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NAMIOKA SPACES AND TOPOLOGICAL GAMES

V.V. MYKHAYLYUK

We introduce a class of 8 — v-unfavourable spaces, which contains some known classes
of B-unfavourable spaces for topological games of Choquet type. It is proved that
every B — v-unfavourable space X is a Namioka space, that is for any compact space
Y and any separately continuous function f : X x Y — R there exists a dense in X
Gs-set A C X such that f is jointly continuous at each point of A x Y.

1. INTRODUCTION

Investigations of the joint continuity point set of separately continuous functions
were started by Baire in [2] and were continued in papers of many mathematicians. A
Namioka’s result (7] on a massivity of the joint continuity point set of separately continu-
ous function on the product of two topological spaces, one of which satisfies compactness
type conditions, gave a new impulse to a further investigation of this topic.

A topological space X is called @ strongly countably complete space if there exists a
sequence (Un)ox, of open coverings of X such that ﬁ Fy, # O for every centred sequence
(Fn)2, of closed in X sets F, with F,, C U, for evz;;' n € N and some U, € UY,.

THEOREM 1.1. (Namioka.) Let X be a strongly countably complete space, Y
be a compact space and f : X x Y — R be a separately continuous function. Then
there exists a dense in X Gs-set A C X such that f is jointly continuous at each point
of AxY.

The following notions were introduced in [9].

A mapping f : X XY — R has the Namioka property if there exists a dense in X
Gs-set A C X such that A xY C C(f), where C(f) means the joint continuity point set
of f.

A Baire space X is called @ Namioka space if for any compact space Y, every sepa-
rately continuous function f : X x Y — R has the Namioka property.

It was shown in [4] that a topological games technique can be useful in a study of
Namioka spaces.

Let P be a system of subsets of a topological space X. Define a Gp-game on X in
which two players o and 8 participate. A nonempty open in X set U, is the first move
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of B and a nonempty open in X set V] C U and set P, € P are the first move of a.
Further 8 chooses a nonempty open in X set U C V) and a chooses a nonempty open
in X set V5 C U, and a set P, € P and so on. The player « wins if

(fjlv,,) n ( OOIP,.) #0.

n=

Otherwise 8 wins.

A topological space X is called a-favourable in the Gp-game if ¢ has a winning
strategy in this game. A topological space X is called S-unfavourable in the Gp-game if
£ has no winning strategy in this game. Clearly, any a-favourable topological space X
is a S-unfavourable space.

In the case of P = {X} the game Gp is the classical Choquet game and X is 3-
unfavourable in this game if and only if X is a Baire space (see [9]). If P is the system
of all finite (or one-point) subsets of X then Gp-game is called a o-game.

Note that Christensen in [4] generalising the Namioka theorem considered an s-game
which is a modification of the o-game. So, for the s-game a and j play in the same way as
in the o-game, and a wins if each subsequence (z,, )2, of sequence (z,)2, has a cluster

point in the set ﬁ Vi, where P, = {z,}. It was proved in [4] that any a — s-favourable
space is a Namic';lz'al. space.

Saint-Raymond showed in [9] that for usage the topological games method in these
investigations it is enough to require a weaker condition of S-unfavourability instead of
the a-favourability. He proved that any 8 — o-unfavourable space is a Namioka space
and generalised the Christensen result.

A further development of this technique leads to a consideration of another topolog-
ical games which based on wider systems P of subsets of a topological space X.

Let T be a topological space and X(T') be a collection of all compact subsets of T.
Then T is said to be K-countably-determined if there exist a subset S of the topological
space NN and a mapping ¢ : S — K(T') such that for every open in T set U C T the set

{s€S:p(s)C U} is open in S and T = |J ¢(s); and it is called K-analytical if there
2€S

exists such a mapping ¢ for the set S = NV,
A set A in a topological space X is called bounded if for any continuous function
f:X = Rtheset f(4) = {f(a) : a € A} is bounded.
The following theorem gives further generalisations of Saint-Raymond result.
THEOREM 1.2. Any f-unfavourable in Gp-game topological space X is a Namioka
space if:
(i) P is the system of all compact subsets of X (see Talagrand [11]);
(i) P is the system of all K-analytical subsets of X (see Debs [5]);
(iii) P is the system of all bounded subsets of X (see Maslyuchenko [6]);
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(iv) P is a system of all K-countable-determined subsets of X (see Rybakov
(8))-
It is easy to see that (iv)=>(ii) =(i) and (iii)=(i).
In this paper, using a technique which is related to the dependence of functions on
products upon some quantity of coordinates, we prove a result which generalises (iii) and

(iv).

2. DEPENDENCE OF FUNCTIONS UPON SOME QUANTITY OF COORDINATES AND
NAMIOKA PROPERTY

PROPOSITION 2.1. Let X be a topological space, A C X be a dense in X set,
Y € RY be a topological space, f : X x Y — R be a continuous in the first variable
function, € 2 0 and § C T be such that lf(a., ¥') - f(a, y")| < ¢ for every a € A and
every y',y" € Y with y'|s = "|s. Then |f(z,v) - f(m,y”)| < ¢ for every £ € X and
every y,y" €Y with¢'|s = ¢"|s.

PROOF: Suppose that 3, y" € Y with ¢'|s = y"]s. Put
K:X >R, K(z)=f(z,9), h":X 2R, h'(z)= f(z,y").
Since A’ and A" are continuous, the set
G= {a: € X :|W(z) - h'(z)| > e}

is open. But GNA = 0 and A = X. Thus, G = 0 and f(z,y') = f(z,y") for each
z€X. 0

PROPOSITION 2.2. LetY CRT bea compact space, (Z,|-—-|z) be a metric
space, f Y — Z be a continuous mapping, € > 0 and S C T be such that | f"
- fly Iz € for every y',y" € Y with ¢|s = y”ls Then for every €' > ¢ there exist a
finite set Sy C S and a real 6 > 0 such that |f(y’) - |z ¢ for every y',y" €Y
with |y'(s) — y"(s)| < 6 for each s € S,.

PROOF: Fix some & > ¢. Suppose that the proposition is false for this £’. Put
A={(R,n): RC S is finite and n € N}. Consider on A the following order: (R',n’)
< (R",n") if R C R" and n’ < n". By the assumption, for every a = (R,n) € A there

exist ¥,y € Y such that |f(ya) f(y [Z > ¢’ and |ya ,,(3)| < 1/n for each s € R.
Since Y? is a compact, the net (y,,y”)aca has a subnet (z{,,zj,’)beg which converges in
Y? to some point (y',y"”). The continuity of f implies | ) - ”)| 2 e > e. For

every ag = ({so},m0) € A there exists by € B such that a > ao for every b by where
a € A is such that (2, z) = (y.,¥,). Therefore |y’(so) - y”(so)l € 1/ng for every s € S
and ng € N. Thus y/(s) = y"(s) for every s € S and |f(y') — f(y¥")|, < &, but it is
impossible.
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COROLLARY 2.3. LetX C RT beacompact space, ¢ : X — RS be a continuous
mapping and Sp C S with |Sp| < Rg. Then there exists a set Ty C T with |To| < Yo such
that <p(z’)|s°= (,o(:r:”)|srj for every ', 2" € X with &'|s, = z"|r,.

PROOF: Consider a continuous mapping f : X — R%_ f(z) = ¢(z)|s,- Note that
RS0 is metrisable. Fix a metric d which generates the topology on R%. Using Proposition
2.2 for € = 0 we obtain that for every n € N there exists a finite set T,, C T such that
d(f(z'), f(z")) € 1/n for any z’,z" € X with 2’|, = z"|z,. The set To = G T, is to be
found. =t 0

Let X be a topological space, (Y, d) be a metric space, f : X - Y and A C X be
a nonempty set. The real wg(A) = z’SzlllI]ZAd( f(@'), f(z")) is called the oscillation of f

on A, and the real wy(zo) = l}x€1£ wy¢(U), where U is the system of all neighbourhoods of
7o € X in X, is called the oscillation of f at zg.

The following result illustrates relations between the Namioka property and the
dependence of mappings upon some quantity of coordinates.

THEOREM 2.4. Let X be a Baire space, Y C RT be a compact space and f :
X xY — R be a separately continuous function. Then the following conditions are
equivalent:

(i) f has the Namioka property;

(ii) for every open in X nonempty set U and every € > 0 there exist an open
in X nonempty set Up C U and a set Sy C T with |Sp] € N such that
|f(z,') — f(z,y")| < € for every = € Uy and every y',y" € Y with ¢'|s,
=y"[s0

(iti) for every open in X nonempty set U and every £ > 0 there exist an open in
X nonempty set Uy C U, a finite set S C T and § > 0 such that lf(:c, ¥)
- f(z, y”)] < € for every z € Uy and every y,y" € Y with |y’(s) - y”(s)|
<4, ifs € Sp.

Proor: (i)= (ii). Let f has the Namioka property and U be an open in X
nonempty set. Then there exists an open in X nonempty set Uy C U such that | f@,y)
- f=", y)| < /2 for every z',z" € Uy and every y € Y. Pick an arbitrary point z, € Uj,.
The continuous function g: Y — R, g(y) = f(ze, y) depends upon countable quantity of
coordinates, that is there exists a set So C T with |Sp| < N such that g(y') = g(y") for
every ', y" € Y with ¢/|s, = ¢"|s,. For every z € Up we have

|f(.'l:, y,) - f(.’E, y”)l f(x, y,) - f(Io, yl)l + |f(20’ y') - f(IL'o, y")l + |f(1‘01 y”) - f(.’L‘, y”)l

|
ef2+¢ef2=¢.

N N

(if)=>(iii) . Fix an open in X nonempty set U and € > 0. By (ii) there exist an
open in X nonempty set U’ C U and a set S’ C S with |S'| < Ry such that |f(z,v)
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- f(a;,y”)] < €/2 for every z € U’ and every ¢,y" € Y with ¢/|g = y"|s. Let

S = {s1,82,...,8n,...}. For every n € N denote by F,, the set of all points z € X
such that |f(z,¥) — f(z, y”)| ¢ for every ',y € Y with |y (sx) — y"(sx)] < 1/n by
k =1,2,...,n. The continuity of f in the variable z implies that all sets F,, are closed.

By Proposmon 2.2 the continuity of f in the variable y implies U’ C U F,. Since X isa
=1
Baire space, there exist an integer ng € N and an open in X nonempty set Uy C U’ such

that Up C int(Fp,). It remains to put 6 = 1/n.

(iii)=>(i). Suppose that for an open in X nonempty set U and any real € > 0 there
exist an open in X nonempty set Up C U and a finite set Sy C T and a é > 0 such that
|f(z,9) = f(z,y")| < € for every z € Us and every ¢,y” € Y with |¢'(s) — y"(s)| < 6, if
s € Sp. Then for every € > 0 the open set

G, = {z € X: (Vy € Y)(w(z,y) < E)}

is dense in X. Put A = [ Gyp. Clearly that f is continuous at each point of A x Y.
n=1

Thus, f has the Namioka property. 0

PROPOSITION 2.5. Let X C RS be a compact space, f : X — R be a con-

tinuous function, T C S be a set such that f(z,) = f(z;) for every z,,z, € X with

Tilr = 2oy, ¢ : X - RY, ¢(z) = z|r and Y = ¢(X). Then the function g : ¥ — R,
g{z|r) = f(z) is continuous.

PROOF: Let yp € Y, zo € X be such that ¢(zp) = yo and € > 0. The set
F={zeX: |f(x)—f(a:0)| > e}

is closed in X, thus F is compact. Therefore the set p(F') is compact subset of Y, besides
yo € @(F). Thus the set V =Y \ ¢(F) is a neighbourhood of y,. For every y € V we
have | a(y) — g(yo)| < €. Hence g is continuous at y. 0

3. VALDIVIA COMPACTS AND THE NAMIOKA PROPERTY

In this section we establish a result which we shall use in the proof of a generalisation
of Theorem 1.2.

Recall that a compact space Y is called a Valdivia compact if Y is homeomorphic to
a compact Z C RS such that a set B = {z € Z : |suppz| < Ro} is dense in Z, where
supp f means the support {x €X: f(z) # 0} of a function f : X = R.

THEOREM 3.1. Let X be a Baire space, Y C R” be a Valdivia compact, € > 0
and f : X x Y — R be a continuous in the firsts variable function such that wy:(y)
< ¢eforeveryz € X and every y € Y, where f* : Y = R, f*(y) = f(z,y). Then
there exist an open in X nonempty set Uy and a set To C T with |Tp] < No such that
|f(x, y') — f(z, y”)[ 3¢ for every x € Uy and every y',y" € Y with y'|1, = ¥"|r,-
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PROOF: Note that Y is homeomorphic to a compact Z C RS such that the set
B = {z € Z:|suppz| < No} is dense in Z. Let ¢ : Y — Z be a homeomorphism and
g:X x Z >R, g(z,2) = f(z,97(2)). Clearly, g is continuous in the first variable and
wg=(z) < € for every z € X and every z € Z, where ¢° : Z = R, ¢*(2) = g(z, 2).

For each £ € X pick a finite covering W, of Z by open in Z basic sets such that
wg=(W) < € for every W € W,. For each W € W; choose a finite set R(W) C S such
that for every #/,z" € Z the conditions 2’ € W and 2”(s) = 2/(s) for any s € R(W) imply

that 2 € W. For a finite set S; = |J R(W) we have |g(z, 2') — g(z, z")| < ¢ for every
W€W=

2, 2" € Z with 2'|s, = 2"|s,. For each n € N we put X, = {z € X : |S;| < n}. Since X
is a Baire space, there exist an open in X nonempty set U and an integer ng € N such
that U C Xp,.

Show that there exist an open in X nonempty set Uy C U and a set So C S with
|So|l < Rg such that Ig(z, b) — g(z, b”)l < ¢ for every z € Uy and every b, b’ € B with
b’lSo = b”|30'

Assume that it is false. Pick a set S; C S with |S)] € Ry put U) = U. By the
assumption, there exist z; € U; and b;,¢, € B such that ]g(zl,bl) - g(xl,c1)| > €
and b|s, = c1|s,. Using the continuity of g in the first variable, we find an open in
X nonempty set U C U, such that |g(z,b1) — 9(z, cl)l > ¢ for every z € U,. Put
S = S; U (suppb;) U (suppc;). By the assumption, there exist z; € U, and bs,c; € B
such that |g(z2,b2) - 9(z2,¢2)| > € and byfs, = ¢2|s,. Doing like that step by step ng
times, we obtain a decreasing sequence (U,)7°*? of open in X nonempty sets U,, an

increasing sequence (S,)2%? of at most countable sets S, C S and sequences (b,)ro*!

and (c,)2%! of points b,, ¢, € B such that the following conditions hold: =
(@) Uns1 C Us;
(b)  Sp+1 = Sp U (supp bp) U (suppcn);
() bnls, = cnlsa;
(d) |g(z,ba) — g(z,cn)| > € for each z € Upny,

forevery n=1,2,...,np+ 1.

Since Ung12 C Uy = U C Xy, Ungsz N Xy # 0. Pick a point 2o € Upyyp N Xn, and
fixn € {1,2,...,n0+1}. Then |g(zo, bs)— (%o, ca)| > € by Condition (d). The definition
of S;, implies bals,, # cals,,- Besides, by|s, = ¢nls, by Condition (c) and Condition (b)
implies that b,,ls\sn_H = cnlS\S,.+1 = (. Therefore bnlS\(S,.+1\S..) = cﬂls\(sn“\sn). Thus
Szo € S\ (Sn+1\ Sn), that is Szo N (Spt1 \Sa) # 0 for every n = 1,2,...,n9 + 1. But
this contradicts |Sz,| < no.

Now we show that lg(z, 2') - g(z, z”)| € 3¢ for every z € Uy 2/,2" € Z with
2|5, = 2" 5.

Fix z € Up and 2/,2" € Z with 2'|g, = 2"|s,. Since the countably compact set B
is dense in Z, wg=(2') < €, wg=(2") < € and [So| < No, there exist ¥,¥" € B such that
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Vs, = 2lses 1'ls0 = 250, |9(2, 2') — g(z, ¥)| < € and |g(z, 2") - g(z, b")| < e. Therefore
bl‘So = b”|50 and Ig(:l:,b’) - g(z, b”)| < g. Thus

l9(z,2') — g(z, 2")| < |g(z, 2') - g(z,8)| + |g(z,b) — g(=z,b")| + |9(=z, ") - g(z,2")|
<ete+e=3e.

Applying Corollary 2.3 to the compact space Y, the mapping ¢ and the set Sp, we
find an at most countable set Ty C T such that ¢(y')}s, = ¢(y")|s, for every y',y/" €Y
with ¥'|1, = ¥"|r,- Then

£z, v) = 1@ 9] = oz, 0@) - o(z06")| < 3¢

for every z € Us. O
In particular, Theorem 2.4 and Theorem 3.1 imply the following result which was
obtained in [3, Corollary 1.2].
COROLLARY 3.2. Any separately continuous function on the product of a Baire

space and a Valdivia compact has the Namioka property, that is any Valdivia compact
is a co-Namioka space.

4. NAMIOKA SPACES AND 8 — v-UNFAVOURABLE SPACES

In this section we prove a generalisation of Theorem 1.2.
Let P be a system of subsets of topological space X with the following conditions
(v1) P is closed with respect to finite unions;
(v2) for every set E € P and every compact Y C Cy(X) a compact ¢(Y) is a
Valdivia compact, where ¢ : Cp(X) = Cp(E), o(y) = yl&.
A topological space X is called 8 — v-unfavourable if the player 8 has no winning
strategy in the Gp-game for some system P with (v;) and (v;).
Recall that a compact space Y is called an Eberlein compact if Y is homeomorphic to
a compact subset of Cp(X) for some compact X. A compact space Y is called a Corson
compact if Y is homeomorphic to a compact Z C RS such that |supp z| < Ro for every
z € Z. It is known that any Eberlein compact is a Corson compact and clearly that any
Corson compact is a Valdivia compact.
PROPOSITION 4.1. Let X be a topological space and K be a system of all
nonempty sets E C X such that for every compact Y C C,(X) a compact p(Y) is a
Corson compact, where ¢ : Cp(X) — Co(E), ¢(y) = y|lg. Then K has (v) and (vs).

PROOF: Let E\, E, € K, E = E, U E,, then

o1 : Cp(X) = Cp(Er), ©1(¥) = yl&y,
Yo : Cp(X) - Cp(E2)a ‘PQ(y) = y,Ev
9:Co(X) = Co(E),  o(y) =yle
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and Y C Cp(X) be a compact. Note that a mapping ¥ : ¢(Y) = ¢1(Y) x @o(Y),
¥(y) = (¥le,» ¥lg,), is a homeomorphic embedding. Therefore the compact ¢(Y) is a
Corson compact. Thus X has (v;).

The property (v;) of system K is obvious. 0

PROPOSITION 4.2. Any B-unfavourable in Gp-game topological space X,
where P is the system of all bounded subsets of X or P is a system of all K-countably-
determined subsets of X, is a 8 — v-unfavourable space.

PROOF: Let E be a bounded set in a topological space X and Y C C,(X) be a
compact. Consider a continuous mapping ¢ : X — Cp(Y). Clearly, the set T = ¢(E)
is bounded in C,(Y). Therefore by [1, Theorem IIL.4.1] the closure T of T in C,(Y) is
a compact. Then a compact Z = 9,(Y), where ¢, : Y — Gp(T), hi(y)(t) = t(y) for
everyy € Y andt € T, is an Eberlein compact, because Z is homeomorphic to a compact
subset of C,(T). Since compacts Z and ¢(Y), where ¢ : Cp(X) = Cp(E), ¢(y) = y|g, are
homeomorphic, ¢(Y) is an Eberlein compact, in particular, ¢(Y) is a Corson compact.

It follows analogously from {10, Theorem 3.7] that for every K-countably-determined
set E C X and every compact Y C C,(X) a compact ¢(Y'), where ¢ : C,,(X) = Cp(E),
©(y) = y|E, is a Corson compact.

Thus the systems P; of all bounded subsets and P, of all K-countable-determined
subsets of the topological space X are contained in the system K, by Proposition
4.1. Therefore any S-unfavourable space in the Gp,-game or in the Gp,-game is a -
unfavourable in Gx-game and it is § — v-unfavourable by Proposition 4.1. 0

THEOREM 4.3. Any S — v-unfavourable space is a Namioka space.

PROOF: Let X be a  — v-unfavourable space. Then there exists a system P of
subsets E of topological space X which satisfies (v;) and (v;) and such that X is §-
unfavourable in the Gp-game.

Assume that X is not a Namioka space. Then there exist a compact space Y and
a separately continuous function f : X xY — R which does not have the Namioka
property. Consider a continuous mapping ¢ : Y — Cp(X), ¢(y)(z) = f(z,y). Put
Z = ¢(Y). Clearly, Z is a compact subspace of RX and a separately continuous mapping
g: X xZ = R, g(z,z) = z(z), does not have the Namioka property. Note that X is
a fS-unfavourable space in the Choquet game, that is, X is a Baire space. Therefore by
Theorem 2.4 there exist an open in X nonempty set U and an € > 0 such that for every
open in X nonempty set U C U, and every at most countable set A C X there exist
z € U and 2/, 2" € Z such that 2'|4 = 2|4 and |g(z, Z') — g(z, z”)| >e€.

Show that for every set E € P the set F(E) = {z €Uo:|9(z,7) - g(z,2")| < /8

for every /,2" € Z with 2’|g = z”lg} is nowhere dense in Up.
Suppose that it is false. Since U, is a Baire space with the topology induced by
X and by Proposition 2.1 all sets F(E) are closed in Up, there exist a set E; € P and
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an open in X nonempty set Vo € Up such that Vy C F(Ey). Suppose ¥ : Z — RPo,
¥(2) = z|g, and Z = ¥(Z). Since the system P satisfies (v;), Z is a Valdivia compact.
For every z € Z choose a point 7(Z) € Z such that 1,1)( ) = Z. Consider a mapping
h:VoxZ — R, h(z,%) = g(z,7(%)). Since g is continuous in the first variable, h is
continuous in the first variable.

Fix zo € Vp and % € Z. The set

B={z¢2:|9(z0,2) - 9(a0,7(%))| > £/4}

is a compact subset of Z. Besides, zo € F(E,) implies Zy ¢ ¥(B). Since 9 is continuous,
the set ¥(B) is a compact subset of Z. Thus ¥(B) is a closed subset of Z. Therefore
the set W = Z \ ¥(B) is a neighbourhood of Z;. Then 7(Z) ¢ B for every z € W, that
9(z0,7(2)) - g(zo,T(Zo))l = |h(zo,2) — h(zo,%0)| < €/4 for every Z € W. Hence
wheo(20) < €/4, where k¥ : Z — R, h*(Z) = h(zo, 7).

Thus, h satisfies the conditions of Theorem 3.1. Therefore there exist an open in
X nonempty set U C V, and an at most countable set 4y C Ep such that |h(z Z)
— h(z,7")| < 3¢/4 for every z € U and every 7,7 € Z with 7|4, = 2’| 4,-

Pick arbitrary points z € U and 2/, 2" € Z such that 2’|4, = 2"|4,. Put Z = ()
and 2z = 9(2"). Clearly, 2’| 4, = 2| 4,- Therefore Ih(:c,E’) - h(z,?’)| < 3e/4. Since

is

2|y = 7(Z)E0r 2"l = T(Z")IE6

and
zeU SV C F(R), |o(@.2) - 9(a.7(®)| = Jo(e. /) — h(z, 7)| < e/8
and
‘g(a:, 2") - g(z, T(E"))I = |g(z,2") — h(z,7")| < /8.
Then

l9(z,2') — gz, 2")| < |g9(z, 2) — h(z,Z)| + |h(z, 7) — h(z,Z")| + |h(z,Z") — g(z,2")|
g+ 3 + A
=8 4 8

But this contradicts the choice of Up.

Thus the set F(E) is nowhere dense in U, for every E € P.

Describe a strategy for the player S in the Gp-game. The set Uj is the first move
of 5. Let (%,E) be the first move of a, where V| C U, is an open in X nonempty
set and E; € P. Then U, = W, \ F(E,) is the second move of 8, where E, = E,.
If V, C U, is an open in X nonempty set and Eg € P then U, = V; \ F(E;) where
E,=F U E. Continuing the procedure of choice by the obvious manner, we obtain
decreasing sequences (U,)2%, and (V,,)32, of open in X nonempty sets U, and V;, and an

™
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increasing sequence (E,)32, of sets E, € P such that V, C U,_,, U, = V, \ F(E,) and
E. C E, for every n € N, where E, € P isthe corresponding part of the n-th move of a.

[= o] [> < B —
Put F = U E,. Clearly, U E, C E. Pick a point o € E. Note that g(z,, 2’)

= g(zq, 2") for every Z,2"e 7 w1th Z'|g = 2"|Eg, that is the continuous function g* :
Z = R, ¢*°(z) = g(zo, 2), is concentrated on E. Using Proposition 2.2, we obtain that
there exists a finite set A C E such that |g(zo, ') — g(zo, 2")| < £/8 for every 2/,2" € Z
with 2'|4 = 2"|a. Pick ng € N such that A C E,,. Then zo € F(E,) therefore zo ¢
Up,. Thus zo ¢ ﬂ U, and Eﬂ(ﬂ U) = . In particular, (U E’)ﬂ(ﬂ U) =

n=0 n=0

Hence the strategy descrlbed above is a winning strategy for £ in the Gp-game, but it is
impossible.
Thus, our assumption is false and the theorem is proved. 1]
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