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In this paper, we seek to determine the greatest lower bound of the essential 
spectrum of self-adjoint singular differential operators of the form 

(1) lu==dx~2 \p^ ~dâ) + q^Ul 

where 0 S oc < oo. In the event that this bound is + °°, our results will yield 

criteria for the discreteness of the spectrum of (1). 
Such bounds have been established by Friedrichs (3) for Sturm-Liouville 

operators of the form 

and our techniques will be closely related to those of (3). However, instead of 

studying the solutions of 

(2) lu = 0 

directly, we shall exploit the intimate connection between the infimum of the 
essential spectrum of (1) and the oscillation properties of (2). It will be 
shown (in terms to be made precise below) that if X0 is the infimum of the 
essential spectrum of (1), — oo <̂  \ 0 ^ oo y and if Xo < 0, then (2) is oscillatory, 
whereas if X0 > 0, then (2) is not oscillatory. Estimates for X0 will then follow 
readily from known oscillation criteria (5; 7) for (2). 

It is assumed throughout that p(x) is positive and of class C" on [0, oo ) 
and that q(x) is real, continuous, and bounded above on [0, oo). (The case 
where lim^œ q(x) = + oo will easily be seen to correspond to X0 = + °°.) By 
allowing for a translation of the spectrum, it may be assumed without loss of 
generality that q(x) is negative on [0, oo), and unless stated otherwise this 
assumption will be made throughout. 

In order to justify speaking of "the essential spectrum of (1)" we consider 
the Hilbert space 82(0, oo ) and define L to be the symmetric operator 
obtained by applying / to C0

œ(0, oo ). It is well known (1) that L has deficiency 
indices (m,m), where 2 ^ m ^ 4, and from the finiteness of the deficiency 
indices it follows that all self-adjoint realizations of / will have the same 
essential spectrum (1, p. 108, Theorem 1). 
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In determining X0, special use will be made of the Friedrichs extension for 
semi-bounded symmetric operators (8), which we review briefly. We shall 
consider Hilbert spaces 82(a, 6), 0 ^ a < b ^ <», and symmetric operators 
L(a,b) obtained by applying / to C0°°(a, b). If there exists a real constant y 
such that 

(L(a>b)u, u) ^ — y(u, u) 

for all u 6 C0°°(a, 6), then the Friedrichs extension Z(a,&) is obtained as follows: 
complete Co°(a, b) under the norm 

IIMII* = (lu,u) + (y+ l)(u,u) 

to construct a Hilbert space 99? with inner product ((u,v)) = (lu,v) + 
(7 + l)(uy v). Define the domain of L(a,&) to consist of those u £ 22(a, b) for 
which there exists a sequence vn £ Co°°(a, ô) such that 

lim ||« — z/n|| = 0 and lim \\\vm — vn\\\ = 0. 

Then, according to Friedrichs' theorem, there exists a unique self-adjoint 
extension -L(a,&> of i(a,&) whose domain is contained in tyfl and for which 

(( t t , If)) = (L<ia,b)U,v) 

for all y G 9W and w in the domain of L(a,&). In case & < œ , L(a,&> is clearly 
bounded below so that Z(a>&) exists. In fact, for this non-singular case, L(a,&) is 
just the self-adjoint extension obtained by imposing the boundary conditions 

(3) u{a) = u'{a) = 0 = u(b) = u'(b) 

on the domain of L(a)6)*. Finally, Z(a,&) has the greatest lower bound of all 
self-adjoint extensions of L, in the sense that if L(a,&) is any other self-adjoint 
extension of L, then 

mî(L(a>b)u,u) ^ inf(L(a>&)z;, i;), 

where the infima are taken over all normalized u and v in the domains of 

X(a,6) and L(fl,&), respectively. 

Definition. We say that (2) is oscillatory if any solution of (2) has an 
infinite number of zeros on [0, 00). 

THEOREM 1. If lu = 0 is oscillatory and X0 is the greatest lower bound of the 
essential spectrum of (1), then either X0 S 0 or else L(0jœ) is not bounded below. 

Remark. If L(ol0o) is not bounded below, we shall set X0 = — °°. 

Proof. To simplify notation we write L for L(o,œ) and L for L(o,œ) if the 
latter exists. Suppose, to the contrary, that L is bounded below and that the 
spectrum of L is discrete below X' > 0. Then for any u in the domain of L 
we have that 

n /»oo 

u = J2 (u, <t>i)<t>i + dE\u, 
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where $1, . . . , <t>n are normalized eigenfunctions of L corresponding to eigen

values — oo < Xi ^ X2 ^ . . . ^ Xw < X'. T o obtain a contradict ion, i t is 

sufficient (see 3) to show the existence of n + 1 linearly independent functions 

Wi, . . . , wn+\ in Co°°(0, oo ) such t h a t 

(Lwu wt) < X ' O i , wt), i = 1, . . . , n + 1. 

T o construct such a set of {Wi} we make use of the assumption q(x) < 0 to 
apply an oscillation theorem of Leigh ton and Nehari (7, P a r t I) to the 
equation (2). Since (2) is assumed oscillatory, (7, Theorem 3.6) implies the 
existence of points 0 = x0 < x\ < . . . < xn+\ such t h a t lu = 0 has non-
trivial solutions Ui with double zeros a t xt-i and xt. In each of the Hi lber t 
spaces § i = 22(Xi-i, xt) the non-singular operator / generates a Friedrichs 
extension Lt as described above, where 0 is the first eigenvalue of each Lt 

corresponding to the eigenfunction uu i = 1, . . . , n -{- 1. Fur thermore , to 
each Ui there exists a sequence vtj Ç C<F{Xi-u x2) with the properties 

lim \\vij — ut\\i = 0, i = 1, . . . , n + 1, 

(3) .M°° 
l im \\\vij — Ui\\\i = 0, i = 1, . . . , n + 1, 

where the subscript i outside the norm symbol indicates a norm taken in §*. 
By the triangle inequali ty, 

H l ^ l l l i ^ \\\l>ij — Ui\\\i + \\\Ui\\\i. 

Fur thermore , 

\\\ui\\U = hi + i)1/2lki||* ^ (ji + i)1/2(\\ui - vtj\u + M O , 
where 7* may be taken non-negative since zero is the greatest lower bound of 
Li on C0°°(xi_i, Xi). Combining these inequalities, we have t h a t 

H M I I * ^ \\\l>ij - Ui\\\i + (ji + l)1/2(\\Ui - VijWi + \\Vij\li). 

Using (3) we have t h a t 

lim lljz^Hlz2 ^ lim (yt+ l)| |z;^||,-2, i = 1, . . . , n + 1. 

F rom the fact t h a t 

11 bull I*2 = (LAV, Vij)i + (ji + l ) | | i ^ | | , 2 

we obtain , finally, 

lim (L&ij, Vij)i ^ 0, 1 = 1, . . . , n + 1. 

Since l i m . ^ I K ^ l / = \Wi\\i2 > 0, for every e > 0 there exists a j 0 such t h a t 

(LvijQ, vijQ)t ^ ell^^olli , i = 1, . . . , n + 1. 
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Choosing e = JX' and defining 

Wt = Vijo for Xi-i ^ x ^ Xi, 

= 0 for x < Xj_i or x > x*, 

we have n + 1 orthogonal functions wi, . . . , wn+i in C0°°(0, oo ) with the 
property that 

(Lwt, wt) < \'(wt, wt), i = 1, . . . , n + 1. 

This completes the proof. 

THEOREM 2. If lu = 0 is non-oscillatory, then X0 è 0. 

Proof. Here, fundamental use will be made of the fact (see 2, Chapter XII I , 
Theorem 7.4) that for any a > 0, the essential spectrum of / is the same on 
[a, oo ) as on [0, oo). Thus, it will be sufficient to establish the existence of a 
positive number a such that 

(4) (lu, u) è 0 

for all w G Co°°(a, oo). 
To that end we note (7, Theorem 3.9) that if lu = 0 is non-oscillatory, 

then there exists a positive a such that no solution of 

lu = \u, u(a) = u' (a) = 0 

has a double zero on (a, oo). According to Theorem 1 of Hinton (4), this 
implies that for any b > a 

i 
b 

[pu"2 + qu\ dx^O 

for all u G C0
œ(a, b). Integrating by parts twice we obtain (lu, u) ^ 0 for all 

u £ C0
œ(a, b). Since b is arbitrary, (4) follows. 

Specific estimates for X0 can now be obtained from the following oscillation 
theorem due to Leigh ton and Nehari (7, Theorem 6.2). 

THEOREM 3. If a is an arbitrary real constant, then lu = 0 is oscillatory if 

lim sup x~2~ap(x) < 1, lim sup x2~aq(x) < — — , 
X-ïœ Z-?oo *• Û 

and it is non-oscillatory if 

(1 — V 
lim inf x~2~ap(x) > 1, lim inf x2~ag(x) > — — . 

By Theorems 1 and 2, the above are just criteria for X0 S 0 and X0 è 0, 
respectively. To simplify the formulation of subsequent results we shall 
assume that p(x) "behaves like pQx2+a at + oo " for some positive number po. 
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With this assumption on the behaviour of p{x) we immediately obtain the 
following. 

COROLLARY 1. Suppose that l im^œ x~2~ap {x) = p0 > 0 and consider the 
quantity 

vt \ / N , , (1 — <̂  ) «-2 
Z{x) = q{x) + po — x . 

If lim supx_>coZ(x) < 0, then X0 S 0, whereas if lim inf^œ Z(x) > 0, then 
Xo ^ 0. 

In order to derive estimates for Xo, suppose first that q{x) is strictly in
creasing and that 

lim q{x) = qo, lim Z{x) = M. 
X-^co X—>co 

Then q{x) — M is negative and we can apply Corollary 1 to lMu = [pu")" + 
(q — M)u to conclude that X0 — M = 0. If now q{x) is replaced by a function 
q{x) which is not necessarily strictly increasing but which still satisfies 
limx^œ q{x) = qo, then it follows from the previously cited theorem (2, 
Theorem 7.4) that this change does not affect the essential spectrum of lM. 
Thus, we obtain the following result. 

COROLLARY 2. If \imx^œ x~2~ap {x) = p0 > 0 and if \imx_>œq{x) exists, then 
Xo = \imx^coZ{x). 

If l i n v ^ g(#) does not exist, then we define q{x) = i n f ^ g ^ ) and 
q{x) = sup^z q{t) and apply Corollary 2 to the operators lu = {pu")" + qu 
and lu = {pu")" + qu whose essential spectra are bounded below by X0 and 
Xo, respectively. Since Q{X) ^ q{x) S q{x), it follows that X0 ^ X0 ^ X0, 
from which we obtain our principal result. 

THEOREM 4. / / there exists a real a such that lima;^00 x~2~ap{x) = pQ > 0 and 
if q{x) is bounded above on [0, °°), then 

lim inf Z{x) ^ X0 ^ lim sup Z{x). 

/ / lim inf^oo Z{x) = + o°, then the spectrum of (1) is discrete. 
If lim sup^oo Z{x) = — oo, then L is not bounded below. 

Remarks. (1) In case q{x) is not bounded above, the preceding arguments 
are not valid. However, if l im^œ q{x) = oo, then q{x) is eventually positive, 
and for sufficiently large values of x, solutions of lu = 0 can have at most 
one double zero (7, Lemma 8.2). Thus, the technique of Theorem 2 readily 
shows that X0 = °° whenever Yimx^œ q{x) = oo. 

(2) The previously cited theorem (2, Theorem 7.4) implies that the essential 
spectrum of / on ( — » , °° ) consists of the union of the essential spectra of / on 
(— °°, 0) and on (0, oo ). Therefore, the above techniques can also be used to 
determine X0 when / is defined for — oo < % < oo. 

(3) If under the hypotheses of Theorem 4 lim sup^oo Z{x) = — oo, then 
lu = \u is oscillatory for all real X. 
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Finally, we derive a criterion under which X0 is the same as the lower bound 
of I . 

THEOREM 5. If p(x) and q(x) are monotonically decreasing on [0, <»), then 

X0 = inf(Lw, u)y 

where the infimum is taken over all normalized elements of C0°°(0, °°). 

Proof. If L is not bounded below, the result is trivial. Suppose that L is 
bounded below and has (not necessarily simple) eigenvalues Xi < X2 < . . . < X0. 
In order to obtain a contradiction, we first show that Xi is a "mobile" eigen
value with respect to small changes in the non-singular end point x = 0. 
Choose Xi > 0 sufficiently small so that ut(x) ^ 0 in (0, xi] for all eigen-
functions ut corresponding to Xi and let Li denote the symmetric operator 
obtained by applying / to Co°°(xi, » ) . Since every element in C0°°(xi, œ ) can 
be extended to an element in Co°°(0, °° ) by defining it identically zero in 
(0, Xi], we have from the classical theory that 

(Luu ut) = Xo ^ inf (Liv, v). 

If we had equality in the above, then it would follow that some ut = 0 in 
[0, Xi), which contradicts our assumption ut(xi) 9e 0 (as well as the uniqueness 
theorem). Therefore, the lower bound of L\ is greater than Xo. 

On the other hand, Li has the same lower bound as the Friedrichs extension 
generated by the operator 

ku = -7-0 \P(x — Xi) ~T2) + ç(x — X\)u 

in the Hilbert space 82(0, 00). By hypothesis, p(x — xi) ^ p(x) and 
q(x — Xi) ^ q(x) for all x in [0, 00 ) so that 

(ku,u) g (lu,u) for all u G C0°°(0, 00), 
Thus, the lower bound of L\ is no greater than X0 and we have the desired 
contradiction. 
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