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and height of the avalanche are L and H, and magnitudes of the downstream and
segregation velocities are U and Q, the non-dimensional segregation coefficient
Sr = QL/(HU) represents the ratio of the typical segregation time scale Q/H to the
typical downstream transport time scale U/L. Similarly, the non-dimensional diffusion
coefficient Dr = DL/(H2U) represents the ratio of the typical diffusion time scale
D/H2 to the typical downstream transport time scale U/L, with D being the diffusivity
between the two particle species. The large particle concentration is 1− φ since the
solids volume fraction is assumed to be uniform and constant throughout the flowing
layer (Rognon et al. 2007). The first term on the left-hand side in (1.1) describes the
temporal evolution, whilst the second term describes the advection with the bulk flow.
The segregation is captured by the third term, with F(φ) the segregation flux and the
negative sign indicating that there is a net motion of small particles downwards. The
segregation flux is often assumed to be the product of the small and large particle
concentrations,

F(φ)= φ(1− φ), (1.2)

and has the property that segregation ceases when the concentration reaches zero
(pure large phase) or unity (pure small phase). The right-hand side of equation (1.1)
reduces the sharp concentration shocks that develop between the two species,
and models the diffusion of one species into the other that results from the
random-walk-like behaviour of the grains. In many flows, this is small compared
to the segregation (Gray & Hutter 1997; Dasgupta & Manna 2011; Wiederseiner
et al. 2011b; Thornton et al. 2012b) and so the non-diffuse solution in which Dr = 0
is a useful approximation, with (1.1) reducing to a scalar hyperbolic equation. A
full review of the derivation, history and applications of (1.1) can be found in Gray,
Gajjar & Kokelaar (2015).

1.3. Asymmetry between large and small particle motion
Recent experiments by Golick & Daniels (2009) and van der Vaart et al. (2015) have
uncovered an underlying asymmetry in the behaviour of large and small grains during
segregation, with a characteristic dependence on the local relative volume fraction of
small particles. Within their annular ring shear experiments, Golick & Daniels (2009)
inferred that large particles were segregating very slowly in regions of many small
particles, but were not able to further explain this observation. Using a classical linear
shear cell (Bridgwater 1976) and the ‘refractive index matched scanning technique’
(Wiederseiner et al. 2011a; Dijksman et al. 2012), experiments by van der Vaart et al.
quantified on both bulk and particle scales how large particles rise slower in regions of
many small particles compared to small particles percolating down through a region
of many large particles. They also showed that the large particle velocity displayed
a peak at approximately φ = 0.55, proving that the coarse grains rise quickest as a
group. Gajjar & Gray (2014) showed that the normal constituent velocities associated
with the segregation equation (1.1) are

wl(φ)=w+ Sr
F(φ)
1− φ , ws(φ)=w− Sr

F(φ)
φ

, (1.3a,b)

with both velocities uniquely determined by the geometry of the flux function F(φ)
at every concentration φ. The velocity of the large particles wl(φ) (1.3a) is directly
proportional to the gradient of the chord, namely the gradient of the straight line
segment (Clapham & Nicholson 2009), joining (1, 0) with (φ, F(φ)). Similarly, the
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velocity of the small particles ws(φ) is directly proportional to the gradient of the
chord joining (0,0) with (φ,F(φ)). A pair of these two chords for φ=φmax are shown
in figure 7(b). Since the quadratic segregation flux (1.2) utilised by many segregation
models is symmetric about φ = 0.5 (figure 7a), it gives linear segregation velocities
for the large and small grains

wl(φ)=w+ Srφ, ws(φ)=w− Sr(1− φ). (1.4a,b)

The maxima of these velocities are equal in magnitude (figure 7c), and so (1.2) is
unable to capture the asymmetry measured by van der Vaart et al. (2015). In order
to model the asymmetric behaviour between large and small grains, Gajjar & Gray
(2014) introduced a new class of flux functions with the following properties: (i) F(φ)
is skewed towards φ = 0, with a maximum occurring at 0< φmax < 1/2; (ii) F(φ) is
normalised to have the same amplitude as the quadratic flux (1.2); and (iii) F(φ) has
at most one inflexion point φinf in the interval (φmax, 1). Although there are other ways
of normalising the class of flux functions, e.g. by the area, there were no qualitative
differences between the different methods. The simplest flux function fitting all of the
above requirements is the cubic form

F(φ)= Aγφ(1− φ)(1− γφ), (1.5)

where γ is the asymmetry parameter and Aγ is a normalisation constant. Note that the
limit γ→ 0 of (1.5) recovers the symmetric quadratic flux (1.2). For small amounts of
asymmetry, 0 6 γ 6 0.5, F(φ) is convex up (Clapham & Nicholson 2009), whilst for
greater amounts of asymmetry 0.5<γ 6 1, F(φ) is non-convex with a single inflexion
point

φinf = 1+ γ
3γ

. (1.6)

As shown in figure 7(c), the cubic functions (1.5) are able to reproduce the
asymmetric behaviour that a small particle will percolate down more quickly at
low φ (figure 7e) than a large particle rises upwards at high φ (figure 7g). In
addition, figure 7(b) shows how the presence of an inflexion point (1.6) means that
the chord joining (φ, F(φ)) with (1, 0) initially has an increasing gradient as φ
increases from 0 to φM, and a decreasing gradient thereafter. Thus, the non-convex
flux functions display a maximum in the large particle velocity at an intermediate
concentration φM (figure 7f ). This behaviour will be known as the collective motion
of the large particles.

Gajjar & Gray (2014) were able to examine the influence of asymmetry on the
segregation process by constructing exact solutions to the non-diffuse (Dr = 0) hyper-
bolic segregation equation (1.1) using the method of characteristics (e.g. Whitham
1974; Billingham & King 2001). Concentration φ is constant along characteristic
curves, which are also simply known as characteristics. The characteristics combine
to form distinct features in the solution, such as rarefaction fans, shocks, semi-shocks
and compressions, with physical definitions of these features provided in appendix
A. Characteristics may diverge and form an expansion fan, with a smoothly varying
concentration field, or converge and form a shock with a sharp jump in concentration
from the rearward (−) side to the forward (+) side. The propagation of the shock
surface zs(t, x, y) is governed by

∂zs

∂t
+ u

∂zs

∂x
+ v ∂zs

∂y
−w=−Sr

JF(φ)K
JφK

, (1.7)
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(e) ( f ) (g)

(a) (b)

(c) (d )

0 1.0 1.0
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0.5 0.5

0.5 0.5

Quadratic

FIGURE 7. There is an intrinsic geometric relationship between the segregation flux F(φ) shown
in (a), and its segregation velocities wν (1.3) shown in (c). At any concentration φ, the gradient of
the chords (straight line segment) joining (φ, F(φ)) with (1, 0) and (0, 0) are proportional to the
velocities (1.3) of the large and small particles, respectively. These chords are illustrated in (b) for
φ= φmax = φR. The quadratic flux (1.2) is symmetric about φ= 0.5, and thus gives linear segregation
velocities (1.4) that have the same magnitude. The cubic flux is skewed towards φ = 0 with a
maximum occurring at 0<φmax = φR < 1/2, and is normalised by (2.8) to have the same amplitude
as the quadratic flux. This gives asymmetric segregation velocities, with a single small particle (e)
having a greater velocity that a single large particle (g). For higher amounts of asymmetry, measured
by the asymmetry parameter γ , the cubic flux has an inflexion point at φinf = (1+ γ )/3γ . It is this
inflexion point which causes the large particle velocity to have a peak at an intermediate concentration
φM, with large particles moving quickest when in close proximity to other large particles ( f ). (d) The
image point φo (1.8) of concentration φ is defined as the point at which the gradient of the tangent
to the flux function F′(φo) is equal to the gradient of the chord joining φ to φo on F. These
pairs of concentrations {φ, φo} (filled black circles) cause the formation of semi-shocks, where only
the characteristics of concentration φ collide with shock on one side, whilst the characteristics of
concentration φo lie tangential to the shock on the other side. Two pairs of concentrations {1, 1o=φM},
and {φE, φ

o
E = 1} (open circles) are particularly important in the solutions, with the chords tangential

at φ = φM and φ = 1 respectively. Note that the segregation flux in (b) and (d) is the cubic flux
(1.5) with γ = 0.9.
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with ‘jump’ brackets Jf K = f+ − f− denoting the discontinuity in f across the shock
(Gray, Shearer & Thornton 2006). Note that the right-hand side of (1.7) is proportional
to the gradient of the chord on flux F(φ) between φ = φ− and φ = φ+ (Gajjar &
Gray 2014). The characteristics usually collide with both sides of a shock, but the
non-convex cubic flux functions give rise to a special type of shock, known as a
semi-shock (Rhee, Aris & Amundson 1986), where characteristics only collide with
one side of the shock and are tangential to it on the other. The image point φo of
concentration φ is defined as the point at which the gradient of the tangent to the
flux function F′(φo) is equal to the gradient of the chord joining φ to φo on F, with
the shock condition (1.7) giving the relation

F′(φo)= F(φ)− F(φo)

φ − φo
. (1.8)

By this definition, the characteristics of concentration φo lie tangential to the shock,
whilst the characteristics of concentration φ collide with the other side. For the
cubic flux function (1.5), the relationship (1.8) between concentrations φ and φo

simplifies to

φo = 1
2

(
1+ γ
γ
− φ

)
. (1.9)

An example pair of concentrations {φ, φo} is shown with closed black circles in
figure 7(d). It is possible that the characteristics of concentration φo may collide with
another semi-shock; characteristics of concentration (φo)o = φoo would lie tangential
to this semi-shock on the other side. An example of the relationship between φ,
φo and φoo is illustrated in figure 8. Two pairs of concentrations {1, 1o = φM}, and
{φE, φ

o
E = 1} are of particular importance in the exact solutions, with

1o = φM = 1
2γ

and φE = 1− γ
γ

, (1.10a,b)

using the short hand notation 1o=φo|φ=1. As shown by the open circles in figure 7(d),
the chord between (φM, F(φM)) and (1, 0) is tangential to the segregation flux F at
φ = φM, whilst the chord between (φE, F(φE)) and (1, 0) is tangential to F at φ = 1.
Concentration φM has the physical significance that it is the concentration at which the
large particles reach their maximum velocity and is important in the solution structure
described in § 2.2, whilst concentration φE is important in the structure described in
§ 2.3, and determines which of the two non-convex solutions is formed.

Tunuguntla, Bokhove & Thornton (2014) showed that asymmetry causes the
distance for complete segregation of an initially homogeneous mixture to become
dependent on the initial conditions, and Gajjar & Gray (2014) specifically found the
distance to be dependent on the inflow concentration, with a higher proportion of
fines increasing the final segregation distance. In addition, the decreasing large particle
velocity at higher concentrations causes semi-shocks to form, where large particles
take longer to rise to the upper layer. This creates a stronger dependence of the final
segregation distance on the inflow concentration for both homogeneous and normally
graded inflow profiles, similar to the linear relationship reported by both Staron &
Phillips (2014) and van der Vaart et al. (2015). In particular, van der Vaart et al.
(2015) were able to fit their data to a non-convex cubic flux with γ = 0.89, which
also matched their experimental observation of a peak in the large particle velocity
around φ= 0.55. It is also interesting that asymmetric segregation flux functions arise
naturally in the work of Gray & Ancey (2015), which extends the model of Gray &
Chugunov (2006) to account for differences in both particle size and particle density.
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 0

0.25

1.00

FIGURE 8. A sketch showing the relationship between φR, φo
R and (φo

R)
o = φoo

R for the
cubic flux with γ = 0.9 (see (1.5)). The dash-dotted line shows that the chord joining φR
to φo

R is tangential to the flux function at φo
R, whilst the dashed line shows that the chord

joining φo
R with φoo

R is tangential to the flux function at φoo
R . These points are important

in the construction of the ‘lens-tail’ structure in § 2.3.

1.4. Breaking size-segregation waves
One of the strengths of the continuum theory is its ability to reveal the structure
and development of the recirculation zone that plays a vital role in the formation
of bouldery fronts (Thornton & Gray 2008; Gray & Ancey 2009; Johnson et al.
2012). The simplest recirculation structure arises in the case of steady uniform flow
(Pouliquen 1999b; Rognon et al. 2007; Forterre & Pouliquen 2008), in which the
flow thickness h is constant. The combination of the propensity of the avalanche to
form an upward coarsening size distribution through particle size segregation and the
shear profile

u= (u(z), 0, 0), (1.11)

means that a monotonically decreasing interface separating large particles above
from small particles below (figure 9a) will continually steepen as fine grains are
sheared over the top of coarse grains (figure 9b). The interface eventually breaks in
finite time (figure 9c, Gray et al. 2006), forming a recirculation zone (figure 9d) in
which the large grains lying immediately below small grains are resegregated back
towards the surface, and then swept downstream by the shear velocity (Thornton
& Gray 2008; Gray & Kokelaar 2010a,b). The similarity with classical breaking
waves formed when an air–water interface steepens and breaks (Basco 1985; Shand
2009) led Thornton & Gray (2008) to refer to the propagating recirculation zone as
a breaking size-segregation wave.

The bulk velocity field (1.11) implies that the segregation equation (1.1) reduces to

∂φ

∂t
+ ∂

∂x
(φu(z))− ∂

∂z
(SrF(φ))= 0. (1.12)

Numerical solutions to (1.12) using a simple TVD Lax–Friedrichs shock-capturing
finite volume scheme (Yee 1989; Tóth & Odstrčil 1996; LeVeque 2002) show that
the breaking size-segregation wave initially has a complex structure (figure 9d) that
oscillates back and forth in time like a spinning rugby ball (Thornton & Gray 2008).
Exact solutions for the structure have only been derived for the early stages of wave
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FIGURE 9. Numerical solutions of the segregation equation (1.12) in a steady uniform
flow with a quadratic flux (1.2) show that a monotonically decreasing interface between
large and small grains (a) continually steepens in time (t = 0.0) (b) as small particles
are sheared over the top of large particles (t = 0.5). This interface breaks in finite time
(t= 1.0) (c) and forms a recirculation zone (t= 1.5) (d), in which the large particles rise
upwards towards the surface as they are resegregated before being sheared back towards
the front. The recirculating zone has a complex ‘breaking-wave’ structure that oscillates
in time, however the oscillations exponentially decay and the structure tends towards a
steady state. (e) The steady breaking wave (Thornton & Gray 2008) for the quadratic flux
function (1.2) exists between the vertical heights Hdown=0.1 and Hup=0.9, and consists of
two expansion fans and two concentration shocks arranged in a ‘lens’-like structure. The
two expansion fans are ABCA centred at point A and CDAC centred at point C, with
individual characteristic curves shown with thin solid lines. The edge of the expansion
fans are the φ = 1 and φ = 0 characteristics, which lie along AB and CD, respectively,
and are shown with thick dashed lines. The two shocks are BC and DA, and are shown
with thick solid lines. However, this structure is unable to replicate the slow movement
of large particles upstream of the main recirculation region that was seen in figure 6.

breaking (McIntyre et al. 2007), however, the simulations show that oscillations are
transient and exponentially decay, with the structure tending towards a steady state.
Thornton & Gray (2008) generated an exact solution for the steady wave with the
quadratic flux (1.2). As shown in figure 9(e), it consists of two expansion fans and
two concentration shocks arranged in a ‘lens’-like structure. In general, the breaking
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wave forms between the two vertical heights z=Hdown and z=Hup, and propagates at
a speed uwave that is equal to the mean speed between these heights,

uwave = 1
Hup −Hdown

∫ Hup

Hdown

u(z) dz. (1.13)

Note that the recirculation zone within the moving-belt flume in § 1.1 occupies the
entire height, hence Hdown = 0 and Hup = 1. Since the velocity u(z) is monotonically
increasing, the breaking wave propagates faster than the basal velocity but slower
than both the surface velocity and the front velocity ufront (Gray & Ancey 2009).
At a height z = zR, the bulk velocity is equal to uwave. Above zR, u(z) > uwave, and
so material is swept towards the breaking wave from the left, whilst for z < zR,
u(z) < uwave and so material flows towards the breaking wave from the right. The
change in flow direction relative to the ‘lens’ at z = zR is crucial, and thus both
expansion fans are initiated at this height, centred at points A and C. The φ = 1
characteristic lies between points A and B, whilst the φ = 0 characteristic lies
between points C and D. Two concentration shocks join point B with C and point
D with A, respectively. Although the upper portion of the ‘lens’ ABCA contains
lower concentrations than the lower portion of the ‘lens’ CDAC, the positions of the
characteristics, expansion fans and shocks are rotationally invariant about the centre
of the lens. This is a direct result of the symmetry of the quadratic flux (1.2) about
φ = 0.5.

Gray & Ancey (2009) derived the structure of the steady-state recirculation zone
in a non-uniform depositing flow that was reconstructed from a travelling wave
solution to the depth-averaged avalanche equations (Savage & Hutter 1989; Pouliquen
1999a,b; Wieland, Gray & Hutter 1999; Gray, Tai & Noelle 2003). They found that
the breaking wave also consisted of two expansion fans and two shocks arranged
in a ‘lens’, but surrounding a central ‘eye’ of constant concentration. The wave is
located at a unique position behind the flow front and determines the concentration
deposited within the basal layer. The model was able to qualitatively describe the
features of their experimental two-dimensional depositing flow constrained by lateral
side walls, namely the coarse-grained flow front, the rapidly moving large particles
on the surface and the static layer of coarse grains at the base sandwiching an
intermediate layer of fine grains. The experiments, were, however, too grainy to
resolve the finer structure of the breaking wave.

In the absence of the two-dimensional side-wall restrictions, Johnson et al. (2012)
numerically solved for the structure of the recirculation zone on the centreline of
a three-dimensional front, which has a more elaborate ‘breaking-wave structure’.
Numerical solutions suggest that both the characteristic curves and the particle paths
continually spiral inwards, because of the sidewards advection of mass into the lateral
levees. The exact analytic structure of the three-dimensional recirculation zone is still
proving illusive.

Figure 6(e) shows a breaking-wave structure using the simple asymmetric cubic
model (1.5) from § 1.3. As with the structure of the symmetric flux in figure 9,
the asymmetric wave also has a ‘lens’-like structure towards the downstream end.
The asymmetry also causes a new upstream ‘tail’ to be produced, through which a
few large particles recirculate slowly. Although this behaviour is very similar to the
individual particle motion observed in experiments and simulations in § 1.1, the shape
and structure of the ‘tail’ region are qualitatively different. There are a number of
other factors present within the moving-bed flume set-up used in both the experiments
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and simulations that are unaccounted for by the simple theory. Streamwise spatial
variations in the velocity field, diffusive remixing and the differential friction of the
two particles on the moving base may all have an influence on the ‘tail’ shape. The
size of the system and finite-size effects may also contribute to the discrepancy in
the ‘tail’ structure. Further experimental work and extensive simulations are currently
being conducted in order to understand more about the slow particle movement
through the ‘tail’. Nevertheless, without any knowledge of the exact shape of the
segregation flux function in this environment (Gajjar & Gray 2014), the fact that
a simple asymmetric cubic flux produces a ‘tail’ means that it is of interest to
understand the derivation and particle paths. This paper examines the effect of an
asymmetric segregation flux function (Gajjar & Gray 2014; van der Vaart et al. 2015)
on both the structure of a two-dimensional breaking size-segregation wave, and the
particle recirculation within it.

2. Steady-state structure of the travelling breaking wave
The simplest steady-state breaking wave occurs under steady uniform flow (§ 1.4),

and exists between the vertical heights z = Hdown and z = Hup. The wave propagates
forwards with velocity uwave, and it is convenient to transfer to a (Lagrangian)
reference frame translating with the recirculation zone by employing the change of
variables

t̂= Sr

Hup −Hdown
t, x̂= Sr

Hup −Hdown
(x− uwave t), ẑ= z−Hdown

Hup −Hdown
. (2.1a−c)

At steady state, the wave is stationary in this frame. The wave has also conveniently
been stretched to lie between ẑ = 0 and ẑ = 1, whilst the Sr parameter dependence
has been removed. The segregation equation (1.12) becomes a simple quasi-linear
equation

û
∂φ

∂ x̂
− ∂

∂ ẑ
F(φ)= 0, (2.2)

where the relative velocity û= u− uwave. Equations (1.11) and (2.1) also simplify the
shock condition (1.7) to give

û
∂ ẑs

∂ x̂
=−JF(φ)K

JφK
. (2.3)

Equation (2.2) may be solved using the method of characteristics (e.g. Whitham 1974).
The analysis is simplified by mapping to velocity-integrated coordinates (ξ , ψ)

ξ = x̂, ψ(ẑ)=
∫ ẑ

0
û(ẑ′) dẑ′. (2.4a,b)

Under this transformation, (2.2) becomes

∂φ

∂ξ
− ∂

∂ψ
F(φ)= 0, (2.5)

with the concentration φ taking the constant value φλ on straight line characteristics
of gradient

∂ψ

∂ξ
=−F′(φλ)=−Aγ

(
3γφ2

λ − 2(1+ γ )φλ + 1
)
. (2.6)
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The shock condition (2.3) also reduces to

dψ
dξ
=−JF(φ)K

JφK
. (2.7)

Transformation (2.4) splits the domain into two sections, which are separated by
the no-mean-flow line ẑ= ẑR. In the lower domain, ψ decreases from ψ = 0 at z= 0
to ψ = ψR < 0 at ẑ= ẑR, with both the bulk flow and time-like direction to the left,
whilst in the upper domain ψ increases from ψ =ψR at ẑ= ẑR to ψ = 0 at ẑ= 1, with
the bulk flow and time-like direction to the right. The characteristics in each domain
can be calculated independently, with the concentrations matched across ẑ= ẑR.

For the cubic flux (1.5), the characteristics form three distinct breaking-wave
structures for different values of asymmetry parameter γ , as shown in figure 10.
A ‘lens’-like structure (figure 10a) that is very similar to that of Thornton & Gray
(2008) is formed for convex flux functions with low amounts of asymmetry (γ 6 0.5).
The only differences between the two structures are that the top of the convex ‘lens’
is shifted to the right because of large particles rising at a slower rate than the
percolating fines, and that the structures are no longer rotationally invariant. The
symmetric structure of Thornton & Gray (2008) is, however, recovered in the limit
γ → 0. The new ‘lens’ structure derivation presented here is implicit in terms of the
small particle concentration φ, and so is valid for not only the quadratic (1.2) and
cubic fluxes (1.5), but also other convex asymmetric flux functions such as those of
Marks, Rognon & Einav (2012) and Tunuguntla et al. (2014). A second ‘lens’-like
structure (figure 10b) is formed for non-convex flux functions with low amounts of
asymmetry (0.5 < γ 6 Γ where Γ = (5 + √5)/10). The top of the ‘lens’ is shifted
further to the right as compared to the convex lens, and an additional semi-shock is
found in the upper region. A new ‘lens-tail’ structure (figure 10c) arises for larger
amounts of asymmetry (Γ <γ 6 1). There is a large difference between the speeds of
large and small particles, and additionally collective motion is observed, where large
particles preferentially rise together in a group (van der Vaart et al. 2015). These
combine to produce an additional ‘tail’-like region to the left of the ‘lens’ where a
few large particles rise very slowly and are swept a long way downstream. Each of
these structures is examined in more detail below.

2.1. Convex ‘lens’ structure
First consider the ‘lens’ structure of the convex flux when γ 6 0.5. The ‘lens’ is
formed from two shocks BC and DA and two expansion fans ABCA and CDAC, as
shown in figure 10(a) for γ = 0.35. The front of the breaking wave is positioned at ξC,
and as F′(φmax)= 0, the φ = φmax characteristic is horizontal along the no-mean-flow
line ẑ= ẑR. Concentration φmax will thus be known as φR throughout the remainder of
this paper. Note that the definition of the asymmetric flux function in § 1.3 implies
that

F(φR)= 1/4. (2.8)

Within the lower domain ẑ < ẑR, rarefaction fan CDAC is centred at point C with
concentrations in the range [0, φR]. From (2.6), each characteristic of the rarefaction
fan is given by

ψ =ψR − F′(φ)(ξ − ξC). (2.9)
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(a)
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(c)
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FIGURE 10. Schematic diagrams of the exact solutions to illustrate the breaking-wave structures.
The characteristic curves are shown in transformed coordinates (ξ , ψ), with transformation (2.4)
splitting the domain into two regions separated by the no-mean-flow line ẑ= ẑR, ψ = ψR. In the
lower region (ẑ< ẑR), the bulk flow and the time-like direction are both to the left, whilst in the upper
region (ẑ> ẑR), they are both to the right. Three different breaking-wave structures are formed for
different values of the asymmetry parameter γ . A ‘lens’-like structure is formed for both convex flux
functions, 0< γ 6 0.5, and non-convex flux functions with 0.5< γ 6 Γ , as shown for γ = 0.35 and
γ = 0.65 in (a) and (b), respectively. The difference between the two is that the outer characteristic
of the rarefaction fan AB becomes a semi-shock with non-convex flux functions in (b). A ‘lens-tail’
structure is formed for higher values of asymmetry, Γ < γ 6 1, as shown for γ = 0.9 in (c). The
characteristics of the pure phases of large and small particles are shown with thin dashed straight
lines, whilst the characteristics within the breaking wave are shown with thin solid straight lines.
Thick solid lines indicate shocks, thick dash-dot lines represent a semi-shock whilst thick dashed
straight lines mark the edge of an expansion fan or compression wave. None of the above structures
with γ > 0 have rotational symmetry about the centre of the lens. Contoured plots of these solutions
are shown in figure 12, in physical (x, z) coordinates.
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The φ = 0 characteristic CD separates the breaking wave from the region of large
particles downstream, and reaches the bottom of the wave at point D, where ψ = 0
and ξ = ξD

ξD = ξC + ψR

F′(0)
. (2.10)

A sharp concentration shock DA separates the breaking wave (φ− = φ) from the
upstream region of small particles (φ+ = 1), with gradient given by (2.7)

dψ
dξ
= F(φ)

1− φ . (2.11)

Following Gajjar & Gray (2014), a differential equation governing the downstream
position of shock DA may be derived in terms of the small particle concentration φ.
Using the chain rule, the shock gradient (2.11) may be written as

dψ
dφ
= F(φ)

1− φ
dξ
dφ
. (2.12)

The rarefaction characteristics (2.9) which govern the concentration on the lower side
of the shock (φ− = φ) may be differentiated with respect to φ to give

dψ
dφ
=−F′′(φ)(ξ − ξC)− F′(φ)

d
dφ
(ξ − ξC). (2.13)

Equating (2.12) and (2.13) yields an ordinary differential equation (ODE) for the
shock path DA, which may be written as

d
dφ

[(
F(φ)+ (1− φ)F′(φ)) (ξ − ξC)

]
= 0. (2.14)

The above sequence of steps to combine (2.9) and (2.11) into (2.14) is important and
will be used throughout this paper to derive equations for shocks and particle paths.
Shock DA starts from point D where φ = 0, and so (2.14) can be integrated to give
the implicit position of the shock as

ξ = ξC + ψR

F(φ)+ (1− φ)F′(φ), (2.15)

where the concentration φ ∈ [0, φR] in the rarefaction fan is used to parametrise the
shock path, and the height ψ = ψ(φ, ξ) is given by (2.9). When φ = φR, shock DA
meets the no-mean-velocity line ẑ= ẑR at point A, where ψ =ψR and ξ = ξA

ξA = ξC + ψR

F(φR)
. (2.16)

There is also a rarefaction fan ABCA centred at point A in the upper domain (ẑ> ẑR),
with characteristics

ψ =ψR − F′(φ)(ξ − ξA), (2.17)
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for φ ∈ [φR, 1]. The φ = 1 characteristic AB separates the left-hand edge of the
breaking wave from the small particle region upstream and reaches the top at point
B, where ψ = 0 and

ξ = ξB = ξA + ψR

F′(1)
. (2.18)

Shock BC exists between points B and C, and separates the rarefaction fan
characteristics within the breaking wave (φ− = φ) from the pure large particle
phase downstream (φ+= 0). Combining (2.7) and (2.17) in the same manner as (2.9)
and (2.11) above yields the governing differential equation for the streamwise shock
position

d
dφ

[(
F(φ)− φF′(φ)

)
(ξ − ξA)

]
= 0, (2.19)

which may be integrated with the initial condition that the shock starts from point B
(where ψ = 0 and φ = 1) to give the implicit downstream position of the shock as

ξ = ξA − ψR

F(φ)− φF′(φ)
. (2.20)

This is valid for concentrations in the range φ ∈ [φR, 1], with the height of the shock
given by (2.17). Shock BC propagates downwards until φ = φR, where it meets the
no-mean-flow line ẑ= ẑR at point C with downstream coordinate

ξC = ξA − ψR

F(φR)
. (2.21)

This is consistent with (2.16), closing the structure of the breaking wave.
As the asymmetric flux functions are normalised through (2.8) so that their

maximum value is the same as that of the quadratic flux, (2.16) and (2.21) imply
that the ‘lens’ has a constant length of −4ψR, which is identical to Thornton & Gray
(2008). However, the result of the asymmetry is that both points B and D are shifted
to the right as compared to the quadratic flux. This means that the characteristics in
the upper and lower portions of the ‘lens’ are no longer rotationally invariant about
the centre of the lens.

2.2. Non-convex ‘lens’ structure
The ‘lens’ structure for asymmetric flux functions with small amounts of non-
convexity, 0.5<γ 6Γ , is similar to the convex ‘lens’ structure of § 2.1. However, as
explained in § 1.3, the non-convexity causes the large particles to display collective
motion, with the maximum large particle velocity occurring at concentration φM.
This causes a slight difference in the upper domain, and an example of the structure
is shown in figure 10(b) for γ = 0.65. The characteristics of the rarefaction fan
ABCA still satisfy (2.17), but for φ ∈ [φR, φM]. A semi-shock AB now separates
the rarefaction fan from the small particle region upstream, and is equivalent to the
φ = φM characteristic. Point B thus has downstream position

ξB = ξA + ψR

F′(φM)
, (2.22)

which is shifted even further to the right. Shock BC still satisfies (2.20), but with
concentrations in the range φ ∈ [φR, φM]. The remainder of the structure is the same
as § 2.1 and the length of the ‘lens’ remains unaffected.
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2.3. ‘Lens-tail’ structure
For larger amounts of asymmetry, Γ < γ 6 1, the greater difference between the
maximum speeds of large and small particles and the collective motion of coarse
grains combine to produce a new ‘lens-tail’ structure, shown in figure 10(c) for
γ = 0.9. The structure shares some similarities with the structure for normally graded
inflow with an asymmetric flux derived by Gajjar & Gray (2014). A rarefaction
fan CDEAC occurs in the lower domain, with characteristics given by (2.9) for
φ ∈ [0, φR]. However, the upstream region of small particles (φ+ = 1) is separated
from the rarefaction fan (φ−=φ) by a shock DE, together with a semi-shock EA that
lies adjacent to a non-centred expansion fan EFAE. This non-centred expansion fan
forms the lower portion of the ‘tail’. Shock DE satisfies (2.15), but with φ ∈ [0, φE]
where φE is defined in (1.10b). Point E has coordinates (ξE, ψE) given by (2.15) with
φ = φE

ξE = ξC + ψR

F(φE)+ (1− φE)F′(φE)
= ξC + ψRγ

2

Aγ (2γ − 1)3
, (2.23a)

ψE =ψR − F′(φE)(ξE − ξC)=ψR
(1− γ )2(3γ − 1)

(2γ − 1)3
. (2.23b)

Semi-shock EA separates each rarefaction characteristic φ− = φ in CDEFC from its
image point concentration characteristic φ+=φo in EAFE. Using the definition of the
image point concentration φo (1.9), the shock gradient (2.7) and the equation of the
rarefaction characteristics (2.9) can be manipulated in a similar manner to (2.9) and
(2.11) to give a first-order differential equation for the semi-shock path

1
ξ − ξC

dξ
dφ
= F′′(φ)

F′(φo)− F′(φ)
=− 8γ

3γφ − (1+ γ ) . (2.24)

For the cubic flux, this equation is separable and can be integrated exactly given that
the semi-shock starts from point E

ξEA = ξC + ψRγ
2

Aγ

(
256(

2γ − 1
)(

3γφ − (1+ γ ))8

)1/3

, (2.25a)

ψEA = ψR − F′(φ)(ξEA(φ)− ξC), (2.25b)

with concentration φ ∈ [φE, φR]. Point A lies at the end of the semi-shock (2.25) on
the no-mean-flow line ẑ= ẑR with φ = φR, and thus has downstream coordinate

ξA = ξC + ψRγ
2

Aγ

(
256

(2γ − 1)(γ 2 − γ + 1)4

)1/3

. (2.26)

Each of the image point concentration φo characteristics on the forward side (upstream
side as the time-like direction is to the left) of the semi-shock EA lies locally
tangential and forms a non-centred expansion fan in EAFE. Each characteristic has
equation

ψ −ψEA(φ)=−F′(φo)
(
ξ − ξEA(φ)

)
, (2.27)
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F A

G

FIGURE 11. A sketch of the upper part of the ‘lens-tail’ structure, where compression
wave FAGF interacts with the rarefaction fan centred at A to form shock AG. The
concentration change along either side of the shock is governed by (2.32), whilst the
shock position is given by (2.31). Note that the diagram is not to scale and that FG is
not tangential at G.

upon which the concentration has a constant value of φo with φ ∈ [φE, φR]. The
characteristics each meet the no-mean-flow line at ξFA(φ), which is given by equating
(2.25) and (2.27) with ψ =ψR

ξFA = ξC − ψRγ

F′(φo)

(
4(

2γ − 1
)(

3γφ − (1+ γ ))2

)1/3

, φ ∈ [φE, φR]. (2.28)

Point F is the furthest upstream part of the breaking wave and is given by the φo
E

characteristic that is tangential at point E,

ξF = ξC + ψRγ

Aγ (2γ − 1)(1− γ ) . (2.29)

The solution in the upper domain (ẑ> ẑR) matches the lower domain (ẑ< ẑR) along
the no-mean-flow line ψ = ψR. As F′(φR)= 0, the φR characteristic lies horizontally
between points C and A and gives concentration φ = φR, whilst (2.28) governs the
concentration between A and F. A characteristic of concentration φo emanates into
the upper region from each point between F and A

ψ =ψR − F′(φo)
(
ξ − ξFA(φ)

)
, (2.30)

with φ ∈ [φE, φR] implying that φo
R 6 φo 6 1. The φo

R characteristic originates from
A, whilst the φ = 1 characteristic originates from F. All the characteristics form a
compression wave FGAF (Whitham 1974; Rhee et al. 1986); each characteristic has a
steeper gradient than the characteristic immediately to its left, as shown in figure 11.
This is the upper portion of the ‘tail’ region. The ‘lens’ region is formed from an
expansion fan AGBCA centred at A whose characteristics are given by (2.17) with
φR 6 φ 6 φoo

R . These rarefaction characteristics collide with the compression wave
characteristics (2.30) to form a shock AG. A full derivation of the governing equations

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

17
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.170


484 P. Gajjar and others

for the shock is provided in appendix B. The shock coordinates are given implicitly
given by

ξAG(φleft, φright) = F′(φleft)ξ̃FA(φleft)− F′(φright)ξF

F′(φleft)− F′(φright)
, (2.31a)

ψAG(φleft, φright) = ψR − F′(φleft)F′(φright)

F′(φleft)− F′(φright)

(
ξ̃FA(φleft)− ξF

)
, (2.31b)

where ξFA(φ)= ξ̃FA(φ
o), and concentrations φleft and φright on the left (upstream) and

right (downstream) sides of the shock are related by

dφright

dφleft
= F(φleft)− F(φright)− (φleft − φright)F′(φright)

F(φleft)− F(φright)− (φleft − φright)F′(φleft)

×
[

F′(φright)F′′(φleft)

F′(φleft)F′′(φright)
− F′(φleft)− F′(φright)

F′′(φright)

ξ̃ ′FA(φleft)

ξ̃FA(φleft)− ξF

]
. (2.32)

The shock entropy condition (Oleinik 1959; Rhee et al. 1986; Gajjar & Gray 2014)
requires that AG must initially start tangential to the rarefaction fan, and as φleft = φo

R
at point A, (1.9) implies that φright= (φo

R)
o=φoo

R at this point. The relationship between
φR, φo

R and φoo
R is illustrated in figure 8. Equation (2.32) may be numerically integrated

from φleft = φo
R to φleft = 1 to give φright = φG at point G and the coordinates (ξG, ψG)

of point G are given by (2.31). Shock GB separates the upstream region of pure small
particles (φ− = 1) from the rarefaction fan in the ‘lens’ region (φ+ = φ). Combining
(2.7) and (2.17) using the chain rule shows that GB satisfies

d
dφ

[(
F(φ)+ (1− φ)F′(φ)) (ξ − ξA)

]
= 0. (2.33)

The shock starts from point G, and hence (2.33) can be integrated to give

ξGB = ξA + F(φG)+ (1− φG)F′(φG)

F(φ)+ (1− φ)F′(φ) (ξG − ξA) , (2.34a)

ψGB = ψR − F′(φ)
(
ξGB(φ)− ξA

)
, (2.34b)

with φ ∈ [φB, φG]. A final shock BC satisfying (2.19) separates the downstream region
of large particles (φ+= 0) from the rarefaction fan (φ−=φ). Shock BC must meet the
no-mean-flow line at C, where φ= φR, and since ξC− ξA is given by (2.26), equation
(2.19) can be integrated to give

ξBC = ξA − G

F(φ)− φF′(φ)
= ξA − G

Aγφ2(1+ γ − 2γφ)
, (2.35a)

ψBC = ψR − F′(φ)G
F(φ)− φF′(φ)

, (2.35b)
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with φ ∈ [φR, φB] and

G = (ξC − ξA)F(φR)= ξC − ξA

4
= ψRγ

2

Aγ

(
4

(2γ − 1)(γ 2 − γ + 1)4

)1/3

. (2.36)

The shock reaches the top of the ‘lens’ at point B where ψ = 0, and hence (2.35)
determines both φB and ξB.

A requirement for the ‘lens-tail’ solution to form is that point E must reside in
the lower domain, which occurs when φE < φR. Instead, if φE > φR, then point E
would lie in the upper domain and shock DE would continue up to the no-mean-flow
line, forming the non-convex ‘lens’ structure of § 2.2. The transition between the ‘lens’
solution and the ‘lens-tail’ solution thus occurs when point E lies on the no-mean-flow
line ψ =ψR, i.e. when φR = φE. The definition F′(φR)= 0 implies that for the cubic
flux (1.5)

φR = 1+ γ ±√γ 2 − γ + 1
3γ

, (2.37)

and equating this with φE (1.10b) gives the quadratic equation

5γ 2 − 5γ + 1= 0. (2.38)

As the cubic flux (1.5) is non-convex when γ > 0.5, the transition between the non-
convex ‘lens’ and ‘lens-tail’ solutions takes place at the larger of the two roots of
(2.38), namely

γ = Γ = (5+√5)/10. (2.39)

2.4. Solution in physical coordinates
Following Thornton & Gray (2008), transformations (2.1) and (2.4) from (x, z) to
(ξ , ψ) coordinates mean that the steady-state structures shown in figure 10 describe
all of the breaking size-segregation waves that develop under steady uniform flow.
They are valid for waves that exist between all vertical heights Hdown and Hup, for any
constant segregation number Sr and for any monotonically increasing velocity profile
u(z). For example, consider the simple linear velocity profile,

u= α + 2(1− α)z, 0 6 α < 1, (2.40)

where α is the parameter that controls the amount of shear across the layer. The case
of α = 0 represents simple shear with zero basal velocity, whilst α = 1 corresponds
to plug flow. Not only is this the simplest non-trivial velocity field that highlights all
the major features of the breaking-wave structure, but it is also a good leading-order
approximation to the velocity field measured in the (shallow) moving-bed flume
experiments of § 1.1. From (1.13), the breaking wave travels downstream with
velocity

uwave = α + (1− α)(Hup +Hdown), (2.41)

and so the relative downstream velocity û becomes

û= (1− α)(Hup −Hdown)(2ẑ− 1). (2.42)
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The no-mean-flow line ẑR = 1/2 lies halfway between the vertical heights Hdown and
Hup in untransformed variables. Transformation (2.4) means that z and ψ have a
quadratic relation,

ψ = (1− α)(Hup −Hdown)(ẑ2 − ẑ), (2.43)

with the transformed no-mean-flow line ψR = −(1 − α)(Hup − Hdown)/4. Inverting
equation (2.43) gives ẑ as a function of ψ , with the positive and negative roots for
the upper and lower regions, respectively. Figure 12 shows the steady breaking waves
in physical coordinates for linear shear with α= 0.5, Sr= 1, Hup= 0.9 and Hdown= 0.1
for γ = 0.35, 0.65 and 0.9 in (a), (b) and (c) respectively.

2.5. Comparison with solution for the quadratic flux
The asymmetric cubic flux function (1.5) leads to a number of differences in the
structures shown in figure 12 and that of the quadratic flux function (1.2) shown in
figure 9(e). The two ‘lens’-like structures in figure 12(a,b) have a strong similarity to
the symmetric ‘lens’ structure. As the normalisation of the flux function (2.8) implies
that (2.21) is independent of γ , the ‘lens’ length is identical to the quadratic ‘lens’
length (1 − α)(Hup − Hdown)

2/Sr. However, with an asymmetric flux, the ‘lens’
structures have no rotational symmetry. The asymmetry also means the maximum
rise velocity of large particles is less than the maximum percolation velocity of
fines, causing point B to lie further downstream. When Γ < γ 6 1, a few large
particles surrounded by many fines rise very slowly, and so are swept a long way
downstream before recirculating. This causes the additional ‘tail’-like region, and
substantially increases the length of the breaking wave. The colour map shows how
the concentration in the ‘tail’ is very similar to φ = 1 of the surrounding region of
pure small particles, reflecting the very small number of large particles that circulate
slowly through this region. Most of the large particles still rise at a moderate speed
through the ‘lens’ region; however, the small particles percolate down very quickly.
This leaves a higher concentration of coarse grains in the middle of the ‘lens’, shown
by a stronger green hue. Interestingly, the length of this ‘lens’ region in the ‘lens-tail’
structure remains very close to the length of the ‘lens’ structures. Comparing (2.26)
with (2.16) shows that the length of the ‘lens’ within the ‘lens-tail’ structure is, at
most, only 9 % less than the length of the ‘lens’ structure.

3. Recirculating particle motion through the breaking wave
The recirculating motion of the grains can be understood by examining the particle

paths as they pass through the breaking wave. Following Thornton et al. (2006) and
Thornton & Gray (2008), the particle paths of the large (superscript l) and small grains
(superscript s) are given by

dxν

dt
= uν,

dzν

dt
=wν, (ν = l, s). (3.1a,b)

The normal constituent velocities wν are given by (1.3) and the downstream
constituent velocities are assumed to be equal to the downstream bulk velocity
(1.11), us = ul = u. Eliminating the time dependence from (3.1) and employing the
non-dimensionalisation (2.1) gives the non-dimensional particle paths

û(ẑ)
dẑν

dx̂ν
= ŵν(φ), (ν = l, s), (3.2)
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FIGURE 12. The breaking wave that develops between Hup = 0.9 and Hdown = 0.1 is shown in
physical coordinates (x, z) in a frame translating with velocity uwave (1.13). The bulk velocity u(z)
follows a linear shear profile (2.40) with α = 0.5. The three different structures that arise for the
asymmetric cubic flux (1.5) with Sr = 1 are shown in (a–c) for γ = 0.35, 0.65 and 0.9, respectively.
The asymmetry in the large and small particle velocities that result from the asymmetric flux function
causes point B to be swept further downstream in the two ‘lens’-like structures (a) and (b) compared
to the symmetric quadratic flux shown in figure 9(e). These asymmetric velocities are even more
significant in (c), where the slow rise rate of large particles surrounded by many fines means that
some large particles are swept a long way upstream before recirculating. This results in the ‘tail’
region EFGAE. The concentration map reflects how only a small number of large particles recirculate
through this region. Most large particles still rise at a moderate velocity, and recirculate in the ‘lens’
region.
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which simplify further in velocity-averaged coordinates (2.4) to give

dψ l

dξ l
= F(φ)

1− φ ,
dψ s

dξ s
=−F(φ)

φ
. (3.3a,b)

The concentration fields derived in § 2 can be used with (3.3) to calculate the particle
paths through each of the breaking-wave structures.

3.1. Recirculation through the ‘lens’ structures
First consider the recirculation through a breaking wave with a convex ‘lens’ structure
when γ 6 0.5. Suppose a small particle starts at a height ẑs

enter > ẑR, equivalent to
transformed height ψ s

enter. The small grains are moving faster than the breaking wave
in the upper region, and so they are swept downstream to the right before crossing
AB and entering the ‘lens’ at downstream distance

ξ s
enter = ξA + ψ

s
enter −ψR

F′(1)
. (3.4)

Although the local small particle velocity is given by (3.3b), the local concentration
changes through the rarefaction fan ABCA according to characteristics (2.17). These
characteristics may be differentiated with respect to φ as in (2.13), whilst the chain
rule may be used to write the small particle velocity (3.3b) in a similar manner to
(2.12). Combining these equations shows that the small particle motion through the
upper part of the ‘lens’ is governed by ODE (2.19), with ξ s instead of ξ . As the
small particle enters the ‘lens’ at ξ s

enter (3.4) when φ = 1, the motion through ABCA
is given by

ξ s = ξA + ψ s
enter −ψR

F(φ)− φF′(φ)
, (3.5)

with φ ∈ [φR, 1]. The small particle continues along this path until it crosses the no-
mean-flow line AC at

ξ s
AC = ξA + ψ

s
enter −ψR

F(φR)
= ξA + 4(ψ s

enter −ψR), (3.6)

with the last equation a result of the normalisation (2.8). The motion through the lower
region CDAC is similarly governed by velocity (3.3b) and characteristics (2.9), which
combine to give the differential equation

d
dφ

[(
F(φ)− φF′(φ)

)
(ξ s − ξC)

]
= 0. (3.7)

Since the small particle crosses the no-mean-flow line at ξ s = ξ s
AC when φ = φR,

equations (2.21), (3.6) and (3.7) imply that the motion through the lower region
CDAC is given by

ξ s = ξC + ψ s
enter

F(φ)− φF′(φ)
, (3.8)

with φ ∈ [φs
DA, φR]. The small particle exits the breaking wave across DA, with

equations (2.9), (2.15) and (3.8) giving both the concentration φs
DA and the exit

height ψ s
DA.
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Similarly, consider a large particle that starts in the lower region at a height
ẑl = ẑl

enter < ẑR, corresponding to ψ l = ψ l
enter. The large particles initially move slower

than the breaking wave, and so are swept upstream to the left until they meet CD at
distance

ξ l
enter = ξC + ψR −ψ l

enter

F′(0)
. (3.9)

The concentration within the lower part of the ‘lens’ CDAC is governed by
characteristics (2.9) whilst the local velocity is given by (3.3a); these combine
to give differential equation (2.14) with ξ l replacing ξ . With the initial condition
φ = 0 at ξ l = ξ l

enter, the large particle path through CDAC is given by

ξ l = ξC + ψR −ψ l
enter

F(φ)+ (1− φ)F′(φ) . (3.10)

Each large particle crosses the no-mean-flow line AC at distance

ξ l
AC = ξC + ψR −ψ l

enter

F(φR)
= ξC + 4(ψR −ψ l

enter). (3.11)

In the upper part of the ‘lens’, characteristics (2.17) govern the concentration at
a point (ξ , ψ), and can be combined with (3.3a) to give a governing differential
equation that resembles (2.14)

d
dφ

[(
F(φ)+ (1− φ)F′(φ)) (ξ l − ξA)

]
= 0. (3.12)

The initial condition that φ = φR at ξ l = ξ l
AC, along with (2.21) and (3.11) give the

large particle path through ABCA as

ξ l = ξA − ψ l
enter

F(φ)+ (1− φ)F′(φ), (3.13)

where φ ∈ [φR, φ
l
BC]. The large particle exits the breaking wave by crossing shock

BC when φ = φl
BC and ξ l = ξ l

BC. These are found by equating (2.20) and (3.13), with
the exit height ψ l = ψ l

BC given by (2.17). After exiting the breaking wave, the large
particles continue to move downstream at a constant height ψ l

BC.
The particle paths through the non-convex ‘lens’ structure that forms for 0.5<γ 6

Γ are identical to the above, except that the small particles enter the breaking wave
by crossing semi-shock AC (2.17) when φ = φM (1.10a). Thus, the distance ξ s

enter at
which they first enter the ‘lens’ is given by

ξ s
enter = ξA − ψ

s
enter −ψR

F′(φM)
, (3.14)

whilst equation (3.5) governing the motion of the small particles through the upper
region is valid for φ ∈ [φR, φM].

The small particle paths are parameterised by ψ s
enter, and are given implicitly by

(3.4) or (3.14) (for γ 6 0.5 and 0.5<γ 6Γ respectively), (3.5), (3.6) and (3.8), whilst
the large particle paths are parameterised by ψ l

enter and are given by (3.9)–(3.13). The
paths can be transformed back from velocity averaged (ξ , ψ) variables to physical
(x, z) variables using the results of § 2.4, and are shown in figure 13(a,b) for γ = 0.35
and γ = 0.65, respectively.
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FIGURE 13. The particle paths within the breaking wave are shown superimposed on
top of the concentration field for each of the cases in figure 12. The large particles
are shown using a solid line with a black arrow, whilst the small particles are shown
using a dashed line with a red arrow. The dash-dot line with white arrows shows the
upstream and downstream shocks where large particles propagate along the upper side
and small particles propagate along the lower side. The boundary of the breaking wave,
where particles recirculate between the vertical heights Hup and Hdown, is defined by the
highest small particle path and lowest large particle path.
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B
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z

FIGURE 14. A sketch showing how the small particles may pass through different parts
of the ‘lens-tail’ structure depending on their initial starting height (not to scale). There
are two critical heights Ψ s

A∗ and Ψ s
E∗, corresponding to physical heights Zs

A∗ = z(Ψ s
A∗) and

Zs
E∗ = z(Ψ s

E∗), which define small particle paths that pass through points A and E,
respectively. These paths, along with the path passing through point G, are shown with
thin solid lines and white arrows. The small particles starting at an initial height Ψ s

E∗ 6
ψ s

enter < 0 (physical height Zs
E∗ 6 zs

enter < Hup) just pass through the ‘lens’, whilst those
starting at an initial height ψG 6 ψ s

enter < Ψ s
E∗ (physical height zG 6 zs

enter < Zs
E∗) pass

through the ‘lens’ and the lower portion of the ‘tail’. Small grains starting at Ψ s
A∗ 6

ψ s
enter <ψG (physical height Zs

A∗ 6 zs
enter < zG) pass through the upper portion of the ‘tail’,

the ‘lens’ and the lower portion of the ‘tail’. Finally, small grains starting closest to the
no-mean-flow line ψR <ψ

s
enter <Ψ

s
A∗ (at physical heights zR < zs

enter < Zs
A∗) only recirculate

through the ‘tail’ region. The ‘lens’ and ’tail’ regions are shown with solid colour and
cross-shading, respectively, whilst sample particle paths starting at each of these heights
are shown using thin dashed lines with black arrows. The thick solid lines mark the
boundaries of the breaking wave.

3.2. Recirculation through the ‘lens-tail’ structure
Just like the recirculation within the ‘lens’ structure, the small particle (superscript s)
motion is parameterised by ψ s

enter. As summarised in figure 14, the initial starting
height ψ s

enter determines whether the small grains may pass through only the ‘lens’,
both the ‘lens’ and ‘tail’ regions, or just through the ‘tail’. The small particles
starting at a height Ψ s

E∗ 6 ψ s
enter < 0 would cross shock GB at downstream distance

ξ s
GB, recirculate through the ‘lens’ and exit the breaking wave across DE. Solving
ψGB=ψ s

enter in (2.34) gives the position ξ s
GB at which the particle enters the breaking

wave, and the concentration φs
GB on the downstream side of shock GB at this point.

The motion through the upper portion of the ‘lens’ AGBCA is governed by (2.19),
with ξ s replacing ξ . This can be integrated subject to ξ s = ξ s

GB at φ = φs
GB to give

ξ s = ξA + F(φs
GB)− φs

GBF′(φs
GB)

F(φ)− φF′(φ)
(ξ s

GB − ξA), (3.15)
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where φ ∈ [φR, φ
s
GB] and height ψ s is given by (2.17). The particles cross the no-mean-

flow line AC at a distance ξ s
AC, given by φ = φR in (3.15). This provides the initial

condition for (3.7), governing the motion through the lower part of the ‘lens’ CDEFC,
which integrates to give

ξ s = ξC +
1
4(ξ

s
AC − ξC)

F(φ)− φF′(φ)
, (3.16)

with the concentration φ in the range φ ∈ [φs
DE, φR]. The particles exit the breaking

wave across shock DE at downstream distance ξ s
DE, which is found by equating (3.16)

with (2.15). This also gives the concentration φs
DE, with the exit height ψ s

DE given
by (2.9).

As shown in figure 14, there is a critical initial height Ψ s
E∗ from which a small

particle passes through point E. It is calculated by equating ξ s = ξE in (3.16) and
substituting back into (3.15) and (2.17). Small grains starting below Ψ s

E∗ at an initial
height ψG 6ψ s

enter<Ψ
s

E∗ enter the ‘lens’ across GB, travel through the ‘lens’ according
to (2.19) and (3.16), before passing through the lower part of the ‘tail’ and exiting the
breaking wave across EF. The small particle crosses from the ‘lens’ to the ‘tail’ at
(ξ s

EA, ψ
s
EA) when φ = φs

EA, which are given by equating (3.16) with (2.25). The lower
portion of the ‘tail’ EAFE is spanned by characteristics (2.27) of concentration φo;
following Gajjar & Gray (2014), these may be implicitly differentiated with respect
to φo

dψ
dφo
− dψEA

dφo
=−F′′(φo)ξ − F′(φo)

dξ
dφo
+ d

dφo

(
F′(φo)ξEA(φ)

)
, (3.17)

and combined with (3.3b) using the chain rule to give the inhomogeneous first-order
differential equation

d
dφo

((
F(φo)− φoF′(φo)

)
ξ s
)
=−φo d

dφo

(
ψEA + F′(φo)ξEA(φ)

)
. (3.18)

Integrating by parts with the initial condition φ = φs
EA at ξ s = ξ s

EA gives

ξ s = ξC + g1(φ
s
EA)(ξ

s
EA − ξC)+ g2(φ)− g2(φ

s
EA)

g1(φ)
, (3.19a)

ψ s = ψEA(φ)− F′(φo)(ξ s(φ)− ξEA(φ)), (3.19b)

where φ ∈ [φE, φ
s
EA] and the functions g1(u), g2(u) are defined as

g1(u) = Aγ
4γ

u(1+ γ − γ u)2, (3.20a)

g2(u) = ψRγ

(
4

2γ − 1

)1/3

u
(
3γ u− (1+ γ ))−2/3

. (3.20b)

The final height ψ s
exit = ψ s

EF at which these small particles exit the breaking wave is
given by φ = φE in (3.19).

Small particles starting below ψG will first enter the breaking wave across FG at a
distance

ξ s
FG = ξF + ψR −ψ s

enter

F′(1)
, (3.21)
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and travel through the upper portion of the ‘tail’ FGAF where the concentration is
given by characteristics (2.30). In a similar fashion to (3.17) above, these can be
combined with (3.3b) to give the inhomogeneous differential equation

d
dφo

((
F(φo)− φoF′(φo)

)
ξ s
)
=−φo d

dφo

(
F′(φo)ξFA(φ)

)
. (3.22)

This is closely related to (3.18), and integrating by parts with the initial condition
ξ s = ξ s

FG at φ = φE gives an almost identical form to (3.19a) for the ξ coordinate

ξ s = ξC + g1(φE)(ξ
s
FG − ξC)+ g2(φ)− g2(φE)

g1(φ)
, (3.23a)

ψ s = ψR − F′(φo)(ξ s(φ)− ξFA(φ)). (3.23b)

Whether or not a small particle will travel through the ‘lens’ region is governed
by a second critical initial height Ψ s

A∗, at which a small particle passes through
point A. Small particles starting above this critical height, Ψ s

A∗<ψ
s
enter 6ψG will pass

through the upper portion of the ‘tail’ FGAF following (3.23), with φ ∈ [φE, φ
s
AG].

Concentration φs
AG and coordinates (ξ s

AG, ψ
s
AG) where the particle crosses AG can be

found by equating (3.23) with a numerical form of (2.31) and (2.32). The equivalent
concentration to φs

AG on the right-hand side of shock AG, at ξ = ξ s
AG provides the

initial condition for the motion through the upper part of the ‘lens’ FGBCA given by
(2.19). The particles then pass across AC into the lower ‘lens’ and ‘tail’ regions and
then exit across EF.

The small particles starting below the critical height Ψ s
A∗ at ψR < ψ

s
enter 6 Ψ s

A∗ do
not pass through the ‘lens’, but just recirculate within the ‘tail’. Their motion through
the upper portion of the ‘tail’ FGAF is given by (3.23) with φ ∈ [φE, φ

s
FA] until

they cross FA at ξ s
FA. Concentration φs

FA and position ξ s
FA are both found by solving

ψ s=ψR in (3.23), and provide the initial condition for (3.18) in the lower portion of
the ‘tail’. The particle path replicates (3.19) with φs

FA and ξ s
FA replacing φs

EA and ξ s
EA,

and concentration φ in the range φs
FA 6 φ 6 φE. As previously, the particle exits the

breaking wave across EF at a final height ψ s
EF.

Figure 15 shows how the initial starting height of the large particles (superscript l)
also determines which parts of the breaking wave they pass through. All the large
particles start in the lower domain at a height ψR <ψ

l
enter < 0 (with ẑ< ẑR) and travel

upstream at this height before meeting CD at distance ξ l
enter= ξ l

CD given by (3.9). Upon
entering the breaking wave, the large particles circulate through the lower portion of
the ‘lens’ CDEAC following (3.10). Most of the coarse grains cross AC at a distance
ξ l

AC given by (3.11), with the particle passing through point A (i.e. ξ l
AC= ξA) defining

a critical height Ψ l
A∗

Ψ l
A∗ =ψR + 1

4(ξC − ξA). (3.24)

Most of the large particles initially start above this critical height, ψR <ψ
l
enter <Ψ

l
A∗,

cross AC and follow paths in the upper portion of the ‘lens’ governed by (3.12). The
initial condition that ξ l = ξ l

AC when φ = φR gives the path through the upper portion
of the ‘lens’ AGBCA as
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A
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G
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D

E

z

FIGURE 15. A sketch showing how the large particles may pass through different parts of
the ‘lens-tail’ structure depending on their initial starting height (not to scale). All of the
large grains pass through the ‘lens’ region (shown with solid colour), but the large grains
starting below the critical height Ψ l

A∗ also pass through the ‘tail’ region (cross-shaded).
Critical height Ψ l

A∗ corresponds to the physical height Zl
A∗ = z(Ψ l

A∗). Two particle paths
are shown with thin dashed lines and black arrows, whilst the particle path for the critical
height Ψ l

A∗, which passes through point A, is shown with a thin solid line and white
arrows. The structure of the breaking wave is shown with thick solid lines.

ξ l = ξA + ψR −ψ l
enter + 1

4(ξC − ξA)

F(φ)+ (1− φ)F′(φ) , (3.25a)

ψ l = ψR − F′(φ)(ξ l − ξA). (3.25b)

However, there are a few large particles that start below the critical height Ψ l
A∗ <

ψ l
enter < 0, and cross EA into the ‘tail’ region. Their initial motion through the ‘lens’

CDEAC is given by (3.10) with φ ∈ [0, φl
EA], where concentration φl

EA and the point
of crossing (ξ l

EA, ψ
l
EA) are found by equating (3.10) with (2.25). As with the small

particles, the motion of the large particles through the lower part of the ‘tail’ EAFE
is governed by characteristics (2.27) and local velocity (3.3a), which combine to give
the governing differential equation

d
dφo

((F(φo)+ (1− φo)F′(φo)) ξ l)= (1− φo)
d

dφo
(ψEA + F′(φo)ξEA(φ)). (3.26)

This can be integrated by parts with ξ l = ξ l
EA at φ = φl

EA to give

ξ l = ξC + g3(φ
l
EA)(ξ

l
EA − ξC)+ g4(φ)− g4(φ

l
EA)

g3(φ)
, (3.27a)

ψ l = ψEA(φ)− F′(φo)(ξ l(φ)− ξEA(φ)), (3.27b)
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where φ ∈ [φl
FA, φ

l
EA] and functions g3(u), g4(u) are defined as

g3(u) = Aγ
4γ
(1− u)(1− γ − γ u)2, (3.28a)

g4(u) = ψRγ

(
4

2γ − 1

)1/3

(1− u)
(
3γ u− (1+ γ ))−2/3

. (3.28b)

The coarse grains meet the no-mean-flow line FA at streamwise distance ξ l
FA and

concentration φ=φl
FA, which are found from (3.27b) by solving ψ l=ψR. The motion

through the upper ‘lens’ is governed by a similar differential equation to (3.26)

d
dφo

((
F(φo)+ (1− φo)F′(φo)

)
ξ l
)
= (1− φo)

d
dφo

(
F′(φo)ξFA(φ)

)
, (3.29)

with φ = φl
FA at ξ l = ξ l

FA giving

ξ l = ξC + g3(φ
l
FA)(ξ

l
FA − ξC)+ g4(φ)− g4(φ

l
FA)

g3(φ)
, (3.30a)

ψ l = ψR − F′(φo)(ξ l(φ)− ξFA(φ)). (3.30b)

These grains then cross shock AG at point (ξ l
AG, ψ

l
AG), and move through the upper

portion of the ‘lens’ AGBCA following

ξ l = ξA + F(φl
AG)+ (1− φl

AG)F
′(φl

AG)

F(φ)+ (1− φ)F′(φ) (ξ l
AG − ξA), (3.31a)

ψ l = ψR − F′(φ)(ξ l(φ)− ξA), (3.31b)

where φl
AG is the concentration on the right-hand side of shock AG at (ξ l

AG, ψ
l
AG). The

particles finally cross BC at (ξ l
BC, ψ

l
BC) and exit the breaking wave at this height.

Like the recirculation in the ‘lens’, the small and large particle paths are
parameterised by ψ s

enter and ψ l
enter, respectively. The critical heights Ψ s

E∗, Ψ
s

A∗ and
Ψ l

A∗ determine which of the ‘lens’ and ‘tail’ regions the particles pass through.
A typical set of paths through the ‘lens-tail’ structure is shown in figure 13(c) for
γ =0.9. Despite the ‘tail’ region, the paths of the small particles through the ‘lens-tail’
structure are qualitatively similar to the paths through the ‘lens’ shown in figures
13(a,b). However the additional motion of the large particles through the ‘tail’ region
means that these paths are very different to previous cases. It is useful to analyse
this further by calculating the recirculation times.

3.3. Recirculation times
Using the particle paths calculated in §§ 3.1 and 3.2, it is possible to numerically
calculate the recirculation times for large and small particles to travel through the
domain shown in figure 13. Small particles start at x = −0.44 in the upper domain
z > zR and travel downstream towards the breaking wave. They recirculate within
the breaking wave, before travelling upstream and exiting across x = −0.44 in the
lower domain z< zR. Despite the presence of the ‘tail’ region, there is no qualitative
difference between the small particle recirculation times in any of the solutions.
The large particles start at x = 0.1888 in the lower domain and travel upstream.
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FIGURE 16. Recirculation time for large particles to travel through the region shown
in figure 13. The particles start in the lower domain, downstream of the breaking wave
at x = 0.1888. In a frame translating with the breaking wave, the particles are swept
upstream towards the wave, recirculate within the wave, before travelling downstream back
to x= 0.1888. The recirculation time increases significantly as zl

enter approaches 0.5 since
the horizontal velocity û(z) tends to zero. The recirculation time also increases significantly
for the ‘lens-tail’ structure as zl

enter→Hdown= 0.1 (inset), with large particles recirculating
very slowly through the ‘tail’ region at the rear. This behaviour is unique to the ‘lens tail’
and it not found for any of the ‘lens’ structures.

They recirculate in the breaking wave, before travelling back downstream and exiting
the region in the upper domain at x= 0.1888. The recirculation times for these paths
are shown in figure 16. The recirculation time tends to infinity as zl

enter → 0.5 for
all the structures, since û(z) tends towards zero in this limit. The large particles
spend an increasing amount of time travelling upstream towards the breaking wave
and travelling downstream back towards x = 0.1888 after recirculating. However,
the ‘lens-tail’ structure also shows an increase in the recirculation time in the limit
zl

enter → Hdown, with large particles starting close to Hdown = 0.1 passing through
the ‘tail’. The concentration in the ‘tail’ is very close to φ = 1, hence (1.3a) implies
that the vertical velocity is very low. Close to the no-mean-flow line z = zR, the
horizontal velocity û(z) is very close to zero, so the large particles take a long time
recirculating through the ‘tail’. Although there is a smooth transition between the path
length of a particle starting above Zl

A∗ = z(Ψ l
A∗) and travelling through just the ‘lens’,

and a particle starting below Zl
A∗ that passes through both the ‘lens’ and ‘tail’, there

is a sharp change in the velocity of the latter particle as it crosses EA. This causes
the large increase in the recirculation time at z = 0.1042, with the large particle at
this height passing through both the ‘lens’ and ‘tail’ regions.

4. Conclusions
Debris and pyroclastic flows typically exhibit large particle-rich fronts, which can be

shouldered aside to form levees that laterally confine the flow and enhance its run out.
The coarse grain fronts are able to exist and grow because of a complex recirculation
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zone just upstream of the front, which are known as a ‘breaking size-segregation
wave’. The recirculation zone is established because particle-size segregation enables
overrun large particles to rise back up into the faster moving parts of the flow near
the surface, whilst enabling the small particles that are sheared over the top of the
large to percolate back down into the slower parts of the flow. The primary aim of
this paper has been to examine exact solutions for the structure of the breaking wave
using a continuum model with an asymmetric cubic segregation flux (1.5). The cubic
flux is parameterised by a single parameter γ which controls the difference between
the maximum speed of a single small particle falling through a region of many large
particles and the speed of a large particle rising through a region of many small grains
(Gajjar & Gray 2014; van der Vaart et al. 2015). For 0 6 γ 6 0.5, the segregation
flux is convex (up), whilst for 0.5< γ 6 1, it is non-convex, with the non-convexity
allowing semi-shocks to form.

The method of characteristics is used to derive three fundamentally different
solution structures shown in figures 10 and 12, which are dependent on the amount
of asymmetry γ . Convex flux functions (0 6 γ 6 0.5) give rise to a ‘lens’-like
solution formed of two shocks and two expansion fans. This is very similar to
the ‘lens’ solution of Thornton & Gray (2008); however, there is no rotational
symmetry about the centre of the ‘lens’, and point B at the top of the breaking wave
lies further downstream. Non-convex flux functions with a small amount of asymmetry
(0.5<γ 6Γ = (5+√5)/10) also give a ‘lens’ solution, with the only difference being
that a semi-shock AB separates the upper expansion fan from the upstream region of
small particles, causing the top of the wave to lie even further downstream. Although
the structure of the ‘lens’ is affected by the amount of asymmetry, the ‘lens’ has
a constant length of −4ψR, irrespective of γ . The transformed no-mean-flow height
ψR is only dependent on the velocity profile u(z) and the vertical height of the
wave Hup − Hdown, meaning that the length of the ‘lens’ solution is independent of
the segregation flux. The length is thus the same in both the convex and non-convex
cases, and is equal to the length of the breaking wave for the quadratic flux (Thornton
& Gray 2008). The combination of higher amounts of asymmetry and the collective
motion of large particles for Γ <γ 6 1 produces a new ‘lens-tail’ structure. The ‘tail’
is formed by an additional expansion and compression wave upstream of the ‘lens’,
and significantly increases the total length of the breaking wave. However the length
of ‘lens’ region in the ‘lens-tail’ structure remains very close to the length of the ‘lens’
in the other solutions, i.e. −4ψR.

The precise asymmetric segregation flux must still be determined for the recircula-
ting chute flow regime, but the results of this paper provide the general framework
for deriving the breaking-wave structure. The three structures presented would be
qualitatively the same for other (non-cubic) flux functions that satisfy the conditions
of § 1.3; namely that F(φ) has a maximum at φmax = φR, with 0 < φmax < 1/2 and
F(φmax), and that F has at most one inflexion point in the interval (φmax, 1). The
derivation of the structures is given in a general form, and may be extended to other
flux functions. For example, the derivation of the convex ‘lens’ structure in § 2.1
is more general than that of Thornton & Gray (2008), and can be applied directly
to other convex (non-cubic) flux functions, such as the asymmetric flux functions
presented by Marks et al. (2012) and Tunuguntla et al. (2014). The non-convex ‘lens’
(§ 2.2) would also apply directly to non-convex functions in which φE (1.10b) is
greater than φR. Non-convex functions with φE < φR would produce a ‘lens-tail’
solution that is qualitatively similar to figure 12(c). The analysis would also follow
directly up to (2.24), with numerical integration needed for (2.24)–(2.36).
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The particle paths were calculated implicitly in terms of the local concentration φ
and are shown in figure 13. The small and large particle paths are parameterised by
the initial starting heights ψ s

enter and ψ l
enter, with figures 14 and 15 illustrating the three

critical heights Ψ s
E∗, Ψ

s
A∗ and Ψ l

A∗ for the ‘lens-tail’ structure that determine which of
the ‘lens’ and ‘tail’ regions the particles pass through. Small particles starting above
Zs

E∗ = z(Ψ s
E∗) and small particles starting below Zs

A∗ = z(Ψ s
A∗) pass through only the

‘lens’ and ‘tail’ regions, respectively, whilst small particles starting in Zs
A∗6 zs

enter 6Zs
E∗

pass through both the ‘lens’ and ‘tail’ regions. Some small particles are able to
recirculate only in the ‘tail’ region, but the large particles always travel through
the ‘lens’ region. The majority of the large particles start above Zl

A∗= z(Ψ l
A∗) and just

travel through the ‘lens’, but a few large particles start below this height, and also pass
through the ‘tail’ in addition to the lens. It is the motion of these large particles which
has a significant effect on the recirculation time shown in figure 16. Although the
recirculation time tends to infinity for large particles starting near the no-mean-flow
line z= zR, the motion of large particles through the ‘tail’ in the ‘lens-tail’ structure
also increases the recirculation time significantly for particles starting close to
z= Hdown, with the velocity in the ‘tail’ near the no-mean-flow line close to zero in
both the normal and downstream components.

It was exactly this kind of behaviour that was observed in both the moving-bed
flume experiments and numerical discrete particle method simulations in § 1.1.
Whilst most large particles recirculated quickly at the front, a few large particles
recirculated much more slowly through regions of many small particles upstream,
creating a ‘tail’-like region. The correspondence between this behaviour and the
new ‘lens-tail’ structure for the asymmetric cubic flux (1.5) in figure 6 shows that
the flux function of van der Vaart et al. (2015) gives qualitative agreement in a
very different physical environment, with their reported value of γ = 0.89 producing
a ‘lens-tail’ solution. As the asymmetry is essential for producing a ‘tail’, this paper,
therefore, provides further physical evidence for the asymmetry between large and
small particle segregation speeds, and shows how an asymmetric continuum model
with a cubic flux (Gajjar & Gray 2014; van der Vaart et al. 2015) captures all of the
essential behaviour. The similarity between the physical experiments and numerical
simulations shows that MercuryDPM could be a valuable tool in future research.
Extensive experimental and numerical work is currently under way to analyse the
particle motion within the breaking wave, which may also help to answer some wider
segregation questions that remain unanswered in this framework. For instance, the
robustness of the ‘lens’-length (1−α)(Hup−Hdown)

2/Sr in all three structures suggests
that the recirculating motion in a moving-bed flume could be a useful method of
examining how the non-dimensional segregation coefficient Sr varies with particle-size
ratio. Although this relationship has been deduced from DPM simulations (Thornton
et al. 2012b), an experimental verification is still lacking.
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Appendix A. Features of hyperbolic solutions
This appendix describes some of the features found in solutions to hyperbolic

equations. For further general information on hyperbolic equations, the reader is
referred to Rhee et al. (1986), whilst in particular Gajjar & Gray (2014) provides
further details of deriving exact solutions to segregation problems. Solutions may be
constructed using the method of characteristics (Whitham 1974; Billingham & King
2001), where the concentration φ is constant along characteristic curves, otherwise
known as characteristics. Comparing the (quasi-linear) segregation (2.2),

û
∂φ

∂ x̂
− ∂

∂ ẑ
F(φ)= 0, (A 1)

with the full derivative of φ with respect to an arbitrary variable s

dφ
ds
= dx̂

ds
∂φ

∂ x̂
+ dẑ

ds
∂φ

∂ ẑ
, (A 2)

implies that the concentration φ is constant along characteristics curves given by

dx̂
ds
= û,

dẑ
ds
=−F′(φ). (A 3a,b)

These characteristics become straight lines under the transformation to depth-averaged
velocity (ξ , ψ) coordinates (2.4)

ξ = x̂, ψ(ẑ)=
∫ ẑ

0
û(ẑ′) dẑ′, (A 4a,b)

with concentration φ equal to φλ along lines with constant gradient (2.6)

∂ψ

∂ξ
=−F′(φλ)=−Aγ

(
3γφ2

λ − 2(1+ γ )φλ + 1
)
. (A 5)

Note that (ξ , ψ) coordinates are also streamfunction coordinates (Gray & Ancey
2009). As shown in figure 17(a) characteristics of different concentrations may
collide, leading to the formation of a shock. The shock has gradient (2.7)

dψ
dξ
=−JF(φ)K

JφK
, (A 6)

with the ‘jump’ brackets Jf K= f+− f− mathematically representing the physical jump
in concentration across the interface that is pictured in figure 17(b). Figure 17(c)
shows how characteristics may diverge away from each other in a rarefaction
fan. Physically, this leads to a smoothly varying concentration field, as shown in
figure 17(d). Non-convex flux functions also give rise to a ‘semi-shock’ structure, in
which characteristics lie parallel to the shock on one side, but collide with it on the
other. One such ‘semi-shock’ is pictured in figure 17(e), with figure 17( f ) showing
how there is a smooth variation in the concentration between φR and φM, before a
sharp jump in the concentration from φ = φM to φ = 1. Finally, characteristics may
also converge towards each other, without colliding, leading to the formation of a
compression wave (figure 17g). This also leads to a smoothly varying concentration
field, as shown in figure 17(h). These hyperbolic features are, however, idealised
solutions to the full segregation equation. The stochastic, random-walk nature of
particle motion in real world flows causes diffusive remixing between the two species
that smooths over any sharp discontinuities in concentration that occur at shocks
(Gray & Chugunov 2006; Gray et al. 2015).
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0 0.5 1.0

0 0.5 1.0

0 0.5 1.0

0 0.5 1.0

0 0.5 1.0

(c) (d )

(a) (b)

(e) ( f )

(g) (h)

FIGURE 17. Exact solutions to hyperbolic equations may be constructed using the method
of characteristics. Solutions are constructed by determining the position of characteristics,
or lines upon which the concentration φ is constant, with figures (a,c,e,g) showing the
solutions in (ξ , ψ) coordinates. These solutions may be physically visualised by plotting
the concentration φ as a function of the height ψ at a particular downstream position
ξ0, with sketches shown in figures (b,d, f,h). Characteristics may collide and form a shock
(a), which physically corresponds to a sharp jump in the concentration from φ= 1 below
the shock to φ = 0 above the shock (b). Characteristics may diverge in a rarefaction fan
(c), giving a smoothly varying concentration field from φ = φR to φ = 1 (d). Non-convex
segregation flux functions give rise to semi-shocks, with characteristics lying parallel to
the semi-shock on the lower side, but colliding with it on the upper side (e). There is a
smoothly varying concentration field between φ = φR and φ = φM, with a sharp jump in
the concentration from φ=φM to φ=1 at the height of the semi-shock ( f ). Characteristics
may also converge to form a compression wave (g), which also leads to a smoothly
varying concentration field (h) from φ = φ0 to φ = 1.
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Appendix B. Derivation of equations governing shock AG
Following Rhee et al. (1986), this appendix derives governing equations for

the shock AG, as the concentration changes along both sides of the shock. The
compression wave to the left of shock AG has characteristics of concentration φleft
given by (2.30)

ψ =ψR − F′(φleft)
(
ξ − ξ̃FA(φleft)

)
, (B 1)

where ξ̃FA(φ
o) = ξFA(φ). The rarefaction fan (2.17) to the right of shock AG has

characteristics of concentration φright,

ψ =ψR − F′(φright)(ξ − ξF), (B 2)

whilst the shock condition (2.7) governs the gradient of AG

dψ
dξ
= c(φleft, φright)=−F(φleft)− F(φright)

φleft − φright
. (B 3)

Treating φleft and φright as independent variables and using the chain rule gives

dψ
dξ
= c(φleft, φright)=

∂ψ

∂φleft
+ ∂ψ

∂φright

dφright

dφleft

∂ξ

∂φleft
+ ∂ξ

∂φright

dφright

dφleft

, (B 4)

which, after rearranging, implies that

dφright

dφleft
=−

c(φleft, φright)
∂ξ

∂φleft
− ∂ψ

∂φleft

c(φleft, φright)
∂ξ

∂φright
− ∂ψ

∂φright

. (B 5)

The compression wave and the rarefaction fan meet at the shock, and so (B 1) and
(B 2) govern both the height ψAG and downstream position ξAG of the shock

ξAG(φleft, φright) = F′(φleft)ξ̃FA(φleft)− F′(φright)ξF

F′(φleft)− F′(φright)
, (B 6a)

ψAG(φleft, φright) = ψR − F′(φleft)F′(φright)

F′(φleft)− F′(φright)

(
ξ̃FA(φleft)− ξF

)
. (B 6b)

Differentiating (B 6) gives

∂ξAG

∂φleft
= − F′(φright)F′′(φleft)(

F′(φleft)− F′(φright)
)2

(
ξ̃FA(φleft)− ξF

)+ F′(φleft)

F′(φleft)− F′(φright)
ξ̃ ′FA(φleft), (B 7)

∂ξAG

∂φright
= F′(φleft)F′′(φright)(

F′(φleft)− F′(φright)
)2

(
ξ̃FA(φleft)− ξF

)
, (B 8)

∂ψAG

∂φleft
=

(
F′(φright)

2
)
F′′(φleft)(

F′(φleft)− F′(φright)
)2

(
ξ̃FA(φleft)− ξF

)− F′(φleft)F′(φright)

F′(φleft)− F′(φright)
ξ̃ ′FA(φleft), (B 9)
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∂ψAG

∂φright
= − (F′(φleft))

2F′′(φright)

(F′(φleft)− F′(φright))2
(ξ̃FA(φleft)− ξF), (B 10)

which may be substituted into (B 5) to give (2.32)

dφright

dφleft
= c(φleft, φright)+ F′(φright)

c(φleft, φright)+ F′(φleft)

×
{

F′(φright)F′′(φleft)

F′(φleft)F′′(φright)
− F′(φleft)− F′(φright)

F′′(φright)

ξ̃ ′FA(φleft)

ξ̃FA(φleft)− ξF

}
. (B 11)

As ξFA(φ)= ξ̃FA(φ
o), (2.28) and (1.9) for the cubic flux function give

ξ̃FA(φ)= ξC − ψRγ

F′(φ)((2γ − 1)(1+ γ − 3γφ)2)1/3
, (B 12)

∂ξ̃FA(φ)

∂φ
=ψRγ

F′′(φ)(1+ γ − 3γφ)− 2γF′(φ)
(F′(φ))2((2γ − 1)(1+ γ − 3γφ)5)1/3

. (B 13)

Equations (B 12) and (B 13) may be used with (B 11) to numerically solve for the
changing concentration along the shock path.
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