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Discussion and History of Certain Geometrical Problems
of Heraclitus and Apollonius.

By R. C. ArcuiBaLp, M.A., Ph.D.

(Received 19th March 1910. Read 10th June 1910).

Not the least interesting portions of the wonderful ‘Mathe-
matical Collections” of Pappus are those which reproduce parts
of the vedoes, or the two lost books of Apollonius (247-205 B.c.).
Pappus (c. 300 a.p.) writes':—“ A line is said to verge (using
Heath’s translation?) toward a point if, being produced, it reach
the point,” and among other particular cases of the general problem
he gives the following as treated by Apollonius:

Problem 4: Between two lines, given in position, to place a
straight line given in length and verging toward a given
point.

Problem B: If there be given in position a semi-circle and a
straight line at right angles to the base, to place between
the two lines a straight line of given length and verging to
a corner of the semi-circle.

Problem C : Between the side of a given rhombus and its
adjacent side produced, to insert a straight line of given
length and verging to the opposite corner.

Problem C'is evidently the particular case of problem 4 when
the “corner” is on the bisector of an angle between the given
lines. For the purposes of this paper we shall refer to the rhombus
case of Problem A4 as the Problem of Apollonius. This problem
may be thought of in another way, for it is, roughly, equivalent to
the following :

1 Oollectio, Ed. by Hultsch, Liber VIIL., p. 670. In what follows all
references will be to this edition.

2T, L. HeatH, The Works of Archimedes, Cambridge, 1897, p.c.
Chapter V. (p. c.—cxxii.) of this work is entitled ‘‘On the Problems known
as NETZEIZ.” Hereafter when we quote Dr. Heath it will be with reference
to this chapter.
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Problem D : Given the base of a triangle, the vertical angle
and either the internal or external bisector of the angle, to
construct the triangle.

The particular case of the Problem of Apollonius when the
rhombus is a square was called by Pappus the Problem of Heraclitus.
These are the two problems which are considered in detail in this
paper. Among others, Ghetaldi, Girard, Descartes, Van Schooten,
Huygens, L'Hospital, Newton, Gergonne, and Steiner have treated
them from various points of view. Algebraic solutions lead to
interesting discussion of quadratic and biquadratic equations;
geometric solutions are of great variety and elegance. A number
of Huygens’ results are taken from hitherto unpublished manu-
seripts.*

3 The case of this problem for the internal bisector with the further
(unnecessary) supposition of. given perimeter was proposed for solution in
Leybourn’s Mathematical Reyository, 0.S. No. 12, Dec. 20, 1801, III., 69, and
solved geometrically in No, 14, May 1, 1804, IIIL., 188-9. FRANCOEUR, Cours
Complet de Mathématiques Pures, Paris, 1809, Tome I, p. 309-10 (4th Xd.
1837, I., 356-7), discussed the problem algebraically under the following
form :—(Problem B): From the point S at the extremity of the digmeter of a
circle perpendicular to a chord, EyF,, draw a line SBD such that the part BD
between the chord and arc be of given length. Cf. F.G.M., Exercices de
Géométrie, 4th Ed., Tours and Paris, 1907, p. 170-1, also p. 163, 701. See
also Notes 34, 41.

4 To economise space when indicating references in what follows, I give
here a complete list of the portions of Huygens’ writings which deal with
our problems. Nine pieces are to be found in the Library of the University
of Leyden in the manuscripts ¢ Codex Hugeniorum, No. 12.” Only two of
these have been published, but all the others have been placed at my disposal
through the courtesy of the librarian, Dr S. G. de Vries, and Professor D. J.
Korteweg of the Huygens’ Commission at Amsterdam. The other references
are to three letters to Van Schooten and four problems in De Circuli
magnitudine, eto.

“ Travaux Mathématiques Divers de 1650—Oeuvres Complétes, La Haye,

Tome XI., 1908,

1. “No. IV.,” p. 226-7.
2. ¢ No. VIIL.” p. 239-42.

“ Travaux Mathématiques Divers de 1652 et 1653 ” (MSS. unpublished
at present, although later to appear in Oeuvres Complétes,
Tome XII.

¢ No. IL,” dated 30th Jan. 1652,

“No. IV.,” dated 1652.

“No. VL.,” dated 9th Feb. 1652 and 19th Oct. 1653,
* No. VIL,” dated Feb, 1652.

S 2t
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The discussion is divided into four parts:—I. Related famous
problems and solutions by curves other than circles. II. Algebraic
solutions. III. Ruler and compass solutions. IV. Concluding
remarks.

L

1. The ancients, as Pappus tells us, tried at first to solve the
general problems of the Trisection of an Angle and the Duplication
of the Cube (which is equivalent to the finding of two mean
proportionals between two given unequal straight lines) by means
of the straight line and circle only—means which defined a
problem (possible of solution by them) as ‘“plane.” Their efforts
being futile, they were led to consider many other lines, such as
the Conchoide of Nicomedes, Cissoide, and Conic Sections, and by
means of some of these curves they resolved the two problems
which were accordingly called ¢ solid.”

2. It was Nicomedes (c. 100 B.c.) who made use of the conchoide
to reduce the problem of the Duplication of a Cube® to a “solid”
vevors. The construction (after Pappus) is as follows:—Let
GD, GH (GD<GH, Fig. 1*), the two lines between which we
wish to find two mean proportionals, be the sides of a rectangle
GHKD. Bisect HG in L. Join KL and produce it to A, the

7. *“No. VIIL,” dated 14th Feb. 1652
8. *“ No. IX.,” dated 17th Feb. 1652,
9. ‘“No. XIIL,” dated 16th Aug. 1652.
¢¢ Correspondance ” Qeuvres Complétes, La Haye, Tome L., 1888.
10. **No. 164,” dated Oct. 1653, p. 244-5.
11. ““No. 166,” dated 23rd Oct. 1653, p. 247-51. Modification of
H. 45
12. *“No. 168,” dated 10th Deo. 1653, p. 256-7. Modification of
H. 9.

De Circuls magnitudine inventa accedunt ejusdem problematum gquorundum
illustrium constructiones, Amsterdam, 1654, [Another edition, Fensburg,
1668. This work was included in Huygens’ Opera Varia, 1724, Tome 2.]

18. ““Prob. IV.,” p. 56-7. Slightly modified from H. 11.
14. *“Prob. V.,” p. 57-8 idem.
15, ‘ Prob. VI.,” p. 59-61. Slightly modified from H. 5, 9, 11, 12,
Cf. Note 39.
16. ** Prob. VIL,” p. 62-69. Slight modification of H. 9, 11, 12.
References to this list will be by such an abbreviation as
*“ H. 9,” which indicates the piece of 16th Aug. 1652,

5 Pappus, IIL, 58-63 ; IV., p. 242 et seq.
* See folding-out plates.
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point of intersection with DG produced. At M, the middle point
of DG, erect a perpendicular MB such that BD equals HL. Join
AB and through D draw DC parallel to AB and meeting BC
parallel to AD in C. If we now consider the conchoide generated
with respect to the pole B, the base line DC, and the constant
length HL, it will meet AGD in a point F. If FK be drawn to
meet GH produced in N, HN and DF are the required mean
proportionals. The proof of this construction® does not concern us
here. But it is to be noted that if E be the point of intersection
of BF, CD, we have a parallelogram ABCD in connection with
which FE (equal to a given length HL) verges to the point B.

As particular cases of the parallelogram, we may therefore
apply the Conchoide of Nicomedes to the solution of the Problems
of Apollonius and Heraclitus.

3. For reducing the problem of the Trisection of an Angle to a
“solid ” vevos, suppose that D (Fig. 2) is any point on the side BD
of a given angle DBC (there is evidently no lack of generality in
taking this angle acute). Complete the rectangle ABCD and
suppose a point F on AD produced determine that EF, which verges
to B, is double of BD. Then BF trisects the angle CBD. For,
bisect EF in O and join D to O. Then EO=OF=DO=BD,
and thence LOBD=,-DOB=2.DFO=2._CBE. Therefore
LCBE=1.CBD. The question then is, how to determine F.

According to Pappus’ the solution of this vebois was known to
the ancient Greeks. Proclus suggests that Nicomedes used the
conchoide® for the purpose. Pappus, however, indicates a solution
(p- 298) known about the same time, where the hyperbola was
employed.

4. Suppose the problem done and the rectangle BF (Fig. 2)
completed. Draw CH parallel to EF, and HL, EK to AF. Since
CH=EF =k, the determination of H would evidently solve the

¢ For geometrical proof Pappus or Heath may be consulted. Conti gives
an anslytic proof in ENRIQUES’ Fragen der Elementargeometrie, I1., 207-08,
Liepzig, 1807,

7 P. 272, et seq.

8 ZEUTHEN, Die Lehre von dem Kegelschnitien im Altertum, Kopenhagen,
1886, p. 267. The topios of this paper are touched on in various places,
P. 267-283.
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problem. Now rectangle LF equals rectangle BK, equals rectangle
BD. That is HL.HF =const. Therefore H is on a rectangular
hyperbola passing through C, and with asymptotes AF, AB. A
circle described with centre C and radius £ will therefore deter-
mine H. Although Pappus considers the rectangle, the construction
applies equally to any parallelogram.

Professor G. Russo’s way of stating the proof is elegant®’. ILet
CD, AF (Fig. 4) be any two intersecting lines, and B the given
point. Through B draw BC parallel to AF and form a parallelo-
gram CEFH. As BEF turns about B the lines CH, FH form
homographie involutions (of which the vertices are C and the point
at infinity on DC), and therefore their intersection H describes a
hyperbola. To resolve the problem one seeks the point of inter-
section of this hyperbola and the circle with centre C and radius %.

In particular, then, solutions of the problems of Apollonius and
Heraclitus may be derived by means of the hyperbola.

5. The hyperbola was introduced for the solution of Problem A
in yet another way'’, by Huygens in 1652 (.7, 8). The intimate
connection of what we are about to give in proof, with the solutions
of our more special problems will appear later (§§9, 25). Let B be
the point between the lines DA, DC where ABCD is a parallelogram
(Fig. 10). Suppose the problem done, and E,BF; a line drawn
such that E,F,=%  Produce BF, and make BH,=%. Cut off
AT=AD and through T draw TP| AB. Also draw H,U | PT,
H,P || TD.

Since the triangles H,UF, BE,C are similar, and since
H,F, = BE, wehave H,U = CE,, UF,=BC= AT. .. UT = AF,=H,P.
Again F,A : AB=BC:CE,

H,P:AB=BC:H,U, or H,P-H,U=BA -BC.
Hence H, is on a hyperbola at its intersection with a circle, with

centre at B and radius k. The proof we have given for a general
parallelogram is in particular true for a rhombus.

9 Mathesis, March 1889. 1X., 96-7. Analytic treatment is added by
J. Neuberg.

1 Newton found a solution with a hyperbola, in still & third way—
Arithmetica Universalis, 1707 ; Second Edition, London, 1722, p. 290-92,
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IIL.

6. As the conchoide of Nicumedes is a curve of the fourth
degree, which is also the degree of the equation for determining the
intersection of a circle and a hyperbola, an algebraic equation of
the same order will certainly, in general, result from the attempted
algebraic solution of these problems.

The first discussion along this line was made by Albert Girard
in his Invention Nowvelle en Algébre (Amsterdam, 1629)," under
the heading ¢ Probléme d’Inclinaison.” He considers two lines at
right angles, and forms the square ABCD (Fig. 3) with side of length

4 and EF =%k = J153. Setting CE=2 he finds

ot = 8x® + 1212 + 128z — 256.
‘Whence the four values of « are found to be

1,16, 43+ /4L -4} - JiL

From the figure it is apparent that there are four lines
EF, EF,, EJF, EF, which can satisfy thé conditions of the
problem ; the four values of x therefore correspond respectively to
the lengths CE, CE,, CE,, CE,. Such was the reasoning of Girard,

the geometrical interpretation of the negative quantities, at his
time, being especially notable.

7. The next discussion is by Descartes in Livre ITI. of his
@éométrie (1637).* In considering the question of when a bi-
quadratic may be broken up into quadratic expressions, he
discovers in the Problem of Heraclitus an excellent example of
“plane” geometry to illustrate his process. Setting AB=a
(Fig. 3), CE =2 and EF =#%, he arrives at the equation

x* - 2a2® + (2a° - k*)2* — 20%c 4 a* =0.

After transforming this into another with the term involving
the third power of the unknown wanting, and expressing the

11 This rare little book, so important in the history of Algebra and
Spherical Triangles, was reprinted at Leyden in 1884, with an introduction by
Bierens de Haan. The pages are unnumbered.

12 Nouv. Edition, Paris, 1887, p. 70-71; also Oeuvres, ed. by Adam et
Tannery, VI., 461-463, Paris, 1902,
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condition (by means of a cubic in %?) that the biquadratic is
resolvable into quadratic factors, he finds

x=g-+\/}a’+%k?-,\/f}c2—§a’+§av/¢?+—k’

but omits consideration of the other roots. This omission was
observed by Van Schooten in his Commentary of 1649.”* He not
only pointed out that the four solutions

PO & J%aa+%y§J%P_%a’£%a Nat+ i

correspond to the lengths CE, CE,, CE,, CE,, but also that two of
these values will be imaginary when k<2AC. This is evident
geometrically, but Van Schooten made it clear by numerical
examples,

8. We have seen that the problems of Heraclitus and Apollonius
had a great fascination for Christian Huygens. He discovered no
less than fourteen solutions during the years 1650-53—that is
between his twenty-first and twenty-fourth years. His earlier
algebraic solutions (1650, H. 1, 2) were prefaced with geometrical
proofs of the possibility of solutions by means of intersecting circles
and hyperbolas as indicated in §4. From the point H (Fig. 4) thus
determined a perpendicular HL was dropped on AC produced.
Huygens set CL=xz, BD=56, AC=c¢. In the case of the square he
was led to the equations

{29:2+ ex — K2=0

M z= ‘JW‘%C’

and in the case of the rhombus to

2 2+ 2px - ¢*=0
@ 2= Np'+g-p
b c*k?

where p= a+ b7 q=c2+b2'

13 Qeometria & Renato des Cartes anno 1687, gallicé edita ; nunc autem cum
Notis Florimonds de Beavne . . . in linguam Latinam versa & Commentariis
illustra operd atgue studio Franciscs d Schooten.
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The geometrical constructions which may be deduced from these
equations we shall consider later (§§20, 22), but the striking
simplicity of these quadratic equations with rational coefficients
instead of the earlier biquadratic are so noticeable, it may be well
to seek the reason. Huygens considers but one solution in each
cage, and a single line EF corresponding. To this single solution,
however, correspond two lines EF, EF, (Fig. 4), constructed from
the points of intersection, H, H,, of circle and hyperbola. It is to
be noted that one vertex of this hyperbola is at C*%, and its centre
at A. In order therefore that this curve be cut in four real points
by the circle it is necessary that k=2AC. The other two points,
H,, H; (which may be coincident) thus derived are those which
correspond to the root of (2) when the negative sign before the
radical is taken. Whence E,F,, E;F; (Fig. 4).

9. From the hyperbola which we derived in §5, Huygens
deduced another quadratic equation (1652, H. 7, 8). Produce BT
(Fig. 10) till KT=TB. Draw H,H; perpendicular to TK produced,
and make KJ|TF, to which KR and JQ, are perpendicular.
Setting RQ, =y, AC=¢, BD =5, he found

&+ 28

; whence
N

(1) o*+2py =Kk - 4% where p=

(@) h=-p+ JP+O— 40, = ~p— NP+ — 45

Here again, Huygens chose the single solution y;,, and from that
deduced the point H,, But the four points (H,, H, M, H,) where
circle and hyperbola meet, give solutions, as we shall see when we
come to represent (2) geometrically (§25).

Finally, Huygens also derived two equations of the fourth
degree. Taking as unknown BF (Fig. 4) he derived a complete
equation of the fourth degree. On eliminating the second term
he found the fourth term also disappeared, whence he saw that if
he had chosen BO=y as unknown in the first place, he would
have got

(3) ¥ - (W +8Y)y + B+ - 4a?) =0,

14 This is & distinguishing characteristic of the ‘‘ plane” case,
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where 2/=%. The same equation was found on taking as unknown
BO, where O, is the centre of E,F,.

10. Abbé"® de Vaumesle of ‘“Basse Normandie” wrestled un-
successfully with the biquadratic resulting from an attempted
solution of the Apollonian Problem.’* This fact of itself would
hardly be worth recording were it not that up to the present few
have been more successful, and that his name has some interest
from the fact that he was the inspirer of Huygens' papers on
epicycloidal curves,”® and the discoverer of the cardoid and some of
its properties as early as 1675.%

11. At the time of his death in 1704 L'Hospital had practically
completed his Traité analytique des sections Conigues.” On pages
36670 of this work our two problems are treated both analytically
and geomctrically. For the problem of Heraclitus, considering
AF =« (Fig. 3) he found

(1) =« —2a2® + (20 - ) - 2a°z + a* =0,
which may be written
(® + a* — ax)? — (a® + K*)x? =0, whence
(2) 2*+a?-ax+ Nal+ k=0,
(8) #*+a’-ax— Ja+kx=0.

Concerning the roots of (2) L'Hospital remarks ¢parce que

Ja?+ & surpassant a, la disposition des signes me fait connoitre
qu'elles sont tout deux fausses.” Whether this is intended to

¥ Qf. Reference by D LA HirE in the preface to his T'raité des Epi-
cycloides, 1694.

16 Letters, dated Nov. 19 and Dec. 3, 1678, from De Vaumesle to Huygens.
They were published by P. J. UYLENBROEK in his Christiani Hugensi
aliorumque seculi XVII., virorum celebrium exercitationes mathematicae, ete.,
La Haye, 1833 ; Fasc. IL., p. 42-51. See also Oeuvres Complétes VIIL
115-7; 125-7.

17 This work was first published at Paris in 1720. The problems are
treated as ‘“ Ex. 2,” Book X.
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convey the idea that the roots are negative or imaginary is not
quite clear; but they are evidently real for k=2 J/2a. The roots
of (3) are always real, and just as before we could indicate two
points to the right of A, and, in general, two points to the left of
A, the measures of whose distances from A geometrically indicate
the magnitude of the four roots of (1). (Cf. §18). It may be
remarked that equation (1) is identical with Pascal’s equation (§ 7).

IL’Hospital also found a quadratic equation for the solution of
the Problem of Apollonius by taking as unknown quantity BG=2
(Fig. 5) where G is a point in BD produced such that BG . GD =GE*
This leads to the equation

(4) b2 - bz = a®k2.
A similar equation would have been reached by taking GD=z.

The geometric construction for determining G and E will be given
later (§17).

12. Newton made use of the Heraclitus Problem for exempli-
fying the rule that in order to reduce an equation to its lowest
degree the unknown quantity must be so chosen that it cannot with
equal correctness be changed for another.®

Let O (Fig. 3) be the middle point of EF, BO=ux, EF =k=2],
then

(1) «*=2a®+P)2®+ 2P -1,

o @= a4 Px Vot 4T
the particular case of Huygens’ Equation (§9(3)) when b= J2a.
If, however, BE=x we get the more complicated form
x* + 2ka® + (K — 2a%)a? ~ 2a%ka — a?k* = 0.
But on setting a’4*+a* on the right side we have on the left a
complete square, whence
Br+kr-a’=rava@+ i

This complication has been introduced through bringing in the
point E; the same would result if BF had been chosen (§9) for the

18 Arithmetica Universalis, 1707. Second edition, Lond., 1722, Sec. IV.,
Problem XXIV., p. 148-151. See also the edition of Noel Beaudeux, Paris,
1802, Towe IIL., p. 141-2, 56-59.

12 Vol. 28
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unknown. According to the above rule, the reason of this is that
if we imagine F\E, as drawn in the angle ADE, (E,F,=£%), the
points E and F will have been interchanged with respect to the
point B. The same would further result in choosing as unknown
CE (§7), or AF (§11), DE or DF (§§15, 13). Similar uncertainty
would arise if we chose as unknown the lengths of the perpendiculars
from O on DF or DC, on AB or BR. If, however, we drop the
perpendicular OP on BD produced and set DP ==z, BD=b, we
arrive at a still simpler form
(2) 22%=bx+ P

A geometric determination of the point O is given in § 30, and
as before (§§8, 9) to each root of (2) correspond, in general, two
lines, EF, E,F, or E,F, E,F,.

We get still another equation of the second degree if we drop
FR (Fig. 3) perpendicular to EF to meet BC produced in R. If
CR =z, .

, (3) (z+a)=k+a

The geometrical construction which follows from this was that

given by Heraclitus (§18).

13. We now come to Kistner’s treatment of the problem of
Apollonius in 1799%. After enthusiastic reference to Ghetaldi’s
geometric solution (§19) he deduces a biquadratic involving a
function of the angle BCD =a (Fig. 5). Cantor™ sets DF =z and
derives a similar equation

(1) (&-F)(z+a)={2(a+x)cosa -~ a}ax’.
It seems very evident that Kastner never solved his biquadratic,
although his geometric interpretation of the four roots was, in
effect, the following. As BF (Fig. 4) rotates about B there is one
position in the angle CDF and another in the vertically opposite

¥ GuUIsNkE, Application de I Algebre a la Geometrie, Paris, 1733, p. 54.

2 KASTNER, Geschichte der Kunste und Wissenschaften, etc. Bd. IIL,
Gottingen, 1799.

A M. CANTOR, Vorlesungen iiber die Qeschichte der Mathematik, I1., 809-11,
2 Auf., Leipzig, 1899. As Cantor only refers to Ghetaldi in connection with
the rhombus problem, it is evident that he did not know its interesting
history. G. RiTr (Problémes de géoméirie et de Trigonometrie, Neuviéme
Edition, Paris, 1894, p. 311-16) chose AF =z, and was led to a reciprocal
equation.
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angle where lengths equal to & are cut off. The argument then
continues, the other solutions are indicated by a line, rotating
about C, from which lengths, %, are cut off by the lines DA, BA
produced, or BA and DA produced! This appears to be nothing
but a wild guess. That Gelcich® should reproduce this interpreta-
tion, and Cantor give it his approval,? is somewhat astonishing. 1
find the solutions of (1) to be given by

c 2 &+ L + a4 . a 2
T= — asxn2—+\/ a’sin'— + {? +\/ (acos“——;r afsint — 402 ) —a?
2= 2 = 2= 9

which are to be interpreted as the results of §§6, 7, 8, 9, 12.

14. Tt is apparent that an infinite number of other equations
could be found. For the square (Fig. 3): (1) DE + DF =« leads to an
equation of the fourth degree which can be at once solved, since the
terms involving , and 2* are lacking; (2) DF - DE=x gives an
equation of the second degree, and the same is true when the
unknown quantity is (3) the perpendicular from D on EF; (4)
the radius of the inscribed circle of the triangle DEF; ()
y=sin2 . DFE.

If, however, we chose for unknown quantities (6) tanDFE =z,
or (1)® DF:DE=ux, we should be led to complete biquadratic
equations whick (in common with all other complete biquadratics
which we have found in connection with the Problem of Heraclitus,
§ 6, 7, 12) are reciprocal equations. These can be readily reduced to
quadratics. For example (7) leads to ¥*x® - a*(a*+1)(x —1)*=0, or

1
a’y’ + 2ay - m?=0, where y =a:+;—.

8o also Pascal’s equation (§7) becomes® 22— 2az — k=0, where
2
z+ % =z Another statement which can be made concerning

2 E. GeLCICH, Zeitschrift fiir Mathematik und Physik, XXVII., Suppl.,
p- 2134, 1882. ‘‘Eine studie ueber die Entdeckung der analytischen
Geometrie, mit Beriichsichtigung eines werkes des Marino Ghetaldi .
aus dem Jahre 1630.”

B (1), (2), (3), (5), (6), (7) are given by MoMrNHEIM ET FRANCK, Hramens
¢t Compositions de Mathématiques, Paris, 1862, p. 6-28; (4) was given by
TRrANSON, Nouvelles 4nnales de Mathématiques, 1847, V1., 458-61.

4 Cf. E. ComBETTE, Cours d’ Algébre E’lémentaire, Paris, 1882, p. 504-519 ;
also Cours &’ Algébre, Paris, 1891, p. 396-411.
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these biquadratic equations is that the squares of their roots are in
arithmetic progression. For example,® if DF =z
DF? + DE?*=DF? + DF*=#*=DF,*+ DF_

15. In a similar way we can get rhombus equations.

If we take as unknown quantity: (1) BR=2z (where
.BFR = . CDF, Fig. 8), corresponding to §12(3), we get
22+ 2a(1 — cosa)z — k*=0; (2)” B'Q" = z(where G”is the point of inter-
section of B'D’ produced, with the circumference of the circumcircle
of the triangle D'E'F’, Fig. 7), we simply get L’Hospital’s equation in
slightly different form, z(z ~ ¢) = k*aT_——sic;Sfl; (3)*® the length of the
perpendicular, r, from D’ on E'F’ we get the quadratic

r{r _ 2a'sina (1- cosa)} = a’sin’a.
Interesting geometrical constructions corresponding to these will
be given later (§§24, 19, 29). It may be remarked here that the
absolute values of # in (3) are the radii of the concentric circles
touching the four lines corresponding to EF, EF, E,F,, E;F,

Gergonne considered the general problem of any two lines
intersecting at an angle a, point B'(p, ¢), and tanD'F'B'=M, and
found™

(4) p*M* - 2p(q + pcosa)M?+ (% + ¢° - &%+ 4pgcosa)M?
- 2¢(p + qcosa)M + ¢2= 0.

If p=¢= —a we have the rhombus case, and this equation
becornes reciprocal (Cf. Ritt, Note 21) and can therefore be
solved at once.  Further, since the equation of E'F is

y-g=M(z-p), DF=p - qﬁ =z, and hence from (4)

(5) '+ 2(p - geosa)a® + (p* + ¢* - K — 2pgcosa)a’® - 2pkix - p?k =0,

of which §13(1) is a particular case. For a=% this becomes

Tt + pa® + (P + ¢ - BP)? - 2pkPx - p*t = 0.
On comparing this with the general biquadratic (6) 2* + r2* + sz + ¢ =0,

% MomeNHEIM ET Franck. Cf. Note 23,

% FonTEs, Nouvelles Annales des Mathématiques, 1847, VI., 180-5,

7 TraNsoN. Cf. Note 23.

2 J, D. GERGONNE, Annales de Mathématiques Pures et Appliquées
(Gergonne), Jan., 1820, X., 204-16,
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we find

N = WY PR
p=g - 6% NP 1%) =5 — 2(4sp +p* - 162)

1\/.7 ‘
k= oA 2 op +p* - 160)

Hence when (6) is given p, ¢, and & may be found, and we have a
geometrical method for graphing the roots of a biguadratic when
there are at least two real. If p=¢ we have the condition that
the construction can be performed with ruler and compass only, as
we shall find in the paragraphs which now follow.

III1.

16. In what has gone before we have seen that the solution of
certain cases of ‘““solid” vetoeis was reducible to the solution of
equations whose roots involved quadratic irrationalities only. It
is well known that this is a sufficient condition that such problems
are “plane.” The sections that immediately follow will display
some methods for demonstrating this. No attempt will be made to
consider all cases arising and, for the most part, we shall confine
ourselves to determining EF (Figs. 5, 6). Those interested in the
further geometrical determination of such lines as E,F, (Figs. 3, 4)
should also consuit the numerous references we have given, but in
particular, those to the works of Pappus, Ghetaldi, and Huygens.

17. Apollonius’ Solution of his Problem: The “8th problem ” of
the first book of the vedoeis is enunciated in the following form®:
Given a rhombus, AC (Fig, b), with diagonal BD produced to G, if
GK be a mean proportional between BG, GD, and if a circle be
described with centre G and radius GK cutting DC in E and AD
produced in F, BEF shall be a straight line.

Proof: Join GF,, GF. Since the angles F, DK, KDE are
equal, the angles F;DG, GDE are equal. But GF,=GE and GD
is common to the triangles F,GD, GDE, which are therefore
equal, and F,D=DE, .DF,G= . DEG. But . DFG=,GFD.
. . DEG = . DFG and the points D, E, F, G are concyclic. But
from the given proportion the triangles BGE, DGE are similar.
Therefore - DBE = . DEG = £ DFG. But - BDE= £ FDG (each

29 Parpus, VIL, p. 778 et seq.
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half of . ADC). Therefore the remaining angles DGF, DEB are
equal. But the sum of the angles DGF, DEF is two right angles.
Therefore the sum of the angles BED, DEF is two right angles,
which was to be proved.

This ends Pappus’ reference to this problem, but from this
construction the triangles BDF, BEG are similar. Hence
BE:GE(=GK)=BD:DF. But since AB, DC are parallel
BE: EF=AD:DF.

GK:EF(=%k)=AD:BD
a. proportion with only one unknown quantity. Hence Apollonius’
construction for the solution of his problem may be stated :
Find (1) PQ (GK) such that PQ:k=AD:BD, (2) a point G in
BD produced such that BG:PQ=PQ:GD; then a circle described

with centre G and radius PQ determines EF =k verging towards
the point B.*

18. Heraclitus’ Solution of his Problem : It seems clear that
Pappus must have recognised that the preceding construction was

% Contrary to what Zeuthen states (.., p. 28], ¢/. Note 8) Pappus mentions
(p- 670) the rhombus as one of the ¢ plane’’ veleeis which the Greeks had
solved ; not only this, but he spoke of ** two cases,” which evidently cover all
possible solutions of the problem of Apollonius. What must have been the
solution of Apollonius for the case of the lines E,Fy, E,F,, does not seem to
have been explicitly pointed out before. 1f a point G’ be taken on DB pro-
duced such that G'W=GW (where W is the centre of BD), exactly the same
construction may be employed on substituting G’ for G. For further comment
on this construction see §30. The method employed by the Greeks is, then,
now evident,.

This same result, attributed to Apollonius, was arrived at by SAMUEL
HoRrsLEY in his restoration of Apollonii Pergaet Inclinationum libri duo
(Oxford, 1770), and if doubts of the result were still held, Heath’s independent
research and discussion would certainly dissipate them. FrLAUTI in his “Su
due libri di Apollonio Pergeo detti delle inclinazioni e sulle diverse restituzioni
di essi disquisizione” [1850] (Memorie di matematica ‘e di Fisica della
Societd Italiana delle Scienze, Modena, 1852, XXV., P. L., p. 223-36) gives
what praotically amounts to Apollonius’ construction. The same is true of
L’Hospital, 1704, and this is his geometrioal construction referred to in con-
pection with the algebraic equation §11(4). Apparently independent of
others D’OMERIQUE discovered this same solution, Prop. XXXII., p. 216 et
seq. of his Analysis geometrica sive nova, et vera methcdus resolvendi tam
problemata quam Arithmeticas Quaestiones (1698).
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immediately applicable to a square®, and only gave as alternate,
Heraclitus’ simple and elegant construction (IL, p. 782, et seq.).
Pappus first gave “ A Lemma useful for Heraclitug’ solution.” Let
AC (Fig. 3) be the given square and suppose BEF drawn, and let
FR be perpendicular to EF and meet BC produced in R ; to prove
CR*=BC*+ EF.

Draw FS||DC. Then since BFR is a right angle, the angles
EBC, RFS are equal. Therefore the triangles BEC, FRS are
equal, and FR=BE. Now BR*=BF?+FR? or

BC.BR +BR.RC=BF.BE+BF.EF+FR’

But the angles ECR, RFE being right angles, the points E, C, R, F
are concyclic, and therefore BC. BR =BE. BF.

.. BR.RC=BF.EF + FR*=BF . EF + BE?
or BR.RC=BE. EF + EF*+ BE*= BF . BE + EF?=BC. BR + EF>.

Take away the common part BC. OR, and CR*=BC?+EF? qQ.E.D.

Heraclitus’ analysis and construction then followed :

Suppose BEF drawn so that EF has a given length k. Since
CR*=BC*+ EF*=BC?*+4% and BC and % are both given, CR is
given, and therefore BR is given. Thus the semicircle on BR as
diameter is given, and therefore also F, its intersection with the
given line ADF ; hence BF is given.

To effect the construction, we first find a square equal to the
sum of the given square and the square on k. We then produce
BC to R so that CR is equal to the side of the square so found.
If a semi-circle be now described on BR as diameter, it will pass
above D (since CR>CD and therefore BC.CR>CD?), and will
therefore meet AD produced in some point F. Join BF meeting
CD in E. Then EF =k, and the problem is solved.*

3 This method was indicated by D’Omerique (1698, ¢f. Note 80), and also
by * Tyco Oxoniensis ” in The Mathematician, No. 2, p. 105 (Lond. 1746).

32 This proof has been given in extenso and almost verbatim (¢f. Heath)
in order toillustrate the ancient mode of discussion, which we would now greatly
abbreviate. Huygens gave three other geemetrical proofs with practically
the same initial construction as Heraclitus. Two of these which differ little
in essentials from the above are given here out of chronological order. In
both it is supposed that R has been determined such that CB2+k2=CR?; the
semi-circle is described and F determined. I. (H. 11, 1653). Join ER. Add

https://doi.org/10.1017/50013091500034891 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500034891

168

Besides giving Heraclitus’ construction for the points F, F,
(Fig. 3), L'Hospital (1704) extended it for the determination of
F,, F (in spite of the solutions being * fausses ”) §11 (2). Huygens
(1653, H. 11) gave the same construction.

Produce CB to R’ such that CR?=CB?*+ 4% On BR' describe

a semi-circle. For %>2 +/2a this circle will cut DA produced in
the two points F,, F,, Whence the geometrical construction for
the four solutions. These constructions also follow from the
algebraic equation, § 12 (3).

19. Ghetaldi's Solution of the Apollonian Problem. This solution
was first published in Patritii Ragusini Apollonius Rediviuus seu
Restituta a Apollonit Pergaei Inclinationum Geometria (Venice,
1607)®, and is made to depend on the solution of the ¢ plane”
vevos®, Problem B, of our introductory paragraph.

Suppose (Fig. 5) ABCD be the given rhombus with the side
AD produced to F. Join BD. On E'F =% describe a segment of
a circle (Fig. 7) containing an angle equal to the angle EDF.

CE? to the equals CB%*+%2 and CR3, then BC?+i?+CE2=CE2+CR?, or
BE2+F=ER?*=EF?+FR3. But since FG, BE are between equally distant
parallel lines at right angles to one another and equally inclined to these
lines, FR=BE, .. EF?=}2 q.E.p. II. (H. 16, 1654). Join ER and draw
FS||DC. Since triangles BEC, FSR are similar and the sides BC, FR are
equal, the side BE=FR and EC=8R. But EF?+FR?’=EF?+FS$2+8R*
=ER?=EC?+CR% But EC?=8R% .- EF?!=CR2?-FS§?’=4? (by constr.).

31t also appeared in a posthumous work (which has an important
bearing on the history of analytical geometry— Gelcich, note 22) entitled
Marini Ghetaldi Patritii Ragusini Mathematici praestantissims de Resolutione
d& Compositione Marhematica libri quinque (Rome, 1630 ; another edition, 1640)
p- 330-2. The same solution in somewhat abbreviated form was given by
P1erRE HEr1GONE in Tome IV., p. 912-3 of his Cursus Mathematicus (Paris,
1634 ; another edition, 1644).

3 Prob. 11, case 5 of Ghetaldi’s restitution of Apollonius: Suppose SE'G”
the semi-cirele (Fig. 7). Produce SE’ to J such that JE’ equals half the given
length BD (Fig. 5). With centre J (Fig. 7) and radius JE’ describe a circle
which cuts G”J in D” and X. In the semi-circle place a chord G"I¥=G"D",
and produce it to meet O’'E’ produced in B’, then D'B’ is equal to required
length DB. For G'D”-G"X =G"E?=G"0' -GS = G"D’*G"B. But
G"'D"=G"D". .. G"X=G"B/, or D”"X=D'B'=DB. This is also a solution of
Problem D for the external biscctor D'B’ of the triangle D’E'F’. Cf. Note 3.
The naturalness of Ghetaldi's proof of this problem of Apollonius is the more
striking if Fig. 7 be thought of as applied to Fig. 5, the singly-primed letters
correspond to those unprimed, and G” with G. This comparison also suggests
that the algebraic equations of the solutions of Apollonius and Ghetaldi might
be the same.
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Draw the diameter G”S of this circle perpendicular to E'F'. From
G” draw a line G"D’'B’, meeting the circumference of the circle
again in D’ and the line F'E’ produced in B, and such that
D'B'=BD (Problem B). Join D'F, D'E, ¥'S, SE. If we now
make (Fig. 5) DF =D'F’, EF =% as required.

Proof: For the angles E'SF' and E'D'F’ are supplementary.
But . BD'E = . ESG", which is half the supplement of the
angle E'D'F', which is equal to the angle EDF. Therefore
LtBDE=.BDE or .BDF¥=_,.BDF. Hence the triangles
B'D'F, BDF are equal in all respects, and BF =B'F'; also since
EDF=EDF, EF=EF =k

20. Huygens' Second®™ Solution, 1650, (H. 1) : Huygens deduced
this solution from the equation, §8 (1). Let ABCD (Fig. 6) be the
given square. In BC cut off BM=#, and with centre A and
radius AM describe a circle which cuts AB produced in N. With
centre on BD describe a semi-circle BMR, and in this semi-circle
place the chord RS=BN. BS produced will cut DC in E, and AD
produced in F, such that EF =4.

The Editors of Huygens’ works state that they fail to find the
connection between this construction and carlier discussion.
Nevertheless this connection is easily deduced as follows:

Produce the diagonal DB to meet the line through N parallel
to CB in L. It may be shown that LB=2z= 367+ 34 - }b, the
result Huygens gives in §8(1). Erect LT perpendicular to LB, T
being determined by the distance TB=4%. If we now prove that
BD and TB make the same angle with BC or BC produced, we
have exactly Huygens' earlier construction (with the hyperbola),
except that the diagonal DB has been used instead of AC. [Through
an oversight the line LVT of Fig. 6 is drawn incorrectly.
Iv should bisect LB at right angles, at, say, L'.] This follows
readily, for on joining RM we have an isosceles right-angled triangle

RMB. Then RS:RB:BN:RB:IE\I : ﬁ—]—;‘E:BM=BL’:BT.

NERNCIE
Therefore the angle BRS is equal to the angle TBL'. But
. BRM=.:.MBR=.1/BV, and .- MRS=_.MBS. Therefore
MBS= . TBV.

% We have considered the algebragg solutions given in §8 as the *‘first”
and ‘‘ fourth” in chronological order. Cf. Note 38.
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21. Huygens' Third Solution, 1650, (H. 1)®: The construction
for this case is practically the same as that of Heraclitus, but the
proof is radically different. Produce AD to R” (Fig. 3) such that
DR”"=% In BC produced cut off CR=CR". Bisect BR in M
and describe a circle with radius MR. This cuts AR” in F.

Proof: Draw the diameter GMN perpendicular to BR. BD
produced will evidently go through G. Join GF, GE. Since GB
is a quadrant, the angle GFE is half a right angle. But the angle
GDE is a right angle and a half. Therefore the sum of the angles
GDE, GFE is equal to two right angles, and the semi-circle
described on EF as diameter will pass through D and G. The
angle GFE being half a right angle and the angle FGE a whole
right angle, the angle GEF is also half a right angle and GF =GE.

Take a point Z in CR such that CZ =BC. Then ZR=CR" - CD.
Again BM =iBR, BC=4BZ. .. CM=4}ZR.

. 2CM =2DL=2GL=CR"-CD.

But BR=GN=CR"+0CD.
.. 2GL.GN =CR"* - CD*=DR".
But GL.GN=GF.
.~ 2GF*=DR"*=EF? (since GF=GE). .. EF=DR"=%.

22. Huygens’ Fifth® Solution, 1650, (H. 2): This solution of the
Apollonian problem is deduced from equation 2, §8.

Erect a perpendicular CN to BC (Fig. 5) meeting AD produced
in N, From N drop a perpendicular NR on AC. Itis then not
difficult to show that CR=p. Again, in AF cut off AT=% and
drop a perpendicular TQ on AC; then AQ=g.. Hence to get
x= /p'+¢*-p, prolong NR to Y such that RY=AQ  With
centre C and radius CY describe an arc of a circle to cut AC in 8.
Then SR =xz. The point L of our earlier discussion is therefore
found by producing AC till CL =S8R, ete.

93. Huygens' Sixth Solution, 1650, (H. 2): Draw DG (Fig. 8)
perpendicular to BC and make BK = BG. Then determine L in BC
such that KL*=4*+ BK*. Draw LM parallel to BD cutting DC in
N, and make BM=4%. Then DEMF is the line required.

3 This construction and proof were discovered independently by John
Turner, and given in The Mathematician, No. 2 (Lond. 1746), p. 104-5.
Cf. Note 31. N.B.—GD of this solution is the same length as L'B (or LC}
in hyperbola solution, §§20, 8.
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There certainly seems, at first glance, to be no connection
between this solution and the one just before; nevertheless it was
from the fifth that Huygens derived the sixth. He must have
reasoned somewhat as follows: suppose the sides CH, CV of the
triangle HCV (Fig. 5) to be in coincidence with BE, BC respec-
tively, then H will be at a distance & from B along BF, and HV
will be parallel to BD. If then the position of V could be deter-
mined in terms of known quantities the problem would be solved.

Draw CU | BD; then from similar triangles
Cv NU &% k

—=-——-=———==——‘=A .

CL “RC "AQ RY "%
Hence k=A.RY, NU=A.RC. .. /E+NU*=A.CY=A.CS.
Therefore JEFNUZ-NU=A.8R=\A.CL=0CV.

Interpreting this in terms of Fig. 8, NU=BG, CV=BL. The
relation which must subsist between BG, BL is then

~VE+BG? - BG = BL, or KL= 4 + KB, with which we started.”

94. Huygensd Ninth* Solution, 1652-3 (H. 5, 15): This may be
regarded as a kind of generalization of Heraclitus’ solution.
Produce BC (Fig. 8) and make DR*=BD*+%% On BR describe
a segment of a circle containing an angle equal to the angle BAD.
The circumference of this circle will cut AD produced in F.

The proof of this construction is long and complicated, and
since it may be found in Sir John Leslie’s Geometrical 4dnalysis and

¥ We shall return to this a little later (§26). Huygens gave another
construction (H. 2) practically the same as the above, where instead of
drawing LM parallel to BD he made CN =CL.

3 In order to shorten a somewhat lengthy paper three solutions (beside
the proof of the ninth) have been omitted ; the seventh for the case of a
square, two sides produced ; the tenth and fourteenth for the rhombus case,
two sides produced. These may be considered as other cases of the third,
ninth, and thirteenth respectively. One of the most interesting features of
the various published and unpublished solutions of Huygens iz that we can
trace the manner of their evolution to the refined forms. Only those con-
structions or proofs radically different have been counted as new solutions,
The two algebraic equations, indicated in connection with §9 (3) are classed
as the eighth solution. The eleventh solution is § 9 (1). Cf. Note 35.
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Geometry of Cuwrve Lines (Edinburgh, 1821)%, I will not take up
space for it here.

It is to be observed, however, that this construction and the
counsequent proof were developed, by Huygens, from equation (2) §9.
The details of this derivation, though interesting, are too lengthy
to reproduce. The same geometrical construction was deduced by
Fontés (1847)* from equation (1) §15. No reference was made to
Huygens.

Just as for the square case, the points R, R’ are determined by
the intersection of a circle with centre C and (radius)®=4*+ BC?
(§18), so in the rhombus case the points R, R’ (and hence the
segment of a circle on BR’ as chord, containing an angle equal to
ADC—Huygens’ tenth construction) are determined by the inter-
section of a circle with centre G (Fig. 8) and (radius)®=4* + BG*.
(Implied in H. 5, 6. Compare DiesterwEG (p. 33), Note 41].

95. Huygens' Twelfth® Solution, 1652 (H. 8): This is derived
from the hyperbola and algebraic solution of §5 and §9 (1) (2).

Make AT (Fig. 10) equal to AB, join BT and produce it to K
where TK=TB. Drop KR 1 DF,, then DR=p. Find a point
Q, such that DQ.=p*+c?—48% then QR=w,. Erect QJ || KR
to meet KJ || RQ, in J. Through J draw the perpendicular to BK,
meeting the circle with centre B and radius & in H,, H;. The line
H,B will meet DC, DA produced in E, F.. This is the end of
Huygens’ solution. The other three cases readily follow, however.
The line H,B gives EJF,. Cut off DQ,=DQ, then RQ, =y,
Erect QQ, L TQ, to meet JK produced in Q, then QS | KB will cut
the circle with centre B and radius 4 in M, H,. Thelines BM, BH,
give EF, E;F,. - As we have seen (§9), the points H,, H,, H,, M
are on a hyperbola. Its asymptotes are TP, TD, and its major
axis BK.

26. Huygens' Thirteenth Solution, 1652, (H. 9, 12, 15): Make
BI*=BD*+4* (Fig. 8). Through I draw MX parallel to BD,
where BM =%. Then EF is also equal to .

Progf: Make AT=AD and draw TX| AB, meeting DB,
IB, IM, produced, in the points W, V, X.

3P, 102-4. (Cf. also pp. 44-51, 101, 443. I am indebted to J. S.
Mackay, Esq., LL.D., for this reference. Leslie reproduced H. 15. The
modifications in H. 5 are considerable.
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Since DA =AT, and TV, AB, DE are parallel, VB=BE and
WB=BD. The angle TBD is right, therefore . TSI is right.
Therefore IS=SX. Now BI?*=BM®*+IM.MX=4’+BD? (by
constr.). .~ XM:BD=BD:IM (since BM=%). But BD=WB,
therefore MV : VB=BD : MI = BF: FM.

.. BM(MV -VB): VB=BM:FM. But VB=BE. ... BE=FM,
or BM=%=EF.

Had we considered M/, the second point of intersection of the
circle with centre B and radius £ with IX, we would have had the
line BM’, which determines E,, F,.

Were it not recognised that in both the sixth and thirteenth
solutions of Huygens we were led to the same line parallel to BD
we might proceed as follows to derive the latter from the former.

BI*=BD*+ DI*+2BD : DI cosBDG (Fig. 8),

=BD?+ BL?+ 2BL - BG = BD?*+ (BL + BG)* - BG*

=BD?*+ K1?- KB®
or BI’=BD*+ 42
This connection Huygens does not seem to have remarked. On the
other hand, his writings point almost conclusively to the view that
the thirteenth solution was derived from the twelfth. A comparison
of Figs. 8 and 10 tends but to confirm it.

27. Gergonne’s Solution, 1820%: In DC produced determine
K' (Fig. 9) such that DK’ =%, join AK'and draw CL | AK'. With
centre L and radius LC describe a circle to cut AD in M,, M,.
With centre D and radii DM,, DM, describe two circles. The
tangents drawn to these circles from B give EF, E,F,, E,F,, E,F.

Proof: DM,.DM,=DC?; if M,D=r, we have therefore
r( J2 =g’ which is simply the particular case of Gergonne’s

k
equation when a=%, §15 (3).

28. Cirodde's Solution, 1843®: In AB produced, make BK" =%k
and join K”"C. Erect CI perpendicular to CK” and meeting AB in 1.
With centre I and radius IB describe a circle to cut CI in M, M,".
If CM,' =» we have again the equation of the last paragraph, and
the circles with centre D and radii CM,, CM,.

“P. L. CiroopE, Legons de GQéoméirie Analytiqgue.  Paris, 1843
p- 104-109.
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29. Fontes Solution, 1847*: This may be considered as a
generalization of Gergonne’s. Erect GDK'(=4% Fig. 8)1 BC.
Join BK’ and draw DM, D'M, || BK’. The circle with centre D’ and
radius DG cuts DD’ in M;, M.. Then the circles with centre D
and radii DM,, DM, are the circles required. For, on substituting
in the geometrical relation DM, . DM, = DG? we get at once §15 (3).
In our figure tangents can be drawn from B to the smaller circle
only, which indicates, what is otherwise evident, that omly two
solutions are possible for the value of £ chosen.

30. From Newton’s equation, §12 (2), I deduce the following
construction : Produce CD (Fig. 6) to X such that DX =1I. Draw
XH perpendicular to XD to meet the bisector of the angle XDA
in H. With centre W, the middle point of BD, and radius WH,
describe a circle which cuts BD produced in G. The perpendicular
bisector of DG meets the circle described with centre D and radius
! at two points O, O’. The lines from B through these points
give two solutions of the problem.

It is easily verified that the point G, as just determined, is the
same as that found before in more than one solution (Cf. Note 31
and §21). If then we describe a circle with centre G and radius
HD, it will cut CD in E and E,. Moreover, when the other two
solutions of the problem are possible, the geometrical construction
is almost the same ; determine a point G’ on DB, symmetrical with
respect to W, and the circle with G’ as centre and HD as radius
will cut DC produced in E,, E;.¢

The same is true for the case of the rhombus ; the circle with

centre G (Fig. 5) and radius a_: (§15 (2) ), cuts theline CD in E, E,.

4 This is practically the construction of MoMENHEIM ET FRANGOIS-FRANCK
(p- 25, ¢f. Note 23), who consider Heraclitus’ problem as a particular case of
Problem D (introductory paragraph). See also F. GiaNnaTrasto, Atls della
reale Accademia della Scienze, sezione delia Societa Reale Barbonica, Naples, I1.
Parte L, p. 49-50, 1825, and Note 3. Cf. Bulletin des Sciences Mathématiques
et Physiques, 13¢ année, Mai, Juillet, 1908, p. 237-239, 297-300. Problem D,
explicitly stated for the internal bisector, was proved geometrically by
W. A. DIESTERWEG, Die Biicher des Apollonius von Perga De Inclinationibus
wiederhergestelle von Sam. Horsley nach dem Lateinischen frey bearbeitet,
Berlin, 1823, p. 41-44.
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Reflect G about the line AC, and we have G’, the centre of a circle
with the same radius determining E, E, F,, F; (Horsley, 1770,
Note 30). The points G, G’ may be found as follows (Diesterweg)* :
In DB or DB produced cut off DK’'=%  Through K’ draw
K1 | BA and erect DH'=DI(=DE) perpendicular to BD.
Then the circle with centre W and radius WH' cuts BD produced
in G and G'; and the circles with centres G and G' have radii

equal to DH'.
IV.

31. Some forty solutions of the Problems of Heraclitus and
Apollonius are indicated in the foregoing pages. The geometric
solutions offer peculiarly striking illustrations of the value of
algebraic analysis in the matter of their derivation. All of
Huygens’ solutions, with a single possible exception (seventh) were
found, more or less directly, in this manner. Geometrical solutions
might thus be greatly multiplied, but sufficient has been given to
indicate the wealth of possibilities when attacking a single problem
in the ““ Fairy Land of Geometry.” For this reason, apart from the
Huygens’ solutions,® four others have been omitted: (1) Diesterweg,
1823 (p. 41-2)"; (2) G. Sangro, 1825*; (3) Momenheim et Franck,
1862 [p. 11; ¢f. Note 23 ; deduced from §14 (1)]; (4) B. Niewen-
glowski, 1908.#* Otherwise, I have intended to make the history of
the problem as complete as my notes would allow. To this end I
add at the close of this paper a selection from a list of references to
other writers who have treated our problems (in some cases from
different points of view), but whose results were not new. In
conclusion, the connection between our discussion and the problems
of drawing tangents to certain sextic curves may be given, along
with some miscellaneous comment.

It was John Bernoulli who first imagined the fourth part of the
Astroid* (so called four-cusped hypocycloid) as the envelope of a

42 ¢* Nuovo Soluzione Geometrica di un Problema del 1° libro della
Inclinazione di Apollonio Pergeo.” Atti della reale Accademia della Scienze
sezione della Societa Reale Barbonica, Naples, 11., Parte L., 45-49, 1825,

8 L’ Intermédiaire des Mathématiciens, Mars, 1908, XV., 71-2 ; in answer
to Question No. 3309 (XIV., 266-7).

# Acta Eruditorum Lipsiensis, Jan. 1692, p. 33. Opera Omnia, 1742,
IIL, 447. Bernoulli found the equation in its expanded form. The form
x° + yl =al was first given by Hermann in a letter to Leibnitz, dated Nov. 22,
1715. Cf. LEiBNITZ-GERHARDT, Mathematische Schriften, 1V., 407-408, 18569,
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line of constant length sliding between two lines at right angles to
one another. From what has gone before we see then that the
problem of drawing tangents to an Astroid from any point on the
bisectors of the angles between the cuspidal tangents is a “plane”
VevoLs.

A similar result may be stated for the tetracuspide of Bellavitis,*
which is enveloped by a line of constant length sliding between
intersecting lines not at right angles. (Cf. F. Joachimsthal,
Nouv. Ann. de Math., 1847, V1., 260). The fixed lines in this case
are not common cuspidal tangents, although the bisectors of their
angles are still lines of symmetry. It is well known that the locus
of the centres of the sliding line of fixed length is an ellipse.
Moreover, a given point B on a bisector having been chosen we
may state, with Steiner, that the centres of the four resulting
segments lie on a circle whose centre is independent of k (Fig. 4).
Hence we have another solution of the Problem of Apollonius by
means of the intersections of a circle and an ellipse, whose equations
are easily found. (They become coincident for the Heraclitus
Problem). But as the perpendiculars from G on EF, EF,, and from
G’ on E,F,, E,F, bisect these segments, we have the further solution :
the points of intersection of the Steiner circle® with the circles on
BG, BG as diameters are the middle points of the lines EF, E, F),

4 Spozione de metodo delle equipollenze, Modena, 1854, p. 189-191;
translation, Nouvelles Annales de Mathématiques, 1874 (2), T. XIIL, p.
229-230. This curve is parallel to a hypooyeloid.

6 Orelle’s Journal, Bd. LV., 8. 362, 1858, or Gesammelte Werke, I1., 668-9.
This theorem seems to have been rediscovered by J. Mipzunara, and pub-
lished in Journal of the Mathematico-Physical Society of Tokyo, IV., 1899 or
1900, Cf. Mathematical Papers from the Far East. Ed. by Y. Mikami,
Leipzig, 1910, p. 135.

47 Of. Note by J. NEUBERG, Mathesis, Aug. 1889, IX., 183-4, Midzuhara
gives as solution (Cf. reference Note 46) the intersections of this ellipse and
the hyperbola which is the locus of all points O got by varying k. That the
locus of O is a hyperbola was indicated by C. SmiTH in his Elementary
Treatise on Conic Sections, London, 1892—Cf. Ex. 20, p. 85, Ex. 2, p. 162,
Ex. 12, p. 163. It is also implied in Newton’s discussion (Cf. Note 10).

A solution by K, Tsuruta was also given in the Journal of the Mathematico-
Physical Society in Tokyo, Vol. IV. (Cf. Note 46). Tt is dated May 1889, and
is made to depend upon the theorems : (1) the locus of the middle point of &
line of fixed length sliding between two fixed lines is an ellipse ; (2) ‘“ The
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E,F, E,F,, It does not seem to have been observed before that
the centre S of the Steiner circle is the orthocentre of the triangle ADC
(Fig. 4). Since the power of the point D is /, the radius may be at
once deduced. For the square, the orthocentre is D and the radius Z.
The circle with centre S and radius SD is cut orthogonally by the
circles on EF, E\F,, E,F.,, E;F, (Fig. 4) as diameters—since the
ends of these diameters are conjugate points with respect to it.
Again, the centres of the circles circumscribing the triangles
EDF, EDF, E,DF, E,DF, are determined by the intersection of a

fifth equal circle (centre D, radius sil_) with the perpendicular
no.

bisectors of DG, DG’ ; whence EF, E\F,, E,F,, E,F,

It is further easy to see that the problem of drawing tangents
to an Astroid from any point on the inscribed circle leads to the
exact construction for the trisection of an angle which we bave
given in § 3—a “solid ” vebos, in general.

If BEF always trisected - ABC while « changed from 0° to
180°, E and F would lie on a Trisectrix of Maclaurin (Aubry,
Jowrnal de Math. Spéc, 1895, p. 83).

locus of the centre of gravity of the triangle formed by a straight line through
a given point with two given straight lines coplanar with the point is &
hyperbola.” The construction is then given as follows :

‘“Describe an ellipse (1) taking the constant length=# of the given
length [k]; then describe a hyperbola (2), the given point being taken as the
fixed point. '

¢ Next describe another ellipse similar to and concentric with the ellipse
already described, the former bearing to the latter the ratio of similitude of
3:2. The minor ellipse will in general intersect with the hyperbola in four
points.

‘¢ Again draw from the intersection of the given straight lines the four
radii vectores through these points, and let them intersect the ellipse in
0, 0,, 0,05 Then the straight lines BO, BO,, BO,, BO; have their segments
included between the given straight lines equal to the given length.”

Finally, it may be remarked that T. Havasni, in Journal of Physics
School in Tokyo for December 1900, X., 1-4 (Cf. Note 46), discusses the
general problem and arrives at the equation of Gergonne (§15 (5)). He then

considers p=q and a='; and, apparently, because of guess work arrives at
the erroneous conclusion that * our problem is geometrically insoluble.”

48 This term has been chosen simply as a convenient one for this paper.

13 Vol. 28
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