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ABSTRACT. The astonomical consequences of recently developed
theoretical methods of relativistic astrometry are discussed. The set
of practically important reference systems is described. These
reference systems generalize the locally inertial "frames of general
relativistic test observer, the hierarchy of Jacoby coordinates for
dynamical problems and the dynamically inertial reference systems of
fundamental astrometry. In practical application of this formalism much
attention is paid for relativistic transformation functions relating
the ecliptical coordinates corresponding to the barycenters of the
Solar system, the Earth-Moon subsystem and the Earth. Solutions to
several kinds of relativistic precession are also presented.

The ultimate aim of astrometry is to set up an inertial reference
frame. Traditionally, the problem is to introduce a coordinate system
which does not move and rotate wi th respect to very remote light
cmitters. Wi thin the framework of classical mechanics such a
kinematical construction immediately provides the nesessary dynamical
properties of an inertial system - namely the absence of translatory,
centripetal and Coriolise inertial forces.

General Relativity prohibits the classical inertiality. Only in
the case of weak gravitation one may construct a system which retains
some particular properties of an inertial one. Thus, if a system moves,
it cannot be sumutaneously dynamically and kinematically inertial.

I f we consider the Solar system as a whole, we can use its
Barycentric Reference System (BRS). It may be regarded "as completely
inertial at the sufficient level of accuracy.

On the other hand, most of astronomical techniques and
applications arc concerned with the Earth, its close vicinity and the
Earth-Moon subsystem. Therefore it is reasonable to consider a set of
quasi-inertial reference frames which are related to these bodies.
Evidently, most important of them would be the Geocentric Reference
System (GRS) and Terrestrial- lunar Reference System (TRS). The latter
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is related to the Earth-Moon baryccnter.
Let us consider in more detail the dJrnlJ,llliclJ,11y inertilJ,l

o 1:terrestrial-lunar reference system (TRS) (x,x) in its relation to the
ERB (xu ,'x1

) of the Solar system.
To define a coordinate system in General Relativity is to maintain

the corresponding metric tensor.
Since the Earth-Moon subsystem is compact wi th respect to its

distance to the Sun, we may take an advantage to treat separately the
gravi tation of the internal bodies (the Earth and the Moon) and of
those external (the Sun and planets). Then the required metric in TRS
may be found as a post-Newtonian solution to the Einstein equations in
harmonic coordinates where the boundary conditions are used to account
for the dynamical inertiali ty of the spatial axes of TRS. Detailed
description of this techniques may be found in [1,2,3,4].

As a result we obtain some general form of metric tensor both in
ERS and in TRS:

2
goo = 1 - 2<p + 2ep -:rx,oo - 2~, g01 = 4<P1 g1j = -013 (1 + 2<p)

where all the "potentials" <p, <P1' X and ~ are represented as sums of
its internal and background parts. Internal components define the
gravitational field of the Earth-Moon subsystem in the post-Newtonian
limit. The background field is produced by the Sun and the planets. The
background potentials are "direct" in BRS and "tidal" in TRS. Thus, the
background solar potential takes the form:

i 1 il 1 kImwix + iWkrx x + 6witlmx x x + ••• I

where
WN is the covariant acceleration of the TRS origin

1
(point T), 10

W",N = E,.,N + 3WNWN - w~, w~, 5 , WN-.. =EN-.. - -35. w.... . AI ~~~. + 4w. N w........
1j 13 1 j m m 1j 13k 1jk l 1 j k Jn ri l 13k)

£,.,.... is the "elecrtic" part of background curvature, which
1j

leading terms arc:
1: j 1: j DIS

~""N""X X =&"'x x =-:; Pr.J[cos(R,\,·r)] + •••••
010j 13 R\J ~ .J.

If

The structure of this equation is similar to that of tradi tional
expansion on powers of parallax.

As a side product of these techniques we immediately obtain the
transformation functions which relate TRS to ERS:

~J a ~.' ~J P.' f'J N

x(J. = x(J. + L (xv) + #' (xv) + f (xv)

It contains the Lorentz bust (L), the relativistic precession (P)
and the terms (T), which arc nesessary to reduce the background
potentials to the tidal ones.

Relativistic precession (especially - geodetic) determines the
difference between the kinematically and dynamically inertial
orientations of the moving reference systems. This precession may be
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expressed in terms of two angular quantities (1 and e), which define
correspondingly the relativistic precession in longitude and
inclination. The laws of Fermi-Walker transport in the background
metric provide two equations for these angles:

where

-- ~v X~b ? tb ( d t' L Th · · )(a)(j 2 x v f ~ro , geo e IC + ense- Irrlng
1(Ix = "2VxXw • (Thomas)

o 0
V~r = drr/dx , w = dVr/dx

In virtue of a perturbation method we find the solutions for these
equations:

I = I p + ' H '

[
3 n,3 11 ,~ IH

(3",;. _ 2n3 "1 27", l1,4
l p = "9 -- f l' -~ n 4 - u. - 3 9 n n --

101 1,2 b" b b b "b 2
-c b.:1 1 lib332) 0" 0

- 21'bnb4b f... x = (19.192996/100O,ears) x ,

~ =Nosin(E-I') f O.00192sin(2E-21') -- O.00106sin(E-J) f ••. I

e =eo + O.OOOllcos(EfJ) + O.00010cos(E-J) + ••• ,
N "

N ::- -,2a,2c' ( j + ~~c,2 + ••• + ~9 \' V
b

nb
? + ••• 1= 0.15321 ,L n' .,

b :1
lI1

b
V =

b m
s

Here the "primed" quanti ties describe the heliocentric motion of the
Earth-Moon barycenter. Besides, n

b
is the mean motion of the planet b,

4 is the semimajor axis of the planet b (ll >4'), E is the mean
b b

longi tude of T, J is the mean longi tude of Jupi ter, 'K;' is the
longitude of perihelion of T. to is the inclination constant. For
example,

e = 0 means ecliptical orientation,o ,
to = 230 27 + ••• 6l11J" mean the equatorial one.

Hereafter all the angular coefficients are expressed in milli arc
seconds.

We can construct analogous analytical or semianalytical expansions
for transformation between BRS and TRS. It seems convenient to express
them in terms of spherical coordinates.

Let us adopt for the sake of simplicity the ecliptical orientation
of both BRS and TRS and introduce the following:
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r - r
T

=r (COSA. COS~, sin~ cos~, sin~),

r =r (cos~ cos~, sin~ cos~, sin~),

Then the relativistic transformation mentioned above is reduced to
(note that £0=0):

~ = A. - 1 + OA., ~ =p + op, r = r + or,
where
cosp o~ =L cos; + £2 r, ,

1 11

6~ =B1cos~ sinp + B
2

r I cos; + B
3

r, sin; ,
11~ 11~

~ 2 ~ ~ ~

6r = r(R1+ ~cos ~ + R3 :' cosp ~ R4 :' sinp} ,
L = 0.50884sin(2A.-2E) + 0.01701sin(2A.-3E+~') +

1 ~ ~

+ 0.00046sin(2A.-4E+21') - O.00041sin(2A-E-J) + ••• ,

Analogous expansions may be written for the other coefficients in
above formulae.

Since this transformation is relativistic, it must contain the
appropriate time component (sec e.g.[ ]).

Expression for A. contains explicitly the relativistic precession
and nutation in longi tude. That for! the inclination occurs completely
negligible. Therefore we can easily obtain a more practical reference
system, which is related to BRB with only the periodic terms of the
above transformat~n:

A, = A. - TN + OA., P = P + 6p, r = r + or,
This system is seen to be kinematically inertial in average. It

also meets the modern IAU standards which combine the secular part of
geodetic precession with that Newtonian. _

Nevertheless, it should be noted, that initial definition of TRS
is more theoretically consistent from the point of view of General
Relativity.
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