ON PSEUDO-LUCAS NUMBERS OF THE FORM $2 \mathbf{S}^{2}$.

BY
A. ESWARATHASAN.

I [1] have shown that

$$
u_{1}=1 \quad \text { and } \quad u_{10}=225
$$

are the only square pseudo-Lucas numbers in the set of pseudo-Lucas numbers defined by

$$
\begin{equation*}
u_{1}=1, \quad u_{2}=6 \text { and } u_{n+2}=u_{n+1}+u_{n} \text { for } n>0 . \tag{1}
\end{equation*}
$$

In this paper, it is shown that none of the pseudo-Lucas numbers are of the form $2 S^{2}$, where S is an integer.

The following congruence holds (See e.g. [1]):
(2)

$$
u_{n+2 r} \equiv(-1)^{r+1} u_{n}\left(\bmod L_{r} 2^{-s}\right)
$$

where $S=0$ or 1 .
We need the following tables of values:-

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13
u_{n}	5	1	6	7	13	20	33	53	86	139	225	364	589	953
t	7													
L_{t}	29													
Let														
(3)								$2 x^{2}=u_{n}$,						

where x is an integer.
The proof is now accomplished in fourteen stages:
(a) (3) is impossible if $n \equiv 0(\bmod 14)$.

For, using (2) we find that

$$
u_{n} \equiv u_{0}\left(\bmod L_{7}\right)
$$

Thus we find that

$$
\frac{u_{n}}{2} \equiv 17(\bmod 29), \quad \text { since } \quad(2,29)=1
$$

Received by the editors January 4, 1978 and, in revised form, April 5, 1978.
and since

$$
\left(\frac{17}{29}\right)=-1
$$

(3) is impossible.
(b) (3) is impossible if $n \equiv 1(\bmod 14)$.

For, using (2) we find that

$$
u_{n} \equiv u_{1}\left(\bmod L_{7}\right)
$$

Thus,

$$
\frac{u_{n}}{2} \equiv 15(\bmod 29), \quad \text { since } \quad(2,29)=1
$$

and since

$$
\left(\frac{15}{29}\right)=-1
$$

(3) is impossible.
(c) (3) is impossible if $n \equiv 2(\bmod 14)$.

For, using (2) we find that

$$
u_{n} \equiv u_{2}\left(\bmod L_{7}\right)
$$

Thus we find that

$$
\frac{u_{n}}{2} \equiv 3(\bmod 29), \quad \text { since } \quad(2,29)=1
$$

and since

$$
\left(\frac{3}{29}\right)=-1
$$

(3) is impossible.
(d) (3) is impossible if $n \equiv 3(\bmod 14)$.

For, using (2) we find that

$$
u_{n} \equiv u_{3}\left(\bmod L_{7}\right)
$$

Thus,

$$
\frac{u_{n}}{2} \equiv 18(\bmod 29), \quad \text { since } \quad(2,29)=1
$$

and since

$$
\left(\frac{18}{29}\right)=-1
$$

(3) is impossible.
(e) (3) is impossible if $n \equiv 4(\bmod 14)$.

For, using (2) we find that

$$
u_{n} \equiv u_{4}\left(\bmod L_{7}\right)
$$

Thus

$$
\frac{u_{n}}{2} \equiv-8(\bmod 29), \quad \text { since } \quad(2,29)=1
$$

and since

$$
\left(\frac{-8}{29}\right)=-1
$$

(3) is impossible.
(f) (3) is impossible if $n \equiv 5(\bmod 14)$.

For, using (2) we find that

$$
u_{n} \equiv u_{5}\left(\bmod L_{7}\right)
$$

Thus we find that

$$
\frac{u_{n}}{2} \equiv 10(\bmod 29), \quad \text { since } \quad(2,29)=1
$$

and since

$$
\left(\frac{10}{29}\right)=-1
$$

(3) is impossible.
(g) (3) is impossible if $n \equiv 6(\bmod 14)$.

For, using (2) we find that

$$
u_{n} \equiv u_{6}\left(\bmod L_{7}\right)
$$

Thus,

$$
\frac{u_{n}}{2} \equiv 2(\bmod 29), \quad \text { since } \quad(2,29)=1
$$

and since

$$
\left(\frac{2}{29}\right)=-1
$$

(3) is impossible.
(h) (3) is impossible if $n \equiv(\bmod 14)$.

For, using (2) we find that

$$
u_{n} \equiv u_{7}\left(\bmod L_{7}\right)
$$

Thus,

$$
\frac{u_{n}}{2} \equiv 12(\bmod 29), \quad \text { since } \quad(2,29)=1
$$

and since

$$
\left(\frac{12}{29}\right)=-1
$$

(3) is impossible.
(i) (3) is impossible if $n \equiv 8(\bmod 14)$.

For, using (2) we find that

$$
u_{n} \equiv u_{8}\left(\bmod L_{7}\right)
$$

Thus,

$$
\frac{u_{n}}{2} \equiv 43(\bmod 29), \quad \text { since } \quad(2,29)=1
$$

and since

$$
\left(\frac{43}{29}\right)=-1,
$$

(3) is impossible.
(j) (3) is impossible if $n \equiv 9(\bmod 14)$.

For, using (2) we find that

$$
u_{n} \equiv u_{9}\left(\bmod L_{7}\right)
$$

Thus,

$$
\frac{u_{n}}{2} \equiv-3(\bmod 29), \quad \text { since } \quad(2,29)=1
$$

and since

$$
\left(\frac{-3}{29}\right)=-1,
$$

(3) is impossible.
(k) (3) is impossible if $n \equiv 10(\bmod 14)$.

For, using (2) we find that

$$
u_{n} \equiv u_{10}\left(\bmod L_{7}\right)
$$

Thus,

$$
\frac{u_{n}}{2} \equiv 98(\bmod 29), \quad \text { since } \quad(2,29)=1
$$

and since

$$
\left(\frac{98}{29}\right)=-1,
$$

(3) is impossible.
(l) (3) is impossible if $n \equiv 11(\bmod 14)$.

For, using (2) we find that

$$
u_{n} \equiv u_{11}\left(\bmod L_{7}\right)
$$

Thus,

$$
\frac{u_{n}}{2} \equiv 182(\bmod 29), \quad \text { since } \quad(2,29)=1
$$

and since

$$
\left(\frac{182}{29}\right)=-1
$$

(3) is impossible.
(m) (3) is impossible if $n \equiv 12(\bmod 14)$.

For, using (2) we find that

$$
u_{n} \equiv u_{12}\left(\bmod L_{7}\right)
$$

Thus,

$$
\frac{u_{n}}{2} \equiv 280(\bmod 29), \quad \text { since } \quad(2,29)=1
$$

and since

$$
\left(\frac{280}{29}\right)=-1
$$

(3) is impossible.
(n) (3) is impossible if $n \equiv 13(\bmod 14)$.

For, using (2) we find that

$$
u_{n} \equiv u_{13}\left(\bmod L_{7}\right)
$$

Thus,

$$
\frac{u_{n}}{2} \equiv-2(\bmod 29), \quad \text { since }(2,29)=1
$$

and since

$$
\left(\frac{-2}{29}\right)=-1
$$

(3) is impossible.

Hence none of the pseudo-Lucas numbers are of the form $2 S^{2}$, where S is an integer.

Acknowledgement. The author wishes to express his sincerest gratitude to the referee for the kind suggestions which helped to shorten the paper considerably.

Reference

1. A. Eswarathasan, On Square Pseudo-Lucas numbers, Canadian Mathematical Bulletin, 21 (1978), pp. 297-304.

Department of Mathematics \& Statistics,
University of Sri Lanka,
Jaffna Campus, Thirunelvely, Jaffna, Sri Lanka.

