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Abstract

Physics-informed neural networks (PINNs), which are a recent development and incorporate physics-based know-
ledge into neural networks (NNs) in the form of constraints (e.g., displacement and force boundary conditions, and
governing equations) or loss function, offer promise for generating digital twins of physical systems and processes.
Although recent advances in PINNs have begun to address the challenges of structural health monitoring, significant
issues remain unresolved, particularly in modeling the governing physics through partial differential equations
(PDEs) under temporally variable loading. This paper investigates potential solutions to these challenges. Specif-
ically, the paper will examine the performance of PINNs enforcing boundary conditions and utilizing sensor data from
a limited number of locations within it, demonstrated through three case studies. Case Study 1 assumes a constant
uniformly distributed load (UDL) and analyzes several setups of PINNs for four distinct simulated measurement cases
obtained from a finite element model. In Case Study 2, the UDL is included as an input variable for the NNs. Results
from these two case studies show that the modeling of the structure’s boundary conditions enables the PINNs to
approximate the behavior of the structure without requiring satisfaction of the PDEs across the whole domain of the
plate. In Case Study (3), we explore the efficacy of PINNS in a setting resembling real-world conditions, wherein the
simulated measurment data incorporate deviations from idealized boundary conditions and contain measurement
noise. Results illustrate that PINNs can effectively capture the overall physics of the system while managing
deviations from idealized assumptions and data noise.

Impact Statement

This paper investigates approaches for creating neural network models that satisfy the structure’s physical
constraints and measured deflection data. It also examines the ability of the models to generalize for uniformly
distributed load (UDL) conditions beyond the training data if informed of the linear relationship between UDL
and deflection. The overall goal is to evaluate the improvement in predictive accuracy, specifically in the
behavior of structures, when the models are trained with limited physical knowledge and then applied to new,
unseen data. The ability to predict structural behavior accurately will support maintenance, repair, and opti-
mization decisions and consequently will be valuable for the areas of structural health monitoring, digital twins,
and virtual sensing.
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1. Introduction

Structural health monitoring (SHM) (Figueiredo and Brownjohn, 2022; Fremmelev et al., 2022) is
increasingly employed on civil infrastructures such as bridges for preserving their integrity and safety,
and more generally for their effective maintenance and management. A key unresolved challenge is the
translation of SHM data to decision-making. This requires processing vast amounts of measurement data,
such as that from the Queensferry Crossing Bridge in the United Kingdom with over 2,184 sensors
(Cousins et al., 2022), to provide actionable information to bridge operators. Over the years, several
studies have focused on this challenge with an emphasis particularly on damage detection (Middleton
et al., 2016; Webb et al., 2015). Worden et al. (2015) offered a classification of the different stages of
damage identification—from anomaly detection to damage prognosis, with most studies focusing
primarily on the first two stages. Increasingly, however, the emphasis has turned to preventive mainten-
ance and long-term structural management by leveraging recent developments in Al and machine learning
to generate digital twins (Sacks et al., 2020) that not only detect anomalous events in real time from
measured data but also offer detailed insight into structural behavior and performance, such as by tracking
gradual deterioration of components and estimating remaining service life.

Modeling of digital twins in the context of structural identification and damage assessment can involve
three kinds of approaches. First, model-based methods, which create an accurate physics-based model—
typically a finite element model (FEM), of the structure (Sohn et al., 2002) by updating model parameters,
based on actual observations. The updated FEM will subsequently serve as a benchmark against which
new measurements will be compared for assessing the integrity and performance of the monitored
structure. The drawbacks of model-based methods are that they are computationally intensive, have
simplified assumptions and approximations, and are subject to uncertainties in modeling parameters
(Farrar and Worden, 2012). Certain limitations may be addressed through uncertainty quantification
analysis, as proposed by Sankararaman and Mahadevan (2013), or alternatively through probabilistic
approaches like Bayesian model updating (Kamariotis et al., 2022).

The second class of approaches is data-driven methods. These typically rely on machine learning
algorithms, primarily unsupervised learning algorithms, and detect anomalies by identifying changes to
patterns in measurement data through comparisons with patterns observed during the structure’s normal
operation. In full-scale structures, distinguishing between feature changes due to damage and those
caused by changing operational and environmental conditions such as temperature and wind remains a
challenge (Figueiredo and Brownjohn, 2022). In addition, data covering a wide range of structural states
are seldom available for training (Y. Ni et al., 2020), limiting the trained model’s performance and ability
to generalize. However, compared to model-based methods, these are computationally less expensive and
are easier to apply for real-time monitoring.

The third class of methods—physics-informed machine learning (PIML) methods (Karniadakis et al.,
2021)—are a relatively new development and are essentially machine learning algorithms that have been
augmented with physics-based knowledge, provided in the form of constraints and loss function, or
directly implemented in their architecture. PIML models, which can fully or partially satisfy the governing
physics of a structure while being data-driven, have the potential for accurate predictions and improved
generalization, defined as the model’s ability to extrapolate predictions beyond the training set into
unobserved regions.

In the field of SHM, PIML approaches are conducted through physics-informed neural networks
(PINNs), which adjust their loss function to incorporate physics-based constraints, ensuring adherence to
the governing physics equations of structural systems, which is the focus of this paper. Additionally,
hybrid models that combine physics-based methods with machine learning techniques provide a note-
worthy example. Specifically, the integration of Gaussian processes (GPs) with physics-based models.
The mean function of the GP is used in this approach to integrate prior physical knowledge, while the
observed data are incorporated using covariance functions, as discussed in the work of Cross et al. (2022).

Another hybrid approach involves using the output from physics-based models as input for machine
learning algorithms. For instance, studies by Bud et al. (2019, 2023) demonstrated this method, where
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monitoring data reflecting normal operational conditions of an undamaged structure, along with numer-
ical data from FEM under extreme environmental conditions or damage scenarios, are utilized to train a
machine learning algorithm. For further exploration, Xu et al. (2023) undertook a comprehensive review
of PIML methods for reliability and system safety applications, and Karniadakis et al. (2021) discussed
applications of PIML for forward and inverse problems as well as capabilities and their limitations.

The concept of PINNs is developed by Raissi et al. (2017a,b) in a two-part article, which is
consolidated into a merged version published in 2019 (Raissi et al., 2019). PINNs were introduced as
anew class of data-driven solvers and as a novel approach in scientific machine learning for dealing with
problems involving partial differential equations (PDEs) (Cuomo et al., 2022) using automatic differen-
tiation. Several studies have since applied PINNs for a range of scientific problems (Shukla et al., 2022),
involving stochastic PDEs, integro-differential equations, fractional PDEs, non-linear differential equa-
tions (Uddin et al., 2023), and optimal control of PDEs (Mowlavi and Nabi, 2023). Within engineering,
PINNs have been applied to problems in fluid dynamics (Mao et al., 2020; Raissi et al., 2020; Sliwinski
and Rigas, 2023), heat transfer (Zobeiry and Humfeld, 202 1), tensile membranes (Kabasi et al., 2023), and
material behavior modeling (Zheng et al., 2022). However, there are only a few applications to SHM, the
subject area of focus in this paper.

Previous studies on PINNs for SHM have primarily focused on training PINNSs to satisfy the PDEs that
govern the dynamic behavior of structural systems. Lai et al. (2021) and W. Liu et al. (2022) investigated
physics-informed neural ordinary differential equations and physics-guided deep Markov models for
structural identification and tested their prediction capabilities for a series of numerical and experimental
examples. Lai et al. (2022) presented a framework that combines physics-based modeling and deep
learning techniques to model civil and mechanical dynamical systems. They showed that the generated
models have the ability to effectively reconstruct the structural response using data from only a limited
number of sensors, although performance was observed to deteriorate when the dynamic regime deviated
significantly from the training data. P. Ni et al. (2022) used a multi-end convolutional autoencoder to
reconstruct the full seismic response of multi-degree of freedom (DOF) systems. They found that their
methodology could reconstruct the seismic response of multi-DOF systems given a small training dataset,
and PINNs performed better than conventional neural networks (NNs) with small datasets, particularly
when the training data contained noise. Yuan et al. (2020) investigated the use of PINNS to solve forward
and inverse PDE-based problems based on dynamic modeling of beam structures using synthetic sensor
data analysis.

Further research is needed into the application of PINNs for quasi-static monitoring, which involves
analyzing a structure’s response at discrete time intervals. This type of monitoring is critical for assessing
the long-term monitoring of structures (Kromanis and Kripakaran, 2014, 2016). In contrast to dynamic
monitoring, quasi-static monitoring frequently uses sampling rates that may not sufficiently capture
vibration properties, instead focusing on static responses such as strains and displacements. PINNs, by
leveraging their physics-informed nature, may be able to compensate for insufficient sampling rates by
directly integrating physical laws into the learning process, enhancing the model’s ability to infer accurate
responses even from limited data. This introduces other challenges such as temporally variable loading,
which complicate modeling and verification of the PDE within PINNs. This study will investigate this
aspect. It also leads to the other key novel contribution, which is to examine how model performance is
influenced by the different physics-based constraints implemented within the loss function of a PINN.
Specifically, we aim to examine whether a PINN that enforces the structure’s boundary conditions and
uses sensor data from a limited number of locations across the structure can accurately model the
structural system despite not explicitly incorporating the governing PDE, which can be difficult to
evaluate due to variable loading. The hypothesis is that deflections from a sparse set of sensors and
constraints on satisfying force boundary conditions can allow PINNs to generalize for the whole structure.
The generated PINNs will also be tested for their capability to predict deflections and internal forces at
locations where there are no sensors. Lastly, we will also evaluate their potential for predicting deflections
and forces for loads unseen in the training datasets.
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The paper uses the numerical model of a square concrete slab, representative of a building structural
element, to illustrate and test the developed ideas. It states the governing PDE and the boundary conditions
of the slab, and describes how these can be enforced through the loss function for a PINN. The paper then
investigates the effect of the various terms in the loss function on PINN model performance through three
case studies. Case Study 1, which assumes constant unchanging load, examines five different setups of
PINNSs, each with different loss functions incorporating varying levels of physical knowledge. Each of the
PINN setups is evaluated for four measurement cases, representing increasing amounts of measurement
data derived from simulated FEM analytical solution. Case Study 2 includes the applied loading as an
input variable for the NNs. Case Study 3 is aimed at investigating the robustness of the PINNs to
(1) deviations from idealized boundary conditions, and (ii) varying levels of noise in data. The case studies
are primarily conducted in the spatial domain. Extending them to include a temporal component would
pose challenges, such as the need for more complex model architectures and potentially larger datasets to
effectively capture temporal dynamics.

The outline of this paper is as follows. In Section 2, the plate problem and the methodology adopted for
generating PINNSs are introduced. Case Study 1 and the corresponding results are discussed in Section 3.
Using the results as a basis, Case Study 2 is set up and this process and the results are presented in
Section 4. Section 5 is dedicated to Case Study 3, which explores additional complexities. Finally,
Section 6 summarizes the key conclusions of this study.

2. Problem setup and methodology

This section outlines the structure—a typical reinforced concrete floor slab, that is to be modeled using a
PINN. It describes the underlying physics of the structure and the scenarios that are considered. It then
describes the structure of the PINN, its parameters and the approaches adopted for imposing the physical
constraints on the PINN.

2.1. Kirchhoff-Love plate

The Kirchhoff-Love plate theory (Kirchhoff, 1850; Love, 1888) is a mathematical model for calcu-
lating stresses and deflections in thin plates subjected to forces and moments. This model, which was
first proposed by Love in 1888, is a two-dimensional extension of the Euler—Bernoulli beam theory.
Kirchhoft’s assumptions provided a basis for the development of this theory. The model is employed for
the analysis and design of a wide range of structural components in civil engineering including concrete
slabs.

2.1.1. Governing equations

Figure 1 presents a square plate with four simply supported edges labeled A, B, C, and D. The plate is
subjected to a uniformly distributed load (UDL) ¢ across its entire surface. The magnitude of the UDL
directly influences the deflections in the plate, a relationship we will attempt to capture in modeling. The
vertical deflection w(x,y), that is, along the z-direction, in a Kirchhoff-Love plate must satisfy the PDE
(Equation (1)) below (Timoshenko and Woninowsky-Kerieger, 1959):

a*w dw d'w ¢
— 22—t —==
ox* T ox?oy: oyt D
Din Equation (1) represents the flexural rigidity of the plate and is determined from Young’s modulus (E),
the plate’s thickness (%), and Poisson’s ratio v as given below:
~ERX
12(1 —12)"
The bending moments represented by M,, M, and M,, and shear forces represented by Q, and Q,
constitute the main internal forces within the plate structure from a structural engineer’s perspective.
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Figure 1. A simply supported plate under uniformly distributed load and its assumed distribution of
sensors.

Computation of the bending moments is contingent upon an understanding of the deflection of the plate
and knowledge of the flexural rigidity mentioned earlier. The following Equations (3)—(5) can be used to
compute the moments from the deflections:

Pw  Pw
MX— _D(W—i_‘}a—)}z)’ (3)
Pw ’w
My: —D(a—yz‘i‘\/W), (4)
’w
My=—M,=—D(1—v) (5)

oxoy

2.1.2. Boundary conditions

Two types of boundary conditions—displacement and force boundary conditions—are enforced on a
structure during structural analysis to model how the structure interacts with its environment
(G. R. Liu and Quek, 2014). Displacement boundary conditions define restrictions on the movement
of specific points or regions of the structure. These are also referred to as essential boundary
conditions as they are imposed directly on displacements, which are the main parameters in the
governing equation, and ultimately result in equilibrium equations supporting the solution process
when solving numerically.

Force boundary conditions define how internal forces and stresses at the boundaries relate to external
forces (and moments) acting on the structure. These are also called natural boundary conditions since they
are inherently derived from the displacements (G. R. Liu and Quek, 2014). Both force and displacement
boundary conditions are essentially physics-based constraints that a solution to a given plate problem, that
is, a w(x,y) solution for Equation (1), must satisfy.

For the plate defined in Figure 1, the four edges are assumed as simple supports. This implies that
there will be no displacement at its four boundaries; this constitutes its displacement boundary
conditions. The simple supports also imply that the plate is allowed to rotate freely about the edges
defined by x=0, x=a, y=0, and y=a; these constitute the force boundary conditions for the plate. In
other words, these require that the bending moments M, is zero along y=0 and y=a, and M, is zero
along x=0and x=a.
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Equations (6)—(8) express these boundary conditions mathematically:

w=0along x=0, x=a,y=0, and y=a, 6)
M,=0along y=0and y=a, )
M,=0along x=0and x=a. (8)

2.2. Synthetic sensor data

Since this study is about generating PINNs that emulate measured structural behavior, the plate is assumed
to have sensors. We assume that displacement sensors are present at a set of locations across the surface as
depicted in Figure 1. We will use data predicted at these locations by an FEM representing the slab in
Figure 1 as measured data for training the PINNs. While we have assumed displacement sensors, the
PINNs concept outlined in the subsequent section would also be applicable if other types of measurements
such as strains and rotations were to be available. Consequently, this study is not concerned with the actual
sensor types or the process of measurement. Researchers interested in sensor types, their failures, and their
optimization for SHM can refer to relevant recent literature (Kechavarzi et al., 2016; Middleton et al.,
2016; Wang et al., 2022; Oncescu and Cicirello, 2023).

The FEM was set up in the Ansys (2023) software and the simulations performed using the PyAnsys
(Kaszynski et al., 2021) toolkit that enables Ansys integration with Python. The model utilized Shell
Element 181, which incorporates six DOFs and conforms to the Kirchhoff-Love plate theory, for modeling
plate bending behavior. The numerical model with a mesh made up of 64 elements and 80 nodes provides a
detailed illustration of the structural behavior. Typical material properties for concrete slabs were adopted
and are also shown in Figure 1. The UDL 0f 9,480 N/m? is assumed, which is in the range of design loads in
practice. Contour plots of the resulting deflections w, moments M,, and moment M, for the plate are
presented in Figure 2. Table | presents the predicted data from the model at the assumed sensor locations (see
Figure 1); these are treated as measurements at the respective locations for the purpose of this study.

2.3. Development of PINNs

An NN denoted as a function NN (X) is shown in Equation (9). The function accepts an input variable X,
which is subjected to a series of weight matrices W and bias vectors b to generate an output vector.
The process of transformation involves the passage of input through multiple activation functions, which
are represented by the ¢. The incorporation of nonlinearities in this process endows the NN with the
capability to discern and comprehend intricate data patterns. When the NN is used for prediction, the
outcome from NN is regarded as the anticipated outcome for the system that the NN is emulating:

NN(X) =W,0,-1 (anlo'nfz(...(WZ(WIX"_bl) +b,,,1) +b,. )]

For the plate structure, the x and y coordinates, indicating the location at which the displacement is desired,
constitutes the input X. The loading on the plate ¢ may also be assumed as an input and the study shall

w (mm) _o.asea Mx (N.m/m) - My (N.m/m)
I- 6000

- 0.3441 = 5057 - 5000

-0.2294 - 3526

- 0.1147 - 1994 - 2000
- 1000
0 - 0.0000 0 - 463 0

x (m) x (m) x (m)

y(m)

Figure 2. Deflection and moments predicted by finite element model of plate described in Figure 1.
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Table 1. Summary of measured data and locations (UDL = 9,480 N/m°)

Sensor no. Coordinates (x,y) (m) Deflection (mm) M, N.m/m) M, (N.m/m)
S1 2,2) 0.4589 6,589 6,589
S2 (1,0 0.2404 3,524 3,524
S3 3,D 0.2403 3,524 3,524
S4 (1,3) 0.2404 3,524 3,524
S5 (3.3) 0.2404 3,524 3,524
S6 2, 0.3315 4,518 5,239
S7 2,3) 0.3314 4,518 5,239
S8 (1,2) 0.3315 5,239 4,518
S9 3,2) 0.3314 5,239 4,518

explore models that accept g as input later in Section 4. The output from the NN is the displacement w.
Other derived parameters such as bending moments M,, M, and M, may also be predicted using the NN
as will be demonstrated later on.

The training of NNs typically requires the minimization of a loss function, such as the mean squared
error (MSE) computed between predictions and expected results for a training dataset comprising
preexisting information. In the case of PINNs, the loss function incorporates components beyond this
MSE. Specifically, terms associated with the governing PDE for the system and its boundary conditions
are included. In this manner, the PINN is not only able to offer accurate predictions for the training dataset
but also aims to satisfy physical constraints for the system. This study models the loss function as an
aggregate loss, represented as £, that is computed as the summation of four different loss components
—Ly, L, L, and L4, as shown in Equation (10):

,C,:Ef—F,CW—Fﬁm‘FEd. (10)

Ly, L, and L, evaluate how well the NN satisfies the governing PDE, the displacement boundary
conditions, and the force boundary conditions, respectively. L, represents the performance of the NN for
the training dataset. Each of these loss terms is written as the product of a weight «; and the related MSE.
Consequently, £ can be formulated as follows, wherein o, ay, a,,, and a, represent the weights
associated with the respective MSE values:

L= (XfMSEf + o,,MSE,, + 0,, MSE,, + a,MSE ;. (11)
Each of the MSE terms in Equation (11) is described in detail below.

1. MSE; represents the average residual for the governing PDE outlined in Equation (1).
The mean of the residual f(x,y) (see Equation (12)) evaluated at a set of “collocation points”
—{(x,y;) :0<i<N;}—within the domain of the plate is taken as MSE, as shown in
Equation (13). The partial derivatives will be evaluated using automatic differentiation:

Htw itw  dtw ¢

=—— 42 — 12

fy)=—5+ ax20y2+ay4 D’ (12)
1 &

MSE;= — ol 13

Y Nf;llf(x )l (13)

2. MSE,, addresses the plate’s displacement boundary conditions (Equation (6)). A set of 4N,,
points is generated by randomly choosing N,, points from each of the four edges of the plate
boundaries,resulting in a total of 4N, points given by {(x;,y;) : 0 <i<4N,,}. The first 2N,, points
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are from edges AB and CD, and the last 2N,, points are from edges AD and BC. We predict the
displacements at these points using the PINN and compute the average error MSE,, in the
predictions, which should be zero to satisfy the boundary conditions, using Equation (14) below:

1 N, )
MSEW=]V—W;||w<xi,y[>|| : (14)

3. MSE,, is similar to MSE,, but addresses the force boundary condition (Equations (7) and (8)). The
same N, points used for MSE,, are also employed here. MSE,, is computed as given in
Equation (15), wherein M,=0 is required for points along edges AD and BC, and M,=0 is
required for the points along edges AB and CD. The moments, being derivatives of deflection w
(Equations (3) and (4)), are evaluated using automatic differentiation:

2N, 4N,
MSE =g | S W) P+ D 1M, I . 15)
i=1 i=2N,,+1
4. MSE, relates to the reconstruction of the deflection field based on measurements from a sparse
sensor array. The sensor locations for the plate are presented in Figure 1. If N, sensors are employed
on the plate at locations { (x;,y;) : 0 <i <Ny}, then the measurements D(x;, ;) at these locations can
be compared against the corresponding displacement predictions from the PINN to compute MSE,;
as shown below:

1 Qu
MSE;= N—dz 1D (xi,y;) — wixe y) I (16)
i=1

2.4. PINN setup and tuning parameters

Figure 3 illustrates the schematic overview of the PINNs framework. The diagram depicts a feed-forward
NN that is fully connected and accepts coordinates (x,y) as inputs to predict a solution w(x,y), the
expected deflection at the specified location. The technique of automatic differentiation is utilized for the
computation of the derivatives of w in relation to the inputs. The derivatives are subsequently evaluated at
specific locations and employed to find MSEy, MSE,,, MSE,,, and MSE; as explained in Equations (13)-
(16). The number of points for Ny and N,, is equal to 800 and 100, respectively.

Physics-informed Neural Networks

i - Data ~ S
{ € i :
: e MSE, = 3= DG,y — wix, vl '
Fully connected network { { o & =1 i
/"'7______________—__—:————w.\ \\‘?ﬁ) Displacement BC :
’ . ! W 7 By g
: ’ : | (\;7 MSE,, = Niw; Wi yDl? i
: : L : 3 . 1
d 1 g Force BC i
: ’ ; : N \ 1 [ L . i
' v NS MSEp = 2o Z MG 7] +.-:z%+1w’(z"y"” !
~ 7 p |
__________________ [ o Governing Eq. i
| 7 o Ny 1
% '@;3; ‘ MSE; = "ifZ PERDIE ’,'

. 4

- e = -
Back-propagation =~ T TTTTETEEES 1 ffffffffff
L= L+ Ly,+ Ly +Lp =

Figure 3. Schematic of the physics-informed neural networks.
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Table 2. Hyperparameters related to the neural networks architecture and training

Hyperparameters Details
Learning rate 0.001
Layers 4
Neurons per layer 64
Activation function Tanh
Epoch 1,500
Optimizer Adam
Early stopping Yes
ReduceLROnPlateau Yes

Our code is based on the work of Bischof and Kraus (2022), which examined the application of PINNs
to a comparable plate with the aim of achieving weight balance across the loss function terms. We have
adapted their open-source code for our case studies and this can be found at GitHub. The TensorFlow
(Abadi et al., 2015) library is used to implement this computational process, and the model is trained on
Google Colab, with GPU capabilities.

Table 2 provides a detailed summary of the hyperparameters that were selected for the PINN
model. These hyperparameters were carefully optimized through a series of iterative trial and error
processes to achieve the best possible performance of the model. The learning rate, an essential
parameter that governs the magnitude of the step taken during each iteration during the minimization
of the loss function, is set as 0.001. The architecture of the NN employed in this study consists of four
hidden layers, each containing 64 neurons. This configuration is selected after examining various
architectures, ranging from two to six hidden layers. The choice of four hidden layers attains a balance
aimed at reducing computational time and avoiding over-fitting. Additionally, the Tanh activation
function is employed in each layer. The Tanh function is chosen due to its non-linear characteristics,
which are essential for PINNs. Unlike linear activation functions, such as ReLU, Tanh enhances the
network’s ability to learn and predict nonlinear patterns. This is a key requirement in the framework of
PINNSs, where handling derivative terms in the governing equations is crucial for accurate prediction
and pattern acquisition. The model is subjected to a training process spanning 1,500 epochs, where
each epoch involves a complete iteration over the entire training dataset. The optimizer utilized is
Adam. Further techniques for enhancing the model’s efficacy include (i) early stopping, which halts
the training process as soon as the model’s performance begins to deteriorate on a validation dataset,
thus preventing overfitting, and (ii) ReduceLROnPlateau, which limits the learning rate when the
model’s learning advancement decelerates, enabling more precise calibration (Goodfellow et al.,
2016).

2.5. Methods for functional loss balancing

MSEys, MSE,,, MSE,,, and MSE,; are based on different measurement units, and their magnitudes may vary
by multiple orders of magnitude. Consequently, the overall loss £ may be biased toward one of these loss
terms if these are simply added up. To avoid this, we employ weights—ay, a,, &, and oy, as already stated
in Equation (11).

The gradient descent algorithm is chosen to determine the optimal weights for the various terms in the
loss function. The algorithm considers the relative importance of each term in the loss function and avoids
overemphasizing any one term by setting the sum of the weights to 1. This method is effective at
determining the optimal weights for each term of the loss function, allowing us to train the model more
efficiently and accurately. Figure 4 shows the contribution of loss function components with respect to
the total loss and median of the log MSE (L) loss during optimization. The loss decreases rapidly at the
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Figure 4. (a) Percentage contribution of loss components. (b) Loss optimization observed with gradient
descent.

start of optimization as expected but slows after 400 epochs. After that, due to convergence of solution, the
loss decreases very slowly.

2.6. Optimizing the number of collocation points

Collocation points are specialized samples in a computational domain that have been selected to embed
physical laws into the network with the objective of proving computational simplicity for efficient
evaluation, representatives to cover the computational domain, and feasibility, which ensures the points
represent attainable system states or domains (Sholokhov et al., 2023). As consequently, selecting an
appropriate set of collocation points not only improves model precision during PINNs training, ensuring
that the NN learns to adhere to the governing physical principles of the system being modeled, but also
reduces computational time. This investigation is divided into two distinct but interconnected sections:
the examination of the influence on model performance of the number of collocation points within the
model’s internal domain and those located around its boundaries.

For internal domain, we initially focus on the number of collocation points ranging from 400 to 1,000.
The number of boundary collocation points along the plate edges is fixed at 50 per edge. For each
collocation point setting, PINNSs are trained with 10 different seeds. These seeds are randomized for each
setup, which means that the model is trained 10 times with 10 different, randomly chosen initial seeds for
producing robust statistical metrics for each specific number of collocation points (400, 500, up to 1,000).
Figure 5a,b shows the box plots of the root-mean-square error (RMSE) associated with deflection and
bending moments (Mx), respectively. According to the analysis, the relationship between the number of
internal domain collocation points and RMSE does not always follow a strictly linear or decreasing trend.
In Figure 5a, while the RMSE for deflection generally decreases as the number of collocation points
increases, there are notable exceptions to this pattern, particularly at points ranging from 600 to 900. These
examples show that increasing the number of collocation points does not always result in improved model
accuracy for deflection predictions. Figure 5b, on the other hand, shows a somewhat more consistent trend
for the RMSE associated with Mx, though it, too, exhibits fluctuations, emphasizing the complexities of
the relationship between collocation points and model accuracy. Remarkably, the variance in RMSE tends
to narrow at higher collocation points (specifically, 800 and 900), implying that model performance at
these levels is more stable and consistent.

The influence of boundary collocation points on model performance is subsequently investigated. The
number of internal collocation points is now fixed at 800, as identified in the previous stage. Six different
counts of boundary collocation points ranging from 50 to 100 per edge (i.e., 200 to 400 in total), while
adhering to the analytical methodology established for the internal domain. Figure 6a,b shows the RMSE
values for the chosen number of boundary points. Figure 6a shows that the RMSE for deflection increases
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Figure 5. (a) Deflection root-mean-square (RMSE) and (b) moment RMSE for different numbers of
internal domain collocation points.
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Figure 6. (a) Deflection root-mean-square (RMSE) and (b) moment RMSE for different numbers of
boundary collocation points.

as the number of boundary collocation points increases, with the lowest RMSE observed at the fewest
number of boundary points. Despite this trend, the RMSE variance tends to narrow in the range of 80 to
100 points per edge, indicating that model performance may stabilize at higher collocation point counts.
Figure 6b, on the other hand, shows a different pattern for the RMSE associated with moment (Mx), where
a decrease in RMSE values is observed as the number of collocation points increases. The best and most
consistent RMSE values are found between 70 and 90 points per edge. Based on the analysis presented
here, the study proceeds with 800 collocation points within the internal domain, which is supplemented
with 400 points around the boundaries.

3. Case Study 1

In this section, the UDL ¢ is assumed to be constant for the duration of monitoring. The study then
evaluates the influence of the loss terms— Ly, L£,,, L£,,, and L, as given in Equation (10), on PINN
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Table 3. Summary of the loss function scenarios employed in the study

Scenario Loss function £

SN1 Ly

SN2 L+ Ly

SN3 L,+Ly

SN4 L,+ L+ Ly

SN5 ‘C'f+£'w+£'m+£'d

performance. For this purpose, PINN models are generated for various combinations of loss terms—
specifically the five scenarios, as listed in Table 3. In SN1, the loss function only includes £ ,, which
represents the fit to the measured data. In SN2 and SN3 scenarios, displacement and force boundary
conditions, respectively, are included alongside £ ;. Scenario SN4 refers to a PINN generated with a loss
function combining loss terms for force and displacement boundary conditions—L,, and L,,, with L.
Scenario SN5 represents the case when the loss £ —corresponding to the satisfaction of the governing
PDE, is also included.

For each of the scenarios in Table 3, the study also evaluates the influence of the quantity of
measurements on model performance. For this, PINN models are generated for varying number of
assumed sensors (i.e., measurements)—from zero to nine, as shown by the four cases in Table 4. The case
with no measurements is employed only with loss scenarios SN2—-SN35 to evaluate whether enforcing
constraints on governing PDE and/or boundary conditions, without having measurements, would lead to
an accurate PINN.

3.1. Error metrics

The performance of the PINNs generated for the various scenarios is evaluated using multiple metrics.
The RMSE given in Equation (17) captures the average magnitude of the errors between predicted and
observed values, thereby providing a scale-dependent snapshot of the model’s general accuracy. The
coefficient of variation (CV) of the RMSE from Equation (18) provides a scale-independent perspective
by normalizing the RMSE relative to the mean of the observed values. This enables a more careful
comparison of model performance across various scenarios, which is particularly useful when dealing
with structures or conditions that vary in size. Lastly, the normalized mean bias error (NMBE) in
Equation (19) is used to evaluate the model’s tendency for systematic bias, such as consistent overesti-
mation or underestimation. These are computed by comparing PINN predictions against the results from
the FEM (see Section 2), which is taken as the exact solution to the modeled plate. The comparison is
performed at n=13 locations. Nine of the locations are the same as the locations where sensors are
assumed to be present; the coordinates for these are given in Table 2. The coordinates for the other four
locations are: (2.0,3.5),(3.5,2.0),(2.0,0.5),(0.5,2.0):

Table 4. Summary of the measurement cases used in the study

Cases Sensor no.

Case 0 No measured data included
Case 1 S1

Case 2 S1-S5

Case 3 S1-S9

https://doi.org/10.1017/dce.2024.4 Published online by Cambridge University Press


https://doi.org/10.1017/dce.2024.4

Data-Centric Engineering e6-13

1 n
RMSE = \/ - Z (Measurements; — Model predictions,-)z, 17)
Ly

1 1<
CV= \/ - Z (Measurements; — Model predictions,)*, (18)
=

MeasurementsMean

n
>~ (Model predictions; — Measurements;)

NMBE="!

(19)

n
> (Measurements;)

i=1

3.2. Results and discussion

PINNS are trained for each ofthe scenarios described in Section 3, and the performance of the trained models
are evaluated. Table 5 shows the results obtained for the different scenarios. The performance of the PINNs
are compared in terms of various parameters such as training time and loss as well as RMSE, CV, and NMBE
with respect to w, M., and M,. Several observations can be made from the presented results.

The general trend is that the model performance improves as the loss function includes more terms to
impose increasing number of physics-based constraints, that is, as one moves from SN1 to SN5. However,
the training time tends to increase, with a notably steep increase for the loss function that also requires
satisfaction of the governing PDE. For each of the loss function scenarios—namely SN1-SN5, perform-
ance is observed to improve with inclusion of more measurements. This is clearly as per expectations.

SN1, which represents aregular NN trained only using measurements, shows poor performance, which
is in line with expectations. The training times for these models range roughly between 1 and 4 minutes.
The loss values are all extremely small indicating that the model predicts accurately at the sensor locations
used for model training. The RMSE for w varies significantly with the number of measurements used for
training, with a value of 1.938 mm for Case 1 but reducing to 0.0219 mm for Case 3. The CVand NMBE
for w also improve with increasing number of measurements. However, the RMSE, CV, and NMBE for
M, and M, are excessively high, indicating a high level of variability and bias for these parameters.

SN2 is similar to SN1 but includes displacement boundary conditions, which essentially implies
additional training data points across the four edges of the plate. When compared to SN1, models for SN2
offer more accurate predictions for displacements and moments. Training times are roughly 5 minutes
with loss values that are marginally higher than for SN1. RMSE and CV for w are generally consistent and
not varying as dramatically as in SN1. Predictions for M, and M, are better compared to SN1, but the
errors, as indicated by RMSE, CV, and NMBE, are all still large; consequently, SN2 models are not usable
for reliably predicting these parameters.

SN3 represents the scenario where the loss function is based on the errors in predicting w at the sensor
locations as well as the errors in satisfying force boundary conditions. However, unlike SN2, displace-
ment boundary conditions are not modeled. The training times for this model are similar to SN2, and the
loss values are only slightly higher. However, when compared to models for SN1 and SN2, the predictions
for w are less accurate as evident in the corresponding RMSE, CV, and NMBE metrics. In contrast, M, and
M, are predicted more accurately with the corresponding error metrics being more consistent and
balanced, indicating improved reliability and precision.

SN4 brings together the features in SN1-SN3. It incorporates displacement and force boundary
conditions, which are important factors in physical structure behavior. However, the governing PDE is
not included in the learning process of SN4; the expectation is that the monitoring data can overcome this
limitation. The results demonstrate that the models become more accurate with increasing number of
measurements. All metrics—RMSE, CV, and NMBE, for the three predicted parameters w, M., and M,
show improvement with increasing number of measurements, with results particularly for M, and M,
significantly more accurate compared to predictions obtained using models from the earlier scenarios.
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Table 5. Error metric results for the various scenarios in Case Study 1

Deflection (mm) M, (N.m/m) M, (N.m/m)
SN  Cases  Training time Loss RMSE CvV NMBE RMSE Ccv NMBE RMSE Ccv NMBE
SN1 Casel 1m30s 1.5291e-19  1.938 917.41% —15896% 64,450 1,992.44% —1,256% 60,203 1,861.11% 401%
Case 2 2m50s 2.1539-11  0.547 258.97% —9.764% 38,590 1,192% —1,046% 32,713 1,011% 987%
Case3 3 m40s 5.2454e-12  0.0219 10.35%  —1.035% 28,044 867% 410% 17,616 544% 188%
SN2 Case0 4 m30s 5.1805¢-09  0.16 76.16%  —19.51% 15,801 488% 75.55% 17,422 538% 222%
Casel 4mb54s 2.8829¢-10  0.096  45.26% 38.22% 9,953 308% —-102% 11,214 347% —120%
Case2 4mb54s 2.1066e-10  0.091  43.19% 35.52% 10,451 323% —123% 5,067 157% —47.28%
Case3 5m20s 3.0258e-10  0.092  43.71% 13.10% 10,673 330% —106% 8,545 264% —86.59%
SN3 Case0 4m23s 3.5790e-09 435  20,621% —18,251% 2,242 69.33% 59.54% 2,250 69.58% 59.67%
Casel 4m39s 4.4927e-09 0.056  26.66% 13.45% 695 21.51% 17.57% 1,019 31.50% 16.98%
Case2 4m4ls 4.8458e-10  0.139  66.13% 19.38% 3,310 102.32% 86.98% 3,284 101.53% 86.12%
Case3 5ml19s 7.5379¢-09  0.10 50.93% 0.184% 2,577 79.68% 69.81% 2,575 79.63% 68.78%
SN4 Case0 6m10s 7.0818e-10  0.154  72.84% 59.09% 2,148 66.40% 56.36% 2,094 64.75% 55.32%
Casel 6mb54s 4.2294e-09 0.128  60.63% 48.66% 1,738 53.74% 47.51% 1,756 54.28% 46.84%
Case2 6mb54s 1.6367e-08  0.046  21.73% 17.67% 513 15.86% 11.41% 730 22.58% 11.16%
Case3 7m20s 4.3398e-09 0.039  18.53% 13.20% 410 12.69% 5.00% 417 12.90% 6.00%
SN5 Case0 1hrl10m 1.2270e-08 0.0288  15.73% 7.72% 520 16.29% 6.54% 500 15.73% 7.72%
Casel 2hr4m 7.5788e-09 0.0089  4.25% 3.49% 531 16.42% —-1.01% 539 16.68% —0.93%
Case2 1hr33m 8.7162¢-09 0.0189  6.55% 4.96% 500 15.48% 1.75% 493 15.26% 1.21%
Case3 2hr20m 7.6921e-09 0.0097 4.61% 3.82% 528 16.33% —0.33% 522 16.15% —0.36%
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Furthermore, the time required for training is only slightly more than the time needed for SN2 and SN3,
while the overall loss is similar.

Scenario SN5 builds on SN4 by incorporating the loss term for satisfying the governing PDE. These
models have the longest training time (up to 2 hours 20 minutes), but also produce the best results. The
error metrics are noticeably more stable and consistent compared to the previous scenarios. For example,
this has the lowest CV for deflection w. Models also offer good prediction accuracy for the moments M,
and M. Overall, SN5 models perform with the least amount of error and bias, and generally offer the most
accurate predictions among the five models.

Models from SN3—-SNS offer significantly better performance than SN1 and SN2, particularly for Case
3, which has the most number of measurements. Consequently, we explore the generalization capability of
these models in more detail. Tables 6 and 7 show the contour plots for w and M, and M,, respectively. The
plots in these tables need to be compared with the contours from finite element analysis given in Figure 2.

Table 6. Deflection predictions of physics-informed neural networks for Case Study 1

Scenarios

w (mm) SN3 SN4 SN
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Table 7. Moment predictions (M) of physics-informed neural networks for Case Study 1

Scenarios
M, (N.m/m) SN3 SN4 SN5
Case 0
- 3000 _ 6000
- 3000
- 2500 - 5000
- 2500
~ 2000 - 4000
= 2000
1500 - 3000
- 1500
- 2000
- 1000 — 1000
- 1000
- 500 - 500
-0
-0
Case 1
- 6000
- 3500
- 6000
- 5000 _ 1000
- 5000
- 4000 - 2500
= 4000
- 2000
- 3000 | 2000
- 1500
- 2000 1000 -
- 1000 - s00 - 1000
-0 -0 - 0
Case 2
| - 6000 |_ 5000
- 800
- 5000 _ 5000
- 6800 - 4000 - 4000
- 3000 = 3000
- 400
- 2000 - 2000
- 200 L 1000 1000
o -o -0
Case 3
I- 2000 - - 6000
_ 1500 - 5000
B = 4000
- 1000
- 3000
- 500 - - 2000
- - 1000
-0
- o

Notably, despite the omission of governing equations during the learning process, SN4 yields promising
results. This is possibly due to the monitoring data, particularly with more sensors offering improved
spatial coverage and hence being able to compensate for the lack of the loss term requiring satisfaction of
the governing PDE. Consequently, SN4 may offer a simplified learning model that combines the
advantages of both physical knowledge and data-driven learning, while being computationally modest.
We will explore this further in the next section, where we focus primarily on how the learning model in
SN4 can be adapted for scenarios where the loading is also allowed to vary.

4. Case Study 2

To predict for different UDL conditions, we modify the PINN to accept the load as an additional input.
This shift toward considering UDL as an additional input closely reflects real-world scenarios where the
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measured data are often obtained under varying load conditions. Implicitly, the premise is that the load is
known, which is appropriate for practical monitoring scenarios.

To ensure the accuracy and robustness of the modified PINN’s predictive capabilities, a loss term that
imposes a constraint on how loading and deflection are related is incorporated into the existing loss
function. In this study, a simple linear relationship between load and displacement is assumed; this implies
that the second derivative of displacement with respect to load should ideally equal zero. This linear
relationship is a fundamental assumption in numerous areas of structural analysis and engineering.
Equation (20) shows the implementation of this loss. The loss is evaluated at a set of N, points, wherein
N, is 278,486, and 702, for Cases 1-3, respectively. These data represent deflection measurements for a
total of 54 different load cases, spanning a range of 0 to 400 KN/m?. It is noted that UDL values beyond
10 KN/m? are unrealistic but are used here solely to evaluate the generalization capability of the PINN
models:

MSE =i§jnaz—w(x- )I? (20)
q Ny 4= o Y di)ll -

The total modified loss function is shown in Equation (21):
L =a,MSE, + 0,MSE,, +osMSE;+ a,MSE,. (21)

The schematic in Figure 7 illustrates the NN’s architecture modified to incorporate UDL as an
additional input. The same PINN hyperparameters referenced in Table 2 are used with one notable
exception. The number of epochs was increased to 50,000 to enhance prediction accuracy. However, it
was observed that the early stopping mechanism typically activated between 20,000 and 30,000 epochs,
thereby preventing potential over-fitting while ensuring model efficiency.

4.1. Impact of varying UDL on PINNs’ predictions

Results for this PINN setup are given in Table 8, which sheds light on the performance of the trained PINNs
for varying UDL conditions. To begin with, the predictive accuracy improves from Case 1 to Case 3, as
evidenced by decreasing RMSE values for deflection and bending moments. For example, at a UDL of
150KN/m?, the RMSE drops from 0.2741 mm in Case 1 to 0.1211 mm in Case 3. This decrease in RMSE
can be attributed to the increased number of points N, used for evaluating the loss function in each
subsequent case, demonstrating that more comprehensive training data improve the model’s effectiveness.

Loss function
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Figure 7. Physics-informed neural networks setup for predicting response to varying uniformly
distributed load.
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Table 8. Error metric results for Case Study 2 with varying uniformly distributed load

w (mm) M, (N.m/m) M, (N.m/m)
UDL (N/m?) Cases RMSE CV NMBE RMSE CV NMBE RMSE CV NMBE

150,000 Case 1 0.2741 8.61% —2.55% 15,165 27.68% 3.08% 12,031 21.96% 2.64%
Case2 0.1701 5.35% —-2.82% 7,131 13.02% 2.91% 9,801 17.89% 3.30%
Case 3 0.1211 3.81% —0.44% 8,478 15.47% 6.15% 8302 15.15% 6.14%
450,000 Case 1 0.8132 8.84% —5.45% 36,093 21.00% 8.68% 32,162 18.71% 8.68%
Case2 0.8251 8.97% —6.58% 28,614 16.65% 7.79% 30,993 18.03% 7.89%
Case 3 0.5382 5.85% —3.89% 33,249 19.35% 11.05% 32,573 18.95% 10.96%
500,000 Case 1 0.5029 4.61% 1.27% 35,415 19.11% 5.95% 30,832 16.64% 5.96%
Case2 0.2437 2.23% 0.17% 27,290 14.73% 5.01% 30,112 16.25% 5.08%
Case 3 0.4868 4.46% 2.80% 31,287 16.88% 8.41% 30,435 16.42% 8.34%
550,000 Case 1 0.6842 5.86% —1.55% 55,686 25.41% 12.55% 52,431 23.92% 12.57%
Case2 0.6151 5.27% —2.72% 49,598 22.63% 11.67% 52,058 23.75% 11.72%
Case 3 0.4608 3.95% —0.04% 55,186 25.18% 14.83% 53,991 24.63% 14.78%

Turning to the error metrics, RMSE and CV offer distinct but complementary perspectives on model
performance. While RMSE provides an absolute measure of the prediction errors, CV normalizes these
errors relative to the magnitude of the quantities being predicted. Consider the RMSE for deflection at a
UDL of 150 KN/m? in Case 3, which is 0.1211 mm, and compare it with the deflection RMSE at a UDL of
550 KN/m? for the same case, which is 0.4608 mm. The RMSE increases as the load increases, but this is
expected since the deflections themselves are larger under higher loads. The true strength of the model
becomes apparent when considering the CV, which remains relatively stable (3.81%-3.95% for 150-
550 KN/m?) across these conditions. The CV helps to contextualize the RMSE by indicating that the
percentage error in the predictions remains consistent, even as the load increases. Interestingly, the NMBE
shows both positive and negative values (less than +7%), indicating that the model’s predictions are
neither consistently overestimated nor underestimated. This suggests that the additional loss term, MSE,,,
aimed at ensuring a realistic relationship between load and deflection, is effective in mitigating
systemic bias.

The performance of the model can also be understood through a careful analysis of the bending
moment predictions,M, and M,. Taking Case 3 as an example, the RMSE for M, is 8,478 N.m/m with a
CVof15.47% and the RMSE for M, is 8,302 N.m/m with a CVof 15.15% when the UDL is 150 KN/m?. In
the same Case 3, the RMSE for M, rises to 55,186 N.m/m and the RMSE for M, to 53,991 N.m/m for a
higher UDL of 550 KN/m?, while the CV for M, is 25.18% and for M, it is 24.63%. The CV is thus an
important indicator here, showing that the RMSE values are rising, but only in a proportional fashion to
the rising bending moment magnitudes. This is further corroborated by the NMBE, which for M, 15 6.15%
at 150 KN/m” and 14.83% at 550 KN/m”. Similarly, for M,, the NMBE is 6.14% at 150 KN/m* and
14.78% at 550 KN/m?. These NMBE values suggest that the model maintains a relatively consistent bias
across different loading scenarios.

Overall, this case study demonstrates the reliability of the PINN models for predicting floor slab
behavior under varying loads. Remarkably, they also exhibit strong predictive capabilities for inputs
beyond the range of training data, making it highly applicable for real-world SHM scenarios.

5. Case Study 3

This case study aims to explore the robustness of PINNs to uncertainties in modeling and measurement
data. In structural engineering, connections are usually idealized as fully fixed or pinned for design
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purposes. These idealized assumptions, while often conservative from a design perspective, may not be
appropriate when interpreting measurements from real structures. Real-world connections tend to be
semi-rigid, that is, with partially fixity with stiffness somewhere between a fully fixed connection and a
pinned connection. The semi-rigid behavior could arise from imperfections in connections, for
example, due to aging materials, but typically is a direct consequence of the way the connection is
fabricated, as, for example, in the case of beam—column connections and truss element connections,
which are commonly assumed to be perfectly pinned for modeling but research indicates that partial
fixity is more realistic representation of their behavior (Kartal et al., 2010). Consequently, PINN models
that are employed to interpret measurements from real-world conditions must be capable of handling
deviations from idealized assumptions on boundary conditions. We evaluate this capability through
simulated measurement data obtained from the FEM implementing semi-rigid connections along the
plate boundaries.

SHM data are also subject to a degree of noise. Noise can be attributed to a range of environmental and
operational issues, including but not limited to changes in temperature, live load variations, and
inaccuracies in sensor measurements. To replicate this characteristic, we incorporate white Gaussian
white noise into our simulated SHM data. The incorporation of this noise is intended to enhance the
fidelity of the synthetic data, making it more reflective of the challenges engineers would face when
analyzing SHM data collected in real-world scenarios. This case study thus considers two additional
layers of complexity, namely semi-rigid connections and data affected by noise. Our aim is to evaluate the
adaptability and performance of PINNs in two scenarios: with and without the presence of the PDEs that
govern the system.

5.1. Synthetic semi-rigid connections data

The FEM of the plate used in Case Studies 1 and 2 is modified to emulate semi-rigid connections along
its edges. The initial setup parameters for load distribution, geometric dimensions, and material
properties are the same as defined in Section 2.2. However, specialized connection elements—
Combinl4 elements that serve as torsional springs (Ansys, 2023)—are employed to simulate semi-
rigid behavior. These elements will offer restraint for rotation about the plate boundary. The stiffness
(K) of the elements determines the degree of restraint with 0 representing a perfectly pinned connection
and very large values offering fully fixed behavior. For the purposes of this case study, a stiffness
value of 8,261,458 N-m was chosen. This value is derived from theoretical calculations assuming a
reinforced concrete beam having dimensions 300 x 400mm exists along the plate boundaries, as may be
the case in a building floor. Table 9 provides a summary of the number and locations of these synthetic
torsional springs.

Table 9. Predictions from finite element model incorporating semi-rigid connection behavior along
plate edges

Sensor no. Coordinates (x,y) (m) Deflection (mm) M, (N.m/m) M, (N.m/m)
S1 (2,2) 0.3712 5,321 5,878
S2 (1,1 0.1870 3,084 2,945
S3 3,1 0.1870 3,084 2,945
S4 1,3) 0.1870 2,393 2,159
S5 3,3) 0.1870 3,084 2,945
S6 2,1 0.2561 4,289 5,239
S7 2,3) 0.2561 3,604 3,902
S8 (1,2) 0.2561 4,422 4,306
S9 (3,2) 0.2561 4,422 4,306
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5.2. PINNs under varying signal-to-noise ratios

The purpose of this section is to evaluate the performance of PINNs under various noise levels evaluated
in terms of signal-to-noise ratios (SNRs). White Gaussian noise is incorporated into the deflection data
predicted by the FE model and presented in Table 9. The noisy data wyyise are formulated as in
Equation (22)):

Waoise = W+ N (0,07). (22)

Here, w represents the actual displacement acquired from the FEM, and N (0,6?) signifies white
Gaussian noise with zero mean and a standard deviation ¢ determined by the desired SNR. The SNR in
decibels (dB) is expressed as in Equation (23)):

(23)

Signal P
SNR(dB)=101log , ( 1ena OWer> .

Noise Power

Four different SNRs are considered: 10, 20, 30, and 40 dB as presented in Figure 8. A lower SNR such as
10 dB implies a high level of noise, posing a significant challenge for any predictive model. Conversely, a
higher SNR like 40 dB indicates a minimal effect of noise.

5.3. Results and discussion
PINNSs are trained under two distinct scenarios: SN4, which excludes PDEs, and SN5, which incorporates
them. The efficacy of these trained models is evaluated across a range of SNRs. Table 10 gives the

SNR = 30 dB SNR = 40 dB
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Figure 8. Effect of signal-to-noise ratio on the quality of deflection wyise data.
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Table 10. Error metrics for the Case Study 3 scenarios

w (mm) M, (N.m/m) M, (N.m/m)
SN SNR RMSE (6\Y NMBE RMSE CV NMBE RMSE (6\Y NMBE

SN4 10dB 0.0443 26.87%  3.07% 1,150 43% 33% 1,182 45% 30.32%
20dB 0.0312 18.93%  6.33% 798 29.85% 23.93% 808 31% 20.24%
30dB 0.0147 891% 1.37% 876 32.78%  5.61% 639 24.52% 4.06%
40dB 0.0116 7.05%  0.80% 596 22.28% 4.28% 484 18.59% 1.67%
— 0.0068 4.11%  0.56% 804 29.62% 11.97% 778 30.65% —8.27%

SN5 10dB 0.0245 14.86% —4.72% 719 26.88% —13.59% 723 27.73% —16.45%
20dB 0.0178 10.78% —3.74% 743 27.78% —13.80% 729 27.96% —16.47%
30dB 0.0132  8.03% —3.87% 383 14.31% 4.50% 478 18.32% 0.37%
40dB 0.0128 7.80%  1.02% 409 15.29%  5.42% 407 15.60% 1.89%
— 0.0092  5.56%  0.65% 308 11.55%  7.25% 380 14.6% 4.687%
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outcomes for both scenarios, employing multiple error metrics, as already done in Case Study 1, for the
predicted parameters w, M,, and M,. The data yield several key insights.

For the SN4 scenario, the results reveal that the model accuracy improves as the noise level decreases.
All error metrics exhibit an improvement trend with diminishing noise for the three parameters w, M,, and
M,. Specifically, the CV decreases from 26.87% at a 10 dB SNR to 4.11% with clean data. However, the
moments M, and M, are more sensitive to noise compared to deflection. For instance, the RMSE nearly
doubles when the SNR changes from 40 to 10 dB. The deflection NMBE generally remains within a
+10% range and is mostly positive, indicating underestimation compared to the measured data. This
suggests that the PINNs in SN4 provide a robust generalization, even when faced with substantial noise.
The NMBE for M, and M, follows the same trend as deflection, with values reaching up to 33%.

In the SN5 scenario, the models outperform those in SN4, even in noisier conditions. The CV for
deflection ranges from just below 6% to 15% for clean data and a 10 dB SNR, respectively. The moments
M, and M, are less affected by noise in SN5 compared to SN4. For instance, the RMSE values are 719 and
723 N.m/m for M, and M, ata 10 dB SNR, compared to 409 and 407 N.m/m at a 40 dB SNR. Remarkably,
the NMBE for deflection remains below +5% in all tested cases. It turns negative in noisier conditions,
implying that the predicted values surpass the measured ones. This behavior suggests that as the data
become noisier, the PINNs in the SNS scenario adapt their predictions and rely more on the PDEs, thereby
achieving more accurate and generalized outcomes. This trend is also observed for M, and M,, although
the NMBE can extend up to —17%.

In summary, Case Study 3 helps in assessing the robustness of the PINNSs to deviations from idealized
boundary conditions and noisy data. The results show that including PDEs improves accuracy and
reliability, especially under noisy conditions. The study also emphasizes that, while deflection is less
sensitive to noise in general, moments (M) and (M,) can be significantly affected.

6. Conclusions

Using three case studies, this research work investigates the influence of different loss function terms
modeling physics-based constraints on the performance of the resulting PINN models. The first case study
considers a constant load and investigates five distinct loss function configurations. Each loss function
configuration is assessed across four measurement scenarios, which correspond to increasing numbers of
measurement data obtained from a simulated FEM. The second case study uses the loads also as an input
variable for the PINN, which is also informed by the structure’s boundary conditions and synthetic sensor
data. In the third case study, we assessed the adaptability and predictability of PINNs within a modeling
context that incorporates semi-rigid connections and noisy data. The following points summarize the
main study outcomes:

1. The PINNs that implement loss terms for physics-based constraints related to displacement and
force boundary conditions and governing PDE as well as for matching measured data accurately
predict deflection (CV = 4.25%) and bending moments (CV =~ 16%).

2. The PINNs that implement force and displacement boundary conditions and satisfy monitoring
data while not requiring satisfaction of the governing PDE show significant promise as they
accurately predict deflections (CV = 20%) and moments (CV = 13%). These indicate strong
potential for generalization and have the advantage of needing less computational time for training
than with PINNs with loss terms for governing PDE.

3. The PINNs for scenarios with loss functions considering force and displacement boundary
conditions or governing PDE are capable of offering virtual sensing capability, that is, they reliably
predict internal force quantities which are difficult to measure in real structures.

4. The PINNs demonstrate remarkable predictive capabilities for inputs outside of the range of
training data, which is essential for real-world monitoring scenarios.

5. The PINNs that comply with the PDEs are able to effectively deal with noisy data and deviations
from idealized boundary conditions. In Case Study 3, for SN5 with loss function term for PDEs, the
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CV for deflection predictions is &~ 14% for an SNR of 10 dB, and = 5.00% for an SNR of 40 dB,
whereas, in SN4 with the absence of PDEs, the CV begins at a higher value of approximately
~26.00% for 10 dB and decreases to approximately ~4.00% for 40 dB.

Overall, this research contributes to the field of SHM by investigating insights into the role of structural
boundary conditions and measured data in training PINNs. This investigation enhances the understanding
of model performance and highlights the importance of undertaking more detailed case studies in SHM
applications.
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