# general relativistic description of celestial reference frames 

A.V.Voinov<br>Institutc for Applicd Astronomy, Leningrad


#### Abstract

The astonomical consequences of recently developed theorctical methods of relativistic astrometry arc discussed. The sct of practically important reference systems is described. Thesc reference systems gencralize the locally incrtial frames of gencral relativistic test obscrver, the hicrarchy of Jacoby coordinates for dynamical problems and the dynamically incrtial reference systems of fundamental astrometry. In practical application of this formalism much attention is paid for rclativistic transformation functions relating the celiptical coordinates corresponding to the barycenters of the Solar systcm, the Earth-Moon subsystem and the Earth. Solutions to scveral kinds of relativistic precession arc also presented.


The ultimatc aim of astrometry is to sct up an incrtial refcrence framc. Traditionally, the problem is to introducc a coordinate systcm which docs not move and rotate with respect to very remote light cmitters. Within the framework of classical mechanics such a kincmatical construction immediatcly provides the nescssary dynamical propertics of an incrtial system - namely the absence of translatory, centripetal and Coriolisc incrtial forces.

Gencral Relativity prohibits the classical incrtiality. Only in the casc of weak gravitation onc may construct a system which retains some particular propertics of an incrtial onc. Thus, if a system moves, it cannot be sumutancously dynamically and kincmatically incrtial.

If wc consider the Solar systcm as a wholc, wc can usc its Barycentric Refcrence Systcm (BRS). It may be regarded as completcly incrtial at the sufficient level of accuracy.

On the other hand, most of astronomical techniques and applications arc concerned with the Earth, its close vicinity and the Earth-Moon subsystem. Thercfore it is rcasonable to consider a set of quasi-incrtial reference frames which are related to these bodics. Evidently, most important of them would be the Gcocentric Reference Systcm (GRS) and Tcrrcstrial- lunar Refcrencc Systcm (TRS). The lattcr
is rclated to the Earth-Moon barycentcr.
Let us consider in morc detail the dynamically incrial terrestrial-lunar reference system (TRS) $\left(x^{\tilde{x}}, x^{\tilde{1}}\right)$ in its relation to the $B R S$ ( $x^{0}, x^{1}$ ) of the Solar systcm.

To definc a coordinate system in Gencral Relativity is to maintain the corresponding metric tensor.

Sincc the Earth-Moon subsystcm is compact with respect to its distance to the Sun, we may take an advantage to treat scparatcly the gravitation of the internal bodics (the Earth and the Moon) and of thosc external (the Sun and plancts). Then the required metric in $T R S$ may be found as a post-Newtonian solution to the Einstcin cquations in harmonic coordinates where the boundary conditions arc used to account for the dynamical incrtiality of the spatial axes of $T R S$. Detailed description of this techniques may be found in [1, $2,3,4$ ].

As a result wc obtain some gencral form of metric tensor both in $B R S$ and in TRS:

$$
\delta_{00}=1-2 \varphi+2 \varphi^{2}-2 x_{, 00}-2 \varphi, \quad \delta_{01}=4 \varphi_{1}, \quad \delta_{1 j}=-\delta_{1 j}(1+2 \varphi)
$$

wherc all the "potentials" $\varphi, \varphi_{1}, \chi$ and $\psi$ arc represented as sums of its internal and background parts. Internal components definc the gravitational ficld of the Earth-Moon subsystcm in the post-Ncwtonian limit. The background ficld is produced by the Sun and the plancts. The background potentials arc "direct" in BRS and "tidal" in TRS. Thus, the background solar potential takes the form:
where
$W_{\tilde{1}}$ is the covariant accelcration of the TRS origin
(point T),

$E_{1 \tilde{j}}$ is the "clecrtic" part of background curvaturc, which lcading terms arc:

$$
R_{\tilde{0} \tilde{10} \tilde{j}} x^{\tilde{1}} x^{\tilde{j}}=E_{\tilde{1} \tilde{j}} x^{\tilde{1}} x^{\tilde{j}}=\frac{m_{\mathrm{s}}}{R_{T}^{3}} P_{2}\left[\cos \left(R_{T} \cdot \tilde{r}\right)\right]+\ldots \ldots
$$

The structurc of this cquation is similar to that of traditional cxpansion on powers of parallax.

As a side product of thesc techniques we immediatcly obtain the transformation functions which rclatc TRS to BRS:

$$
x^{\alpha}=x^{\tilde{\alpha}}+L^{\tilde{\alpha}}\left(x^{\ddot{i}}\right)+\tilde{P^{\tilde{i}}}\left(x^{\ddot{v}}\right)+T^{\tilde{i}}\left(x^{\ddot{v}}\right)
$$

It contains the Lorentz bust ( $L$ ), the relativistic precession ( $P$ ) and the terms ( $T$ ), which arc nescssary to reduce the background potentials to the tidal ones.

Relativistic precession (especially - gcodetic) determines the difference between the kinematically and dynamically incrtial orientations of the moving reference systems. This precession may be
cxpressed in terms of two angular quantitics ( $\gamma$ and $\varepsilon$ ), which definc correspondingly the relativistic procession in longitude and inclination. The laws of Fcrmi-Walker transport in the background metric provide two cquations for thesc angles:

$$
\frac{d \gamma}{d x^{\tilde{0}}}=\omega_{\mathrm{G}}^{3}+\omega_{T}^{3} \quad, \frac{d \varepsilon}{d x^{\tilde{0}}}=\left(\omega_{\mathrm{G}}^{1}+\omega_{11}^{1}\right) \cos \gamma+\left(\omega_{\mathrm{G}}^{2}+\omega_{11}^{2}\right) \sin \gamma .
$$

wherc

$$
\begin{aligned}
& \omega_{\mathrm{G}}=\frac{3}{2} \mathrm{~V}_{\mathrm{T}} \times \overline{\mathrm{vb}}+\overline{2 \text { rotb }}, \quad \text { (gcodetic }+ \text { Lensc-Thirring) } \\
& \omega_{T}=\frac{1}{2} \mathrm{~V}_{\mathrm{T}} \mathrm{X}_{\mathrm{W}} \cdot \quad \quad \text { (Thomas) } \\
& \mathrm{V}_{\mathrm{T}}=\mathrm{d} \mathrm{dr}_{\mathrm{T}} / \mathrm{dx}, \quad \mathrm{w}=\mathrm{dV}_{\mathrm{T}} / \mathrm{dx}^{0}
\end{aligned}
$$

In virtuc of a perturbation method we find the solutions for these cquations:

$$
\begin{aligned}
& \gamma=\gamma_{\mathrm{D}}+\gamma_{\mathrm{N}}, \\
& \gamma_{\mathrm{p}}=\left[\frac{3}{2} \frac{n^{, 3} a^{, 2}}{1-c^{2}}+\sum_{b=1}^{N} \nu_{b}\left(\frac{3}{2} n_{b}^{2} n^{\prime} a^{2}-2 n_{b}^{3} a_{b}-\frac{27}{32} n_{b}^{2} n^{,} \frac{a^{, 4}}{a_{b}^{2}}-\right.\right. \\
& \left.-\frac{3}{2} v_{b} n_{b}^{3} a_{b}^{2}+\ldots\right] x^{\tilde{0}}=(19.192996 / 1000 \text { zears }) x^{\tilde{0}}, \\
& \gamma_{\mathrm{N}}=N_{0} \sin \left(E-\pi^{\prime}\right)+0.00192 \sin \left(2 E-2 \pi^{\prime}\right)-0.00106 \sin (E-J)+\ldots, \\
& \varepsilon=\varepsilon_{0}+0.00011 \cos (E+J)+0.00010 \cos (E-J)+\ldots, \\
& N=\ldots x^{2} c,\left(\frac{9}{2}+\frac{45}{16} c^{2}+\ldots+\frac{39}{8} \sum_{b=1}^{N} v_{b} \frac{n_{b}^{2}}{n^{2}}+\ldots\right)=0.15321, \\
& v_{b}=\frac{m_{b}}{m_{s}},
\end{aligned}
$$

Herc the "primed" quantitics describe the heliocentric motion of the Earth-Moon barycenter. Besides, $n_{b}$ is the mean motion of the planct $b$, $a_{b}$ is the scmimajor axis of the planct $b\left(a_{b}>a^{\prime}\right), E$ is the mean longitude of $T, J$ is the mean longitude of Jupiter, $\pi$, is the longitude of perihclion of $T . \varepsilon_{0}$ is the inclination constant. For example,

$$
\begin{aligned}
& \varepsilon_{0}=0 \quad \text { mcans ccliptical oricntation }, \\
& \varepsilon_{0}=23^{0} 27^{\prime}+\ldots \text { may mean the cquatorial onc. }
\end{aligned}
$$

Hercafter all the angular cocfficients arc expressed in milli arc scconds.

Wc can construct analogous analytical or scmianalytical expansions for transformation between $B R S$ and TRS. It secms convenient to express them in terms of spherical coordinates.

Let us adopt for the sake of simplicity the ccliptical oricntation of both $B R S$ and $T R S$ and introduce the following:

```
\(\mathbf{r}-\mathbf{r}_{\mathrm{q}_{1}}=r(\cos \lambda \cos \beta, \sin \lambda \cos \beta, \sin \beta)\),
    \(\tilde{\mathbf{r}}=\tilde{r}(\cos \tilde{\lambda} \cos \tilde{\beta}, \sin \tilde{\lambda} \cos \tilde{\beta}, \sin \tilde{\beta})\),
```

Then the relativistic transformation mentioncd above is reduced to (notc that $\varepsilon_{0}=0$ ) :

$$
\lambda=\tilde{\lambda}-\gamma+6 \lambda, \quad \beta=\tilde{\beta}+6 \hat{\beta}, \quad r=\tilde{r}+\delta r,
$$

wherc

```
\(\cos \tilde{\beta} 6 \lambda=L_{1} \cos \tilde{\beta}+L_{2} \frac{r}{a^{\prime}}\),
    \(\delta \beta=B_{1} \cos \tilde{\beta} \sin \tilde{\beta}+B_{2} \frac{r}{a^{\prime}} \cos \tilde{\beta}+B_{3} \frac{r}{a^{\prime}} \sin \tilde{\beta}\),
    \(\bar{\sigma}=\tilde{r}\left(R_{1}+R_{2} \cos ^{2} \tilde{\beta}^{2}+R_{3} \frac{r}{a^{\prime}} \cos \tilde{\beta}+R_{4} \frac{r}{a^{\prime}} \sin \tilde{\beta}\right)\),
\(L_{1}=0.50884 \sin (2 \lambda-2 E)+0.01701 \sin \left(2 \lambda-3 E+\pi_{\sim}^{\prime}\right)+\)
    \(+0.00046 \sin \left(2 \lambda^{2}-4 E+2 \pi^{\prime}\right)-0.00041 \sin \left(2 \lambda^{2}-E-J\right)+\ldots\),
```

Analogous expansions may be written for the other cocfficients in above formulac.

Since this transformation is relativistic, it must contain the appropriatc time component (sce c.g.[ ]).

Exprcssion for $\lambda$ contains cxplicitly the rclativistic precession and nutation in longitudc. That for the inclination occurs completcly ncgligible. Thereforc we can casily obtain a more practical reference system, which is related to $B R S$ with only the periodic terms of the above transformation:

$$
\lambda=\lambda-\gamma_{N}+\delta \lambda, \quad \beta=\tilde{\beta}+\delta \beta, \quad r=\tilde{r}+\delta r,
$$

This system is scen to bc kincmatically incrtial in averagc. It also mects the modern IAU standards which combinc the sccular part of gcodetic precession with that Ncwtonian.

Neverthelcss, it should bc noted, that initial definition of $T R S$ is more theoretically consistent from the point of vicw of Gencral Rclativity.

## References

1. Thornc K.S., Hartlc J.B. (1985). Laws of Motion and Prccession for Black Holcs and Other Bodics. Phys.Rcv., D31, 1815-1837.
2. Brumberg V.A., Kopcjkin S.M. (1989). Rclativistic Theory of Cclestial Refercnce Frames In Kovalcvsky J., Mucllcr I.I., Kolaczek B. (cds) Refcrence Frames. Kluwer Academic Publishers.
3. Voinov A.V. (1988). Motion and Rotation of Cclestial Bodics in the post-Ncwtonian Approximation. Cclestial Mcchanics, 42, 293-307.
4. Voinov A.V. (1989). Relativistic Equations of Motion of an Earth Satcllitc. Manuscripta Gcodactica (in press).
