NOTE ON EPI IN \mathcal{T}_{o}

S. Baron

Burgess [1] has pointed out that in the categories \mathcal{T} and \mathcal{T}_1 (where \mathcal{T}_i is the category of T_i spaces), epi means onto. In this paper, Burgess' technique will be used to show that epi has a different meaning in \mathcal{T}_0 and that this meaning reduces to onto when the range is a T_1 space.

THEOREM. In \Im_{o} , a map $e:A \rightarrow B$ is epi if and only if for each $b \in B$, every neighborhood of b intersects {b} $\cap e(A)$.

<u>Proof.</u> \Longrightarrow Let $e:A \to B$ be epi and let $C = \{b/b \in B \text{ and every}$ neighborhood of b intersects $\{b\} \cap e(A)\}$. Let $D = B_1 \cup B_2 / \sim$ where B_1 and B_2 are copies of B and \sim is defined as follows: $b_1 \sim b_2$ if and only if $b_1 = b_2$ or b_1 and b_2 are copies of the same $b \in C$. Let $f:B_1 \cup B_2 \to D$ be the quotient map and let $g_1:B \to B_1 \cup B_2$ be the canonical injection to the i-th copy. Each fog_i is 1 - 1. For any $d \in D$, it is clear that (f o $g_1)^{-1}(d)$ is nonempty for at least one i. When both (f o $g_1)^{-1}(d)$ and (f o $g_2)^{-1}(d)$ are nonempty, they coincide. Thus we may define a function $h:D \to B$ such that h of o $g_1 = 1_B$.

We now show that D is T_0 . Let d_1 , $d_2 \in D$. If $h(d_1) \neq h(d_2)$, then we may assume without loss that $h(d_1)$ has a neighborhood V that does not contain $h(d_2)$. V' = $f(g_1(V) \cup g_2(V))$ is then a neighborhood of d_1 that does not contain d_2 .

Otherwise if $h(d_1) = h(d_2) = b$, we must have for suitable renumbering of d_1 and d_2 , $d_1 = f \circ g_1(b)$. We know $b \notin C$, since $d_1 \neq d_2$. Let V be a neighborhood of b that does not intersect $\{b\} \cap e(A)$. It follows that $f(g_1(\mathcal{F}(\{b\})) \cup g_2(V))$ is an open set that contains d_2 but does not contain d_1 . Thus, D is T₀.

503

f o g_1 and f o g_2 agree on $C \supseteq e(A)$; therefore, f o g_1 o e = f o g_2 o e. Since e is \mathcal{J}_0 -epi, it follows that f o g_1 = f o g_2 . Thus C = B and we have the desired implication.

COROLLARY. If B is T_1 , then $\{b\} = \{b\} \subseteq e(A)$ and e is onto.

REFERENCE

1. W. Burgess, The meaning of mono and epi in some familiar categories. Can. Math. Bull., 8 (1965) 759-769.

McGill University