CURVATURE OF LEVEL CURVES OF HARMONIC FUNCTIONS

BY
MARVIN ORTEL AND WALTER SCHNEIDER

Abstract

If H is an arbitrary harmonic function defined on an open set $\Omega \subset \mathbb{C}$, then the curvature of the level curves of H can be strictly maximal or strictly minimal at a point of Ω. However, if Ω is a doubly connected domain bounded by analytic convex Jordan curves, and if H is harmonic measure of Ω with respect to the outer boundary of Ω, then the minimal curvature of the level curves of H is attained on the boundary of Ω.

§1. Introduction. To our knowledge, all earlier theorems regarding the curvature of level sets of harmonic functions pertain exclusively to Green's functions on simply connected domains. For instance, [1] contains the wellknown result that level curves of Green's functions on simply connected convex domains in the plane are convex Jordan curves. More difficult versions of these results (in higher dimensions) appear in [2], [3], [4].

In the present paper we prove a general extremum principle for the curvature of level curves of harmonic functions (Theorem 2.1) as well as a particular extremum principle for curvature in the case of harmonic measure on a doubly connected plane domain (Theorem 3.1). By the latter theorem the level curves of harmonic measure (with respect to the outer boundary) of an annular domain bounded by convex Jordan curves are, themselves, convex.

These two theorems suggest that broader extremum principles for the curvature may be valid. We formulate two conjectures to this effect. Then we provide a counter example to the stronger conjecture by constructing a particular harmonic function whose level curves attain strictly maximal curvature at an interior point of its domain. The weaker conjecture, which concerns harmonic measure, remains open.
§2. The curvature function. The following definition is convenient for the study of the curvature of level curves.

Definition 2.1 Let H be harmonic in the open set $\Omega \subset \mathbb{C}$. Suppose the

[^0]derived analytic function $g \equiv H_{x}-i H_{v}$ never vanishes in Ω and set
$$
\kappa(H, z) \equiv|g(z)| \operatorname{Re}\left(\frac{1}{\mathrm{~g}}\right)^{\prime}(z), \quad \text { all } \quad z \in \Omega .
$$

We refer to $\kappa(H, \cdot)$ as the curvature function for H.
To justify the terminology, let I be an open interval of real numbers and suppose $s \rightarrow z(s)$ is a differentiable function on I taking values in Ω and satisfying

$$
\begin{equation*}
\dot{z}(s)=\frac{\overline{i g(z(s))}}{|g(z(s))|}, \quad \text { all } \quad s \in I . \tag{2.1}
\end{equation*}
$$

Then $s \rightarrow z(s)$ is a unit speed parametric arc and $H(z(s))$ is constant on the interval I. For $s \in I$ set $x(s)=\operatorname{Re} z(s), y(s)=\operatorname{Im} z(s)$, and

$$
Q(s)=|g(z(s))|(\dot{x}(s) \ddot{y}(s)-\ddot{x}(s) \dot{y}(s))=\operatorname{Im} \overline{\dot{z}(s)} \ddot{z}(s)|g(z(s))|) .
$$

Since

$$
\operatorname{Im}\left(\dot{z}(s) \dot{z}(s) \frac{d}{d s}|g(z(s))|\right)=0 \quad \text { for all } \quad s \in I,
$$

the product rule leads to

$$
Q(s)=\operatorname{Im}\left[\dot{z}(s) \frac{d}{d s}(z(s) \lg (\dot{z}(s)) \mid)\right], \quad \text { all } \quad s \in I .
$$

In this expression for $Q(s)$ replace $\dot{z}(s)|g(z(s))|$ by $\overline{i g(z(s))}$, then employ the chain rule, and then substitute for $\dot{z}(s)$ according to (2.1). We obtain

$$
Q(s)=\operatorname{Re}\left(g^{\prime}(z(s))(\dot{z}(s))^{2}\right)=|g(z(s))|^{2} \operatorname{Re}\left(\frac{1}{g}\right)^{\prime}(z(s)), \quad \text { all } \quad s \in I .
$$

Therefore

$$
\dot{x}(s) \ddot{y}(s)-\ddot{x}(s) \dot{y}(s)=\kappa(H, z(s)), \quad \text { all } \quad s \in I .
$$

Since $|\dot{z}(s)| \equiv 1$ the left-hand side above is the curvature at $z(s)$ of the parametric level arc of H defined by (2.1). So $\kappa(H, z)$ is the curvature at z of any parametric level arc of H passing through z.

There are simple extremum principles for the curvature function.
Theorem 2.1. Let Ω be a connected open subset of \mathbb{C}, let $z \in \Omega$, and let H be harmonic and have no critical points in Ω.
(1) Suppose $\kappa(H, w) \geq 0$, all $w \in \Omega$. Then

$$
\kappa(H, z) \geq \liminf _{w \rightarrow a \Omega} \kappa(H, w)
$$

and equality holds if and only if $\kappa(H, \cdot)$ is a constant function.
(2) Suppose $\kappa(H, w) \leq 0$, all $w \in \Omega$. Then

$$
\kappa(H, z) \leq \limsup _{w \rightarrow \partial \Omega} \kappa(H, w)
$$

and equality holds if and only if $\kappa(H, \cdot)$ is a constant function.
(3) If $\kappa(H, \cdot)$ is a constant function then $\kappa(H, w)=0$, all $w \in \Omega$ and there exist three real numbers A, B, C, and one complex number $a \notin \Omega$ such that $H(x+i y)=$ $A x+B y+C$, all $x+i y \in \Omega$ or $H(w)=A \arg (w-a)+B$, all $w \in \Omega$.

Proof. Set $g=H_{x}-i H_{y}$. By hypothesis g has no zeros in Ω.
(1) The hypothesis of statement (1) implies $\operatorname{Re}(1 / \mathrm{g})^{\prime}(w) \geq 0$ for all $w \in \Omega$. Hence there are two cases: (a) $\operatorname{Re}(1 / \mathrm{g})^{\prime}(w)=0$, all $w \in \Omega$; (b) $\operatorname{Re}(1 / \mathrm{g})^{\prime}(w)>0$, all $w \in \Omega$. In case (a) $\kappa(H, w)=0$, all $w \in \Omega$. In case (b) Jensen's inequality and the mean value theorem for harmonic functions imply that the average of $\log \operatorname{Re}(1 / \mathrm{g})^{\prime}$, over any sufficiently small circle centered at a point $w \in \Omega$, is less than $\log \operatorname{Re}(1 / g)^{\prime}(w)$. Therefore, in case (b) $\log \operatorname{Re}(1 / g)^{\prime}$ is super harmonic in Ω and $\log \kappa(H, \cdot)$ is super harmonic in Ω. By the minimum principle for super harmonic functions

$$
\log \kappa(H, z) \geq \liminf _{w \rightarrow \Delta \Omega} \log \kappa(H, w)
$$

and $\log \kappa(H, \cdot)$ is a constant function if and only if equality holds. The conclusions of (1) are now immediate.
(2) Apply part (1) to $\kappa(-H, \cdot)=-\kappa(H, \cdot)$.
(3) Suppose $\kappa(H, w)=$ constant, all $w \in \Omega$. Then either $\operatorname{Re}(1 / \mathrm{g})^{\prime}=0$ (if constant $=0$) or $|g|^{-1}=(\text { constant })^{-1} \operatorname{Re}(1 / g)^{\prime}$ is harmonic in Ω. In the second instance the mean value theorem implies (for appropriate $r>0$)

$$
\frac{1}{|g(z)|}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{d \theta}{\left|g\left(z+r e^{i \theta}\right)\right|} \geq\left|\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{d \theta}{g\left(z+r e^{i \theta}\right)}\right|=\frac{1}{|g(z)|} .
$$

We conclude that $g(w)$ is identically constant in Ω. So in both cases constant $=$ 0 and $\operatorname{Re}(1 / g)^{\prime}=0$. Thus

$$
g(w)=[i \text { (real constant } w+\text { complex constant }]^{-1}
$$

and it is evident that H is of the expressed form.
§3. Theorem 3.1 is a minimum principle for curvature of level curves of harmonic measure with respect to the outer boundary of an annulus bounded by convex Jordan curves. Thus, for completeness, we first define these terms precisely.

By definition, a proper Jordan curve Γ is a pair $\left(\Gamma^{*}, p\right)$ for which the following statements are valid:
(i) p is an analytic function defined in a neighborhood of the real line with non-vanishing derivative.
(ii) $\Gamma^{*}=\{p(t): t$ real $\}$ is a Jordan curve.
(iii) $|d p / d t(t)| \equiv 1$, all $t \in(-\infty, \infty)$.
(iv). There is a number $e>0$ such that if t is real, and $p(t)=x(t)+i y(t)$, and $0<\varepsilon<e$, then $p(t)+\varepsilon(-\dot{y}(t)+i \dot{x}(t))$ lies in the interior of Γ^{*}.

If $z=p(t) \in \Gamma^{*}$, we define the curvature of Γ at z by

$$
c(\Gamma, z)=\ddot{y}(t) \dot{x}(t)-\ddot{x}(t) \ddot{y}(t) .
$$

The choice of the parameter t corresponding to z is irrelevant; it can be shown that p is periodic with some period $T>0$ and that p maps $[0, T)$ one-to-one onto Γ^{*}.

If Γ_{0} and Γ_{1} denote proper Jordan curves with Γ_{0}^{*} contained in the interior of Γ_{i}^{*}, then $A=A\left(\Gamma_{0}, \Gamma_{1}\right)$ shall denote the region bounded by Γ_{0}^{*} and Γ_{1}^{*}. Since Γ_{0} and Γ_{1} are proper Jordan curves there is a region Ω and a function H such that $\bar{A} \subset \Omega, H$ is harmonic in Ω, H has no critical points in Ω, H is identically zero on Γ_{0}^{*}, and H is identically one on Γ_{1}^{*}. There is at most one such function H in any fixed region Ω containing \bar{A} and any candidate will be called harmonic measure for the annulus A with respect to Γ_{1}. Then, if $0 \leq r \leq 1$, we set $\Gamma_{r}^{*}=\{z \in \bar{A}: H(z)=r\}$ and assert that there is a function p_{r} such that $\Gamma_{r}=$ (Γ_{r}^{*}, p_{r}) is a proper Jordan curve. Moreover, Γ_{r}^{*} lies in the interior of Γ_{s}^{*} and $r \leq H(z) \leq s$ if $0 \leq r<s \leq 1$ and $z \in A\left(\Gamma_{r}, \Gamma_{s}\right)$. These statements are standard (but non-trivial). Finally, we introduce the following notation for the minimum and maximum curvatures of $\Gamma_{0} \cup \Gamma_{1}$:

$$
\begin{aligned}
& k\left(\Gamma_{0}, \Gamma_{1}\right)=\min \left\{c\left(\Gamma_{r}, z\right):(r=0 \text { or } r=1) \text { and } z \in \Gamma_{r}^{*}\right\} \\
& K\left(\Gamma_{0}, \Gamma_{1}\right)=\max \left\{c\left(\Gamma_{r}, z\right):(r=0 \text { or } r=1) \text { and } z \in \Gamma_{r}^{*}\right\}
\end{aligned}
$$

Theorem 3.1. Let $\Gamma_{0}=\left(\Gamma_{0}^{*}, p_{0}\right)$ and $\Gamma_{1}=\left(\Gamma_{1}^{*}, p_{1}\right)$ denote proper Jordan curves with Γ_{0}^{*} lying in the interior of Γ_{1}^{*}, let H denote harmonic measure for the annulus $A=A\left(\Gamma_{0}, \Gamma_{1}\right)$ with respect to Γ_{1}, and let $\Gamma_{r}=\left(\Gamma_{r}^{*}, p_{r}\right), 0<r<1$, denote proper Jordan curves for which $\Gamma_{r}^{*}=\{z \in A: H(z)=r\}$. Then
(1) $c\left(\Gamma_{r}, z\right)=\kappa(H, z)$, all $r \in[0,1]$ and all $z \in \Gamma_{r}^{*}$;
(2) If $\kappa\left(\Gamma_{0}, \Gamma_{1}\right) \geq 0$ and $0<r<1$ and $z \in \Gamma_{r}^{*}$ we have

$$
\kappa(H, z)=c\left(\Gamma_{r}, z\right)>\kappa\left(\Gamma_{0}, \Gamma_{1}\right)
$$

and Γ_{r}^{*} is strictly convex.
Proof. (1) Fix $r \in[0,1]$ and set $p(t) \equiv p_{r}(t) \equiv x(t)+i y(t)$, all $t \in(-\infty, \infty)$. We claim that p is a solution of the differential equation (2.1) with $g=H_{x}-i H_{y}$ (for the case $r=0$ or 1 recall that H is harmonic with no critical points in a neighborhood of $\bar{A})$. Since $H(p(t)) \equiv r$ we have $H_{x}(p(t)) \dot{x}(t)+H_{y}(p(t)) \dot{y}(t) \equiv 0$. Thus
$\operatorname{Re} \dot{p}(t) g(p(t))=0$.
By the discussion of terminology, $H(z) \leq r$ if z lies in the interior of Γ_{r}^{*};
therefore a number $e(r)>0$ can be chosen so that $H(p(t)+\varepsilon(-\dot{y}(t)+i \dot{x}(t)))-$ $H(p(t)) \leq 0$, all $\varepsilon \in(0, e(r)]$ and all $t \in(-\infty, \infty)$. Divide by ε and allow $\varepsilon \rightarrow 0$. We see

$$
\begin{equation*}
\operatorname{Im} \dot{p}(t) g(p(t)) \geq 0 \tag{**}
\end{equation*}
$$

Together (*) and (**) imply

$$
\dot{p}(t) g(p(t)) \equiv i|\dot{p}(t)||g(p(t))|,
$$

and since $|p(t)| \equiv 1$ and $|g(p(t))| \neq 0$, it follows that p satisfies (2.1). We conclude

$$
\kappa(H, p(t))=\ddot{y}(t) \dot{x}(t)-\ddot{x}(t) \dot{y}(t)=c\left(\Gamma_{r}, p(t)\right)
$$

as required.
(2) By the hypothesis and part (1) $\kappa(H, z)=c\left(\Gamma_{r}, z\right) \geq 0$ if $r=0$ or 1 and $z \in \Gamma_{r}^{*}$. Thus $\operatorname{Re}(1 / g)^{\prime} \geq 0$ on ∂A. And this implies that both $\operatorname{Re}(1 / g)^{\prime}$ and $\kappa(H, \cdot)$ are non-negative at each point of A. Moreover

$$
\liminf _{w \rightarrow \partial A} \kappa(H, w)=\min _{w \in \partial A} \kappa(H, w)=k\left(\Gamma_{0}, \Gamma_{1}\right)
$$

by part (1) of the present theorem. We appeal to part (1) of Theorem 2.1 and conclude $c\left(\Gamma_{r}, z\right)=\kappa(H, z)>k\left(\Gamma_{0}, \Gamma_{1}\right)$, all $r \in(0,1)$ and all $z \in \Gamma_{r}^{*}$.

It is well known that Jordan curves with non-vanishing curvature are strictly convex.

A conjecture. To our knowledge there is no counterexample to any part of the following conjecture.

Conjecture 3.2. Let Γ_{0} and Γ_{1} denote proper Jordan curves with Γ_{0}^{*} in the interior of Γ_{1}^{*}, let H denote harmonic measure for $A=A\left(\Gamma_{0}, \Gamma_{1}\right)$ with respect to Γ_{1}, and let Γ_{r} denote a proper Jordan curve with $\Gamma_{r}^{*}=\{z \in A: H(z)=r\}$. Then $k\left(\Gamma_{0}, \Gamma_{1}\right) \leq c\left(\Gamma_{r}, z\right)=\kappa(H, z) \leq K\left(\Gamma_{0}, \Gamma_{1}\right)$, all $r \in[0,1]$ and all $z \in \Gamma_{r}^{*}$.

Conjecture 3.2 pertains to the theory of conformal mapping because H is essentially the logarithm of the modulus of a conformal map of A onto a circular annulus. Moreover, the upper and lower bounds in the conjectured inequalities are geometrical quantities associated with A, while $\kappa(H, \cdot)$ has a simple analytic expression in terms of the mapping function mentioned above.
§4. Counterexample to a stronger conjecture. The purpose of this section is to provide a counterexample to the following conjecture, the truth of which would immediately imply the truth of Conjecture 3.2.

Conjecture 4.1. Let H be harmonic with no critical points in a region Ω. Then

$$
\liminf _{w \rightarrow \partial \Omega} \kappa(H, w) \leq \kappa(H, z) \leq \limsup _{w \rightarrow \partial \Omega} \kappa(H, w), \quad \text { all } \quad z \in \Omega
$$

Because Conjecture 4.1 is false the geometrical hypotheses of Conjecture 3.2 are seen to be essential. We require Lemma 4.2 in the construction.

Lemma 4.2. Set $h(w)=\exp \left[-(w-1)+\frac{1}{4}(w-1)^{2}\right]$. Then there are positive numbers r and δ and there is an analytic function g defined for $|z|<r$ such that the following statements are valid.
(1) $|h(w)| \operatorname{Re} w<h(1)$ if $0<|w-1|<\delta$
(2) $g(w) \neq 0$ if $|w|<r$.
(3) $(1 / g)^{\prime}(0)=1$ and $g(0)=1$.
(4) $0<\left|(1 / g)^{\prime}(z)-1\right|<\delta$ if $0<|z|<r$.
(5) $h\left((1 / g)^{\prime}(z)\right)=g(z)$ if $|z|<r$.

Proof. (1) The remainder after two terms in Taylor's expansion of $\log x$ about $x=1$ is $0\left(|x-1|^{3}\right)$. Thus we may choose $\delta>0$ so that

$$
\log x-(x-1)+\frac{1}{2}(x-1)^{2}<\frac{1}{4}(x-1)^{2} \quad \text { if } \quad 0<|x-1|<\delta .
$$

This implies $\log x-(x-1)+\frac{1}{4}\left[(x-1)^{2}-y^{2}\right]<0$ if $0<(x-1)^{2}+y^{2}<\delta^{2}$; or equivalently, with $w=x+i y$,

$$
\left|\exp \left[-(w-1)+\frac{1}{4}(w-1)^{2}\right]\right| \operatorname{Re} w<1 \quad \text { if } \quad 0<|w-1|<\delta
$$

This is statement (1).
(2) \rightarrow (5) The function h is one-to-one in a neighborhood N_{0} of the complex number 1 ; also $h(1)=1$. Denote by h^{-1} the inverse function of $\left.h\right|_{N_{0},}$, denote the domain of h^{-1} (a neighborhood of 1) by N_{1}, and note that $h^{-1}(1)=1$. Since $h^{-1}(1) \neq 0$, there is a unique analytic solution g of the initial value problem

$$
\begin{equation*}
g^{\prime}(z)=-g(z)^{2} h^{-1}(g(z)), \quad g(0)=1 \tag{*}
\end{equation*}
$$

defined in a neighborhood N_{2} of zero (so that $g\left(N_{2}\right) \subset N_{1}$).
The following properties of g are successively evident in light of (*) and the fact that h^{-1} is one-to-one in N_{1} with $h^{-1}(1)=1$.
(a) There is a neighborhood N_{3} of 0 such that $N_{3} \subset N_{2}, g(z) \neq 0$ for z in N_{3}, $g^{\prime}(z) \neq 0$ for z in N_{3}, and g is one-to-one in N_{3}.
(b) $(1 / g)^{\prime}(z)=h^{-1}(g(z))$, all $z \in N_{3}$.
(c) $(1 / \mathrm{g})^{\prime}$ is one-to-one in N_{3} and $(1 / \mathrm{g})^{\prime}(0)=1$.
(d) With δ as in statement (1), there is a neighborhood N_{4} of 0 such that $N_{4} \subset N_{3},(1 / g)^{\prime}(z) \in N_{0}$ if $z \in N_{4}$, and

$$
0<\left|\left(\frac{1}{\mathrm{~g}}\right)^{\prime}(z)-1\right|<\delta, \quad \text { all } \quad z \in N_{4}-\{0\}
$$

Now choose $r>0$ so that $\{|z|<r\} \subset N_{4}$ and choose g as above, but restricted to $\{|z|<r\}$. Then (2) follows from (a), (3) follows from (c) and (*), and (4)
follows from (d). Finally, by (d), $(1 / \mathrm{g})^{\prime}(z) \in N_{0}$ if $|z|<r$. Hence, by (b),

$$
h\left(\left(\frac{1}{\mathrm{~g}}\right)^{\prime}(z)\right)=h\left(h^{-1}(g(z))\right)=g(z) \quad \text { if } \quad|z|<r .
$$

The proof is complete.
We may now exhibit a curvature function which assumes a strict global maximum, or a strict global minimum, and thus serves as a counterexample to Conjecture 4.1. Strictness is the main point of the construction; it is easy to find examples with weak global extrema.

Example 4.3. With g and r as in Lemma 4.2 set

$$
H(z)=\operatorname{Re} \int_{0}^{z} g(t) d t \quad \text { if } \quad|z|<r .
$$

Then $\kappa(H, z)<\kappa(H, 0)$ if $0<|z|<r$ and $\kappa(-H, z)>\kappa(-H, 0)$ if $0<|z|<r$.
Proof. By (2) of Lemma 4.2, $\boldsymbol{\kappa}(H, z)=|g(z)| \operatorname{Re}(1 / g)^{\prime}(z)$ is defined in $|z|<r$. By (5) of Lemma 4.2,

$$
\kappa(H, z)<h(1) \quad \text { if } \quad 0<|z|<r .
$$

Then, by (4) and (1),
Finally (3) implies

$$
h(1)=1=|g(0)| \operatorname{Re}\left(\frac{1}{g}\right)^{\prime}(0)=\kappa(H, 0)
$$

Thus $\kappa(H, z)<\kappa(H, 0)$ if $0<|z|<r$. The second statement follows since $\kappa(-H, \cdot)=-\kappa(H, \cdot)$.

References

1. L. V. Ahlfors, Conformal Invariants. McGraw-Hill, New York, 1974 (pp. 5, 6).
2. R. M. Gabriel, A result concerning convex level surfaces of 3-dimensional harmonic functions. J. London Math. Soc. 32 (1957), 286-294. (MR 19-848).
3. R. M. Gabriel, Further results concerning the level surfaces of the Green's function for a 3-dimensional convex domain. I. J. London Math. Soc. 32 (1957), 295-302. (MR 19-848).
4. R. M. Gabriel, Further results concerning the level surfaces of the Green's function for a 3-dimensional convex domain. II. J. London Math. Soc. 32 (1957), 303-306. (MR 19-848).

Department of Mathematics
University of Hawail
Honolulu, HI 96822
Department of Mathematics
Carleton University
Ottawa, Ontario, K1S5B6

[^0]: Received by the editors November 13, 1981 and, in revised form, December 10, 1982.
 AMS (MOS) Subject Classification Numbers: Primary: 30C99; Secondary: 30C45.
 Key words and phrases: Harmonic functions, level curves, curvature.
 (C) Canadian Mathematical Society, 1983.

