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The main theorem of this paper names seven ring classifications which 
coincide with the class of rings named in the title. Three of them are (1) rings 
over which every module is rationally complete, (2) left and right perfect 
rings over which every module is corationally complete, and (3) right perfect 
rings over which every right module is rationally complete. Corational com
pleteness (introduced in this paper) and rational completeness are generali
zations of projectivity and injectivity, respectively. One recalls that a proper 
subclass of the rings investigated in this paper, the artinian rings with zero 
radical, is known to have one-sided characterizations in terms of the injectivity 
(projectivity) of modules. An example proves, however, that the class of rings 
over which every right module is rationally complete properly contains the 
rings of the title. I t is also proved that the rings of this paper are not charac
terized by the corational completeness of all right modules together with the 
right-perfectness of the rings. 

Another result states that if R is a right perfect ring, then every right 
i^-module is corationally complete if and only if no right i?-module is a 
corational extension by a proper factor module. The known analogue con
cerning rational completeness and rational extensions makes no restriction 
on the ring and avoids global formulations. 

1. We make the following conventions to be used without comment: All 
rings will have an identity element; the radical of a ring R (frequently written 
(radi^)) will be the Jacobson radical; all modules will be unital. 

Some needed definitions appear after the following theorem. 

T H E MAIN THEOREM. The following statements on a ring R are equivalent: 
(1A) R is the direct sum of a finite set of ideals Ru where each Rt is a left 

and right perfect ring and i?ï/(rad Ri) is a simple artinian ring; 
(IB) Every R-module is rationally complete; 
(1C) R is left and right perfect and no R-module is a corational extension by 

a proper factor module; 
(ID) R is left and right perfect and every R-module is corationally complete; 
(IE) R is left and right perfect and if {ulf . . . , uk} is the full set of primitive 

orthogonal central idempotents of R/(rad R) whose sum is the identity modulo 
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(rad R), then each ut can be lifted to a primitive central idempotent et of R such 
that Y.^i is the identity of R and the set {eh . . . , ek} is orthogonal; 

(IF) R is the direct sum of a finite set of ideals Rt each of which satisfies: 
There is a unique positive integer nt and, up to isomorphism, a unique left and 
right perfect completely primary ring St such that Rt is isomorphic to the nt X ni 
matrix ring over S^ 

(1G) R is right perfect and every right R-module is rationally complete; 
(1H) R is left perfect and every left R-module is rationally complete. 

Definitions. For homological terms and for ring and module terminology, 
see (2; 6), respectively. 

(1) Socle. The socle of a module is the sum of its irreducible submodules, 
where a module is irreducible if and only if it has exactly two submodules. 
The right (left) socle of a ring R is the socle of R as a right (left) P-module. 

(2) Rational completeness. A right i^-module M is rationally complete if and 
only if in every case where N is a right .R-module with submodule V such that 
Hoirie (X, M) — 0 for every submodule X of N/V the induced map 

HomB(N, M) -> Homfî(V, M) 
is onto. 

(3) Corational completeness. A right i^-module M is corationally complete 
if and only if in every case where N is a right i^-module with submodule V 
such that HomR(M, V) = 0 for every factor module F of F the induced map 

HomB(M, N) -» HomB(If, N/V) 
is onto. 

(4) Essential, rational, coessential, and corational extensions. Let F be a 
submodule of a right i^-module M. We say that V is essential or large in M 
and that M is an essential extension of F if F has non-zero intersection with 
every non-zero submodule of M. M is a rational extension of V if for every 
submodule Y of M/V, H o m ^ F , M) = 0. M is a coessential extension by its 
factor module M/V and F is called small in M if W + V = M (IF a sub-
module of M) implies W = M. I f is a corational extension by M/V if 
HomB(ikT, F) = 0 for every epimorph F of F. (Using an appropriate injection 
or surjection, these definitions can be extended to arbitrary modules.) 

(5) Projective cover; right perfect rings. If P is a projective right i^-module 
and is a coessential extension by its epimorph P/K, then P is called a pro
jective cover of any right i^-module P-isomorphic with P/K. The ring R is 
right perfect if and only if every right P-module has a projective cover. 

(6) Primitive idempotent. An idempotent is called primitive if it is not the 
sum of two orthogonal idempotents. 

(7) Completely primary. A ring R is completely primary if and only if 
R/ (rad R) is a division ring. 

As immediate consequences of the definitions, we have that 
(II) Every infective right module is rationally complete; 
(1J) Every projective right module is corationally complete. 
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Notation. We shall write ( ID; left) for the statement "R is left perfect and 
every left i?-module is corationally complete". The meaning of ( ID; right) 
and of similarly modified references will be clear. 

Sections 2-6 are devoted to the proof of the main theorem. The equivalence 
of (1C) and (ID) is obtained in § 2 by proving the equivalence of (1C; right) 
and ( ID; right). In § 3 we prove that (IB; right) implies (1A; left) and in 
§4 that (1A; left) implies (1C; left). Thus, (IB) implies (1A), and (1A) 
implies (1C). In § 5 we prove that if R is a left perfect ring and if no proper 
corational extensions by right jR-modules exist, then every right .R-module is 
rationally complete. This theorem and the theorem obtained from it by 
interchanging the words right and left prove that (1C) implies (IB). Thus, 
the first four statements of the main theorem are proved equivalent in §§ 2-5. 

The remaining steps in the proof of the main theorem are in § 6, with some 
help from earlier results. In § 6 we prove that (IE) implies (IF) and that 
(IF) implies (1A), by proving the left versions. Thus, (IF) implies any of 
the first four (equivalent) statements. Proof that (IB) implies (IE) is obtained 
from a result in § 3: (IB; right) implies (IE; left). Thus, the first six state
ments have been proved equivalent. As the final step in the proof of the 
main theorem, (1G) and (1H) are proved equivalent with the preceding six 
statements. 

Some by-products of the results in §§ 2-6 are mentioned in § 7, as evidence 
of right-left asymmetry qua rational and corational completeness of modules 
and perfectness of rings. We record one of them (Theorem (7C)). 

THEOREM. If R is a left perfect ring over which every right module is corationally 
complete, then every left R-module is corationally complete. 

The question is open as to the possibility, suggested by the quoted theorem, 
that the corational completeness of all right modules together with the left-
perfectness of the rings characterizes the rings of this paper. I t is shown in § 7, 
however, that the rational completeness of all right modules does not charac
terize these rings. This is accomplished by displaying a ring R over which all 
right modules, but not all left modules, are rationally complete. The same 
example shows that the rings of this paper do not coincide with the class of 
left perfect rings over which every left module is corationally complete. 

Concerning (IB), Findlay and Lambek proved (5, p. 156) that a right 
i^-module is rationally complete if and only if it has no proper rational exten
sions. In § 2 it is proved that no proper corational extensions by a right module 
M exist if M is corationally complete, but at the time of writing we do not 
have the converse (and conjecture against its existence). To obtain the 
equivalence of (1C; right) and ( ID; right), we prove, in §2, that a right 
^-module M is corationally complete if, for every factor module F of M, 
F has a projective cover and no proper corational extensions by F exist. 

A sense in which corational extension is dual to rational extension is men
tioned in (3, p. 953, following Definition 2). 
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2. Proof that (1C) and (ID) of the main theorem are equivalent. 

Notation (2A). If A and B are right R-modules, we shall write 
/ £ H o m ^ ^ , B/') if, for some epimorph B of B, f 6 Hom^f^, B). By 
HomB(A, B/-) = 0 we mean that H o m ^ ^ , B) = 0 for every epimorph B 
of B. Otherwise, we write H o m ^ ^ , B/ • ) ^ 0. 

PROPOSITION (2B). If an R-module M is a corational extension by its 
epimorph M/V, then M is a coessential extension by M/V. 

Proof. If M is not coessential over M/V, then for a submodule Y ^ M we 
have that M = V + Y. Thus, M/Y ^ V/(V H F) ^ 0, proving that M is 
not a corational extension by Af/F. 

Remark (2C). In the commutative diagram 

A > A/B->0 
nat 

let Y = / (S) . Then, if g is onto A/B, A = Y + B. For a belongs to the coset 
f(s) + B, if a + B = g(s). 

THEOREM (2D). Let M be a corationally complete right R-module. Then no 
proper corational extension by M exists. 

Proof. Suppose, on the contrary, that there is a right .R-module C with 
submodule K, such that C is corational over C/K, and that C/K = M. By 
the definition of corational extension, Hom i 2(C,X/-) = 0. Evidently, 

(1) HomB(C/K,K/-) = 0 . 

The corational completeness of C/K = M and (1) imply that there is a map 
a: C/K —•> C making commutative the diagram 

C/K 

/i-
C > C/K >0 

a 
where g is the identity map on C/K and a is the natural map. Since g is an 
onto map, Remark (2C) implies that C = K + Y, where Y = a (C/K). Let 
k e K r\ Y. Thus, k = a(t + K) for some t 6 C. From 

g(t + K) = a*(t + K) = «(ft) = (0 + K) 

we have that t 6 i£, since g is the identity map of C/K. Then 
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k = o-(0 + K) = 0. Thus, C is the direct sum of Y and i£. Since K is small 
in C by Proposition (2B), C = F and, in consequence, K = 0. Thus, the 
extension is not proper. 

THEOREM (2E). If R is a right perfect ring, every right R-module is corationally 
complete if and only if no right R-module is a proper corational extension by an 
R-module. 

Theorem (2E) is implied by Theorem (2D) and the following proposition. 

PROPOSITION (2F). Let M be a right R-module such that 
(i) No proper corational extension by an epimorph of M exists; 

(ii) Every epimorph of M has a projective cover. 
Then M is corationally complete. 

Proof. Suppose that M is not corationally complete. Then there is an 
i^-module A with submodule B such that 

(2) UomR(M,B/-) = 0 

and that, for some i^-homomorphism / : M—> A/B, there is no completing 
map M —•> A making 

M 

(3) 

» 
nat 

/ 

A/B >0 

commutative. For convenience we assume t h a t / is onto A/B. We proceed to 
obtain a contradiction to (2). 

Let M' be the epimorph of M such that / takes M' isomorphically onto 
A/B. Let projective module P be a projective cover of M'\ PIK ^ M', 
where K is a small submodule of P. We define g: P —» A/B by the composition 
of maps 

P > P/K > M' > A/B, 
nat / 

where P/K —» M' is an isomorphism. We have a commutative diagram 

P 
a A 

(4) 

A > A/B > 0 
nat 

a exists since P is projective. Let L be the kernel of a. Then K contains K C\ L 
properly; otherwise, (4) would provide a completion for diagram (3). Thus, 
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P/(K C\ L) is a proper extension by P/K = Mr and, by hypothesis, 
cannot be a corational one. This proves that a non-zero element h of 
HomB(P/(Kr\L), (K/(KC\L))/-) exists. Since K is small in P , K + 
(ker h) 7e P, so that h induces a non-zero homomorphism defined on 
P/K 9Ë If', and we have that 

(5) HomB(M' f (K/(K H L ) ) / . ) ^ 0. 

Since a(t) (z B, if t £ K, a restricted to K/{KC\L) is an isomorphism 
onto B r\a(P): 

(6) K/(Kr\L) g^B' = Br\ <J{P). 

Considering (5) and (6), there exists a non-zero homomorphism of M' into 
an epimorph of Br; say to B'/V. Since F is a submodule of 5 , a non-zero 
homomorphism of M into an epimorph of B has been found, in contradiction 
of (2). This completes the proof that M is a corationally complete module. 
We have proved (2F) and (2E). 

Since (1C; right) and ( ID; right) are equivalent, the equivalence of (1C) 
and (ID) is evident. 

3. Proof that (IB) of the main theorem implies (1A) and (IE). We 
plan to prove that if every right module for R is rationally complete, then the 
ring R is the direct sum of ideals Ru each a left perfect ring which is artinian 
and simple modulo its radical. Findlay and Lambek's theorem mentioned in 
§ 1 permits us to interchange "there are no rational extensions of the module 
M" with "M is rationally complete". We shall do so without comment. 

Definition. An ideal N is called left P-nilpotent if, given a sequence {ut} of 
elements of N, the product UiU2 . . . un = 0 for some n. 

We extract the following from a theorem of Bass (1, pp. 467-468, 
Theorem P). 

THEOREM (3A). The following statements on a ring R are equivalent: 
(1) Ris left perfect; 
(2) The radical P of R is left T-nilpotent and (R/P) is artinian; 
(3) R has no infinite sets of orthogonal idempotents and every non-zero right 

R-module has non-zero socle. 

PROPOSITION (3B). If R/ (rad R) has no infinite sets of orthogonal idempotents, 
then R also has this property. 

Proof. If the proposition is false, the hypothesis implies the existence of 
non-zero orthogonal idempotents e and e + j with j G (rad R). From 
0 = e(e + j) = e + ej, e has a quasi-inverse h: e + h = eh. Then e + eh = eh. 
We have the contradiction that e = 0. 

We call a module irreducible if it has precisely two submodules. 
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PROPOSITION (3C). Let a ring R be the direct sum of some ideals Rt 

(l S i S k). Then (1) every non-zero right R-module has an irreducible sub-
module if and only if (2) for each i and each (Rt) -ideal X ^ Rt the ring {Rt/X) 
has non-zero right socle. 

Proof. Let {et\ 1 ^ i ^ k} be the central idempotents whose sum is the 
identity of R such that Rt = etR = Ret. If X is an (i^-)-ideal, then Y is an 
irreducible right (Rf)-submodule of (Rt/X) if and only if Y is an irreducible 
right i^-submodule. Thus (1) implies (2). We assume that (2) holds and that 
M is a right i^-module with Met ^ 0 for some i, and that X is the (Rt) -ideal 
such that Met is a faithful (R{/X)-module. By assumption, (Rt/X) has an 
irreducible right i?-submodule T/X. If m G Met is such that mT ^ 0, then 
clearly mT = T. Thus (1) holds. 

PROPOSITION (3D). Let R-module M be a rational extension of its submodule V. 
Then M is an essential extension of V. 

Proof. If F were not essential in M, then for some non-zero submodule T of 
My V + T is a direct sum. Then f(t + V) = tis a non-zero homomorphism of 
( r + F ) / F t o M s o that M is not a rational extension of V. 

Definition and Remark. If M is a right i^-module, t G -M is a singular 
element if and only if /£ = 0 for some essential right ideal E of R. Clearly, 
t is non-singular if and only if there is a non-zero right ideal V of R such that 
the obvious map V-^ tV is a monomorphism. The singular elements of M 
form a submodule, the singular submodule of M, and the singular submodule 
of the right i^-module R is an ideal, the right singular ideal of R (4, p. 47, 
Proposition 4). 

PROPOSITION (3E). Let a right R-module M have submodules N and W 3 N, 
where W is essential over N. If f G HomB((W/N), M), then f{W/N) is con
tained in the singular submodule of M. 

Proof. If, on the contrary, f(t + N) = s for some t G W, where s is not a 
singular element, then for some non-zero right ideal J oî R the obvious map 
J —» sJ is a monomorphism of J into M. From sj ^ 0 for all non-zero j G / 
and from sj = f((t + N)j), M/N contains the isomorphic copy of J, 
(* + N)J = tJ + N, so that tJ r\N = 0. This contradicts the essentiality 
of iV in W, and completes the proof. 

THEOREM (3F). Let M be an R-module with vanishing singular submodule 
and let N be a submodule of M. Then M is an essential extension of N if and 
only if M is a rational extension of N. 

Proof. Proposition (3D) proves one direction. If M is essential over N and if 
/ G HomB(W/N, M), where IF is a submodule of M, then Proposition (3E) 
implies that / == 0. Thus, M is rational over N, completing the proof. 
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PROPOSITION (3G). Let R be a ring whose right singular ideal is zero and 
over which every right module is rationally complete. Then R is a semi-simple 
artinian ring. 

Proof. We show that every right R-module is injective; the desired conclusion 
is then immediate (7, p. 12). If T is an essential right ideal of R, then by 
Theorem (3F) T is a rational submodule of the right .R-module R. I t follows 
that the rationally complete i^-module T equals R. Thus, an element m of an 
i?-module M is a singular element if and only if mR = 0, which is equivalent 
to m = 0, since M is unital. Thus, the singular submodule of M is zero for 
every right i^-module M. By Theorem (3F), then, every essential extension 
is a rational extension. Thus, by hypothesis, there can be no proper essential 
extensions, and every right module is injective. 

PROPOSITION (3H). Let M be an R-module with submodule A and let B be a 
submodule of M maximal with respect to A C\B = 0 (B exists by Zorn's lemma). 
Then A + B is an essential submodule of M. 

The proof is straightforward. It appears in (4, p. 16). 

LEMMA (31). Let Rbe a ring over which every right module is rationally com
plete and let R have non-zero right singular ideal Z. Then Z contains an irreducible 
right ideal whose square is zero. 

Proof. Let H be a right ideal which is maximal with respect to H C\ Z = 0; 
by Proposition (3H), Z + H is an essential right ideal of R. If the identity 
element of R were in Z + H, 

1 = z + h, z e Z,h e H, 

we would have for each k £ Z, k = zk + hk = zk, since hk 6 Z C\H. Since 
2 f Z , z annihilates an essential right ideal E of R. Thus, there is a non-zero 
t G Z H\ E. We have the contradiction that 

/ = zt = 0, 

proving that 1 $ Z + H. A maximal proper right ideal V containing Z + H 
exists and V is an essential right ideal. The rational completeness of V implies 
t h a t / ( F ) = 0 for some non-zero/ G Hom i2(F, R),V^YQR. Since V ^ Y 
and since R/V is irreducible, F = R. Now T = f(R) Ç Z by Proposition 
(3E), and T9ÉR/V is irreducible. From / ( F ) = 0 and from RZ C Z C F, 
we see that TZ = 0, and have T2 = 0. 

THEOREM (3J). Let R be a ring with radical P over which every right module 
is rationally complete. Then 

(1) R/P is an artinian ring and 
(2) Every non-zero right R-module M has non-zero socle. 

Proof. If Z, the right singular ideal of R/P is zero, R/P is artinian by 
Proposition (3G) (since every right (R/P)-module is rationally complete). 
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If Z 9^ 0, then by Lemma (31), R/P has a non-zero nilpotent right ideal T/P. 
We have a contradiction since every nil right ideal is contained in the radical 
(6, p. 8) and the radical of R/P is zero. Thus, (1) has been proved. 

Now let m be a, non-zero element of a right i^-module M. Let H be a sub-
module of M maximal with respect to the property of not containing {m}. 
Then m G T, the intersection of the submodules which properly contain H. 
Clearly, T/H is irreducible and is contained in every submodule of M/H. 
Since H is rationally complete, there is a non-zero homomorphism g of T/H 
into T. Clearly, g is an isomorphism and M has an irreducible submodule: 
g(T/H). This completes the proof of the theorem. 

THEOREM (3K). Let Rbe a ring over which every right R-module is rationally 
complete. Then R is a left perfect ring. 

Proof. By Theorem (3J), every right i?-module has non-zero socle and 
R/(r&d R) is artinian. By Proposition (3B), R inherits from R/(rad R) the 
non-existence of infinite sets of orthogonal idempotents. Thus, by Bass' 
theorem (see Theorem (3A)), R is a left perfect ring. 

Notation (3L). If S and T are subsets of an i?-module, (S:T) = 
{r G R\Tr Ç 5 ) . We write (S:t) if T is the set {*}. 

Remark (3M). If t is a non-zero element of an irreducible i?-module T, the 
map fir) = tr is an i?-homomorphism of R onto T with kernel (0:/). Thus, 
T ^ R/(0:t) and (0:/) is a maximal right ideal of R. 

LEMMA (3N). Let e be an idempotent of a ring R and let ye = 0 for some 
non-zero element y of R. Let H and Hf be right ideals such that (eR + Hr)/Hr 

is an irreducible right R-module and is isomorphic with (yR + H)/H. Then e is 
not central modulo the radical P of R. 

Proof. We assume the contrary: er — re G P for all r G R. Since 
(eR + Hf)/Hf is irreducible, (Hr:e) is a maximal right ideal by Remark (3M) 
and contains the intersection P of the maximal right ideals. From er — re G 
P Ç (H':e) we have, for each r G R, that 

er — ere G Hr. 

Evidently, {er + H') = {er + H')e\ e acts as right identity on the right 
i^-module {eR + H')/H'. On the other hand, {y + H) is a non-zero element 
of {yR + H)/H and {y + H)e = (ye + H) = 0 by hypothesis. This is a 
contradiction of the isomorphism in the hypothesis, completing the proof. 

THEOREM (30). Let Rbe a ring over which every right R-module is rationally 
complete. Let {e1} . . . , ek\ be a set of orthogonal idempotents of R whose sum is 
the identity of R. Let P denote the radical of R and assume, for each r G R and 
for i = ! , . . . , & , that 

etr — ret G P . 
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Then the idempotents ex are centralidempotents {thusetRis an ideal) i = 1 , . . . , k. 

Proof. If the conclusion is not true, then xet ^ etx for some i G {1, . . . , k} 
and some x G R. We must have that etxei ^ etx or eiXet ^ xet and we assume 
the latter with no loss of generality. Thus, there exists fi G {1, . . . , k} such that 

y = epxet ^ 0, p ^ i. 

Using Zorn's lemma, let H be a right ideal maximal with respect to y G H. 
Clearly, y belongs to the intersection F of those right ideals which properly 
contain H. We have 

F/H irreducible, F = H + yR. 

Evidently, ep G H. We claim that ep G Z7. For, if ep G i7, then (ep + H), as 
well as (y -\- H), generates the irreducible module F/H and, since yep = 0, 
Lemma (3N) implies that epr — rep G P for some r G JR, a contradiction. 

Since ^ ^ i7, let iJ ; be a right ideal containing F and maximal with respect 
to ep $ H'. Then we must have F'/Hf irreducible, where Fr = Hr + epR. 
Since H'/H is rationally complete and is a proper submodule of F'/H, a 
non-zero homomorphism of the irreducible module F'/Hf to F'/H exists; its 
image is necessarily the unique irreducible submodule F/H and we have that 

(7) F/H ^ F'/H'. 

Since yep = 0 and since the isomorphic irreducible modules of (7) are generated 
by y and ep, respectively, Lemma (3N) again implies that epr — rep g P for 
some r G R. This contradiction completes the proof. 

Remark (3P). A ring having nil Jacobson radical is an SBI ring (ring 
suitable for building idempotents), that is, a ring such that idempotents 
modulo the radical can be lifted (6, pp. 53-54). More precisely, for such a ring 
(6, p. 54), if P denotes the radical and if \u\ + P} . . . , uk + P} is a set of 
orthogonal idempotents of R/P, then a set {ei, . . . , ek] of orthogonal idem
potents of R exists such that et -\- P = Ui + P, i = 1, . . . , k. Furthermore, 
if Y^ui — 1 G -P, where 1 is the identity of R, then the et can be chosen so 
that their sum is 1. 

THEOREM (3Q). Let R be a ring over which every right R-module is rationally 
complete. Then R is the direct sum of a finite set of ideals Rt such that for each i, 
Ri/ (rad R/) is a simple artinian ring and Rt is a left perfect ring. 

Proof. Let P denote the radical of R. We use the notation x for the coset 
x + P and S to denote {s\ s G S} if 5 is a subset of R. By Theorems (3K) 
and (3A), P is a nil ideal and by Theorem (3J), R/P is artinian. Thus, R/P 
is a direct sum of simple rings (each an ideal of R/P) so that for some positive 
integer k, R/P has central orthogonal idempotents Hi, . . . , ûk whose sum is 
the coset 1 + P , such that UiR is an (R/P) -ideal and a simple artinian ring. 
By Remark (3P), Ut can be replaced in the preceding sentence by ëu where 
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{ei, . . . , ek] is a set of orthogonal idempotents of R and X A = 1- The et are 
central idempotents by Theorem (30). Thus, Rt = etR is an ideal for each i 
and R is the direct sum of the Rt. Then each (i?*)-module is an i?-module and 
is rationally complete. By Theorem (3K), Rt is left perfect, i = 1, . . . , k. 

Since the radical is the intersection of all maximal right ideals, it is easy to 
verify that the radical of Rt is Rt C\ P. By the ring isomorphism 

etR/{eiR r\ P) 9* (etR + P)/P = ~e~R, 

J?î/(rad Ri) is a simple artinian ring, i = 1, . . . , k. 

Remark (3R). In Theorem (3Q), (1A; left) has been obtained from (IB; 
right).(IE; left) has been obtained also since R is a left perfect ring and since 
the primitive orthogonal central idempotents of the artinian ring R/P have 
been lifted to orthogonal central idempotents (necessarily primitive) of R. 
We have proved that (IB) implies (1A) and (IE). 

4. Proof that (1A) of the main theorem implies (1C). We shall prove 
that (1A; left) =» (1C; left). Let Rt (1 g i S k) be left perfect rings and 
let R = Ri 0 . . . © Rk be the ring made from the direct sum of their additive 
groups. We use Theorem (3A) to show that R is left perfect. If Pt — (rad Ri), 
i = 1, . . . , k, then it is easy to verify that P = (rad R) = Y^R u using the 
definition of radical as the intersection of maximal right ideals. The left 
T-nilpotence of P is obvious since each Pt is left T-nilpotent, and R/P is 
artinian as the direct sum of the artinian rings Rt/Pt. Thus, R is left perfect. 

THEOREM (4A). Let R be a ring which is the direct sum of some ideals 
Ri, . . . , Rk, such that for each i 

(i) Ri/Pi is a simple artinian ring, where Pi = (rad Rt); 
(ii) Rt is a left perfect ring. 

Then (1) R is a left perfect ring and (2) there are no proper corational extensions 
by left R-modules. 

Proof. The opening remarks prove conclusion (1). A theorem which appears 
in (1, p. 474) states that for any ring R, non-zero projective .R-modules always 
have maximal proper submodules. If M is any non-zero left i?-module for the 
ring R of this theorem, we claim that M has a maximal proper submodule. 
Since R is left perfect, there is a projective left i^-module P with a small 
submodule K such that M ~ P/K. If H is a maximal proper submodule of P , 
we have that K + H ^ P so that K C H, since K is small. Thus, H/K is a 
maximal proper submodule of P/K; M has a maximal proper submodule. 

Now assume that conclusion (2) is false, that a left i^-module G exists with 
submodule N ^ 0 such that G is a corational extension by G/N. Thus, 
HomR(G, N) = 0 for every epimorph N of the left module N. 

Let ei, e2, . . . , ek be the central idempotents of R whose sum is the identity 
of R (whose existence the hypothesis implies). For any left module H, we use 
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the notation H^) = e^H. Thus, H is the direct sum of the H^) and ej is the 
identity map on HU) and is the zero map on H^ for i ^ j . We remark that 
from the definition of the et and from (i) in the hypothesis, exactly one (up to 
i?-isomorphism) irreducible left P-module Tt exists on which e{ is the identity 
map and ê  induces the zero map, if j ^ i. Let (3 be such that Np 9^ 0. Let F± 
be a maximal proper submodule of G&) and let F = F\ + ]£*?# G(*). Let Fi 
be a maximal proper submodule of N^ and let F = V\ + Z!^js -2V(o« Then 
G/i7 = 2^ == iV/F as left P-modules. This contradicts the corationality of G 
over G/N, proving the theorem. 

Clearly, (1A) => (1C), since (1A; left) =» (1C; left). 

5. Proof that (1C) of the main theorem implies (IB). Our plan is to 
prove that if R is a left perfect ring and if no proper corational extensions by 
right P-modules exist, then every right P-module is rationally complete. 

LEMMA (5A). Let Rbe a ring such that no right module is a proper corational 
extension by another. Let P be the radical of R and let {e\, . . . , ek] be a set of 
orthogonal idempotents with Y^ei equal to the identity of R, such that for each i 
and for every r Ç R, 

etr — rei 6 P. 

Then for i = 1, . . . , k, et is a central idempotent. (Thus, the right ideals exR 
are ideals?) 

Proof. We assume the contrary. Thus, xet 9^ etx for some i Ç {1, . . . , k] 
and some x £ R. We must have that etxei 9^ etx or etxei 9e xet and we assume 
the latter with no loss of generality. Thus, there exists a G {1, . • . , k} such that 

y = eaxei ^ 0, a ^ i. 

Let V = £ ^ ejR. Then y = eay $ V. Let H 2 F be a right ideal maximal 
with respect to y £ H. The intersection F of right ideals properly containing 
H satisfies 

F/H irreducible, F = H + yR. 

Since R/H is a proper extension by R/F, it cannot be a corational extension. 
Thus, there is a non-zero homomorphism on R/H to the irreducible right 
module F/H. Let H' be the kernel of that homomorphism. Then 

R/H' ÊË F/H. 

Since Hf Z> H => F and since R j£ H\ ea £ Hf so that 

R = H' + eaR. 

Considering the displayed statements and yea = 0, Lemma (3N) implies that 
ea is not central modulo P , a contradiction. This completes the proof. 
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THEOREM (5B). Let R be a left perfect ring such that no proper corational 
extensions by right R-modules exist. Then every right R-module is rationally 
complete. 

Proof. Since R is left perfect, Theorem (3A) implies that R/P is artinian, 
where P = rad R. Thus, R/P has central orthogonal idempotents 
{ei + P, . . . , ek + P] whose sum is 1 + P, each of which generates one of 
the indecomposable ideals ( = simple artinian rings) into which R/P de
composes uniquely. By Theorem (3A), the radical is nil and, by Remark (3P), 
we may suppose that the e< are orthogonal idempotents whose sum is 1. By 
Lemma (5A) they are central idempotents. 

We show that a right .R-module M cannot be a proper rational submodule 
of an i^-module G. For i = 1, . . . , k, let 

Mm = Meu G(i) = Get. 

Let W = {i\ 1 ^ iS k, M(i) ^ 0}. If H^wM(i) = T,iewG(i)} then M is a 
direct summand of G, so that there is a projection onto some complement of 
M and HomR(G/M, G) ^ 0, whence M is not a rational submodule of G. 
Taking the alternate case, M^ is properly contained in G^ for some /3 £ W. 
Let y £ G(^), y d M^. Let H be a submodule of G containing M and maximal 
with respect to y (? H. Then y £ F, where F is the intersection of all the 
submodules of G properly containing H, and F/H is an irreducible right 
i?-module. Since yet = 0 for i G {1, . . . , k}, i ^ /3, F/H is ^-isomorphic with 
the unique irreducible module afforded by the simple ring e$R/epP. Let X be 
the ideal of e$R such that G(&) is faithful for (e$R/X). By statement (3) of 
Theorem (3A), (e$R/X) has an irreducible right i^-submodule T. Since e^R 
is an ideal direct summand of R, T = Tep is an irreducible (epR) -module. 
From 0 = TP = TepP, T is an irreducible module for the simple ring 
(epR/epP), so that T ~ F/H. Since Gp is a faithful (e^R/X)-module, there is 
an element x G Gp such that xT 7e 0. Clearly, 

xT^T^ F/H. 

Since M Ç^ H Çl F ÇL G, a non-zero homomorphism of F/M into G exists. 
M is not rational in G. 

THEOREM (5C). Statement (1C) of the main theorem implies (IB). 

Proof. This is clear from Theorem (5B) and the theorem obtained from 
(5B) by interchanging the words right and left. 

Remark (5D). The first four statements of the main theorem are equivalent 
by (5C) and the concluding sentences of §§ 2, 3, and 4. 

6. Conclusion of the proof of the main theorem. For a ring R (with 
radical P) over which every right module is rationally complete, the require
ments of (IE; left) were deduced, incidentally, in Theorems (3K), (30), 
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and (3Q) and Remark (3P). R is a left perfect ring and the full set of primitive 
orthogonal central idempotents of the semi-simple ring R/P can be lifted to 
central orthogonal idempotents of R whose sum is the identity of R. Thus 
(IB; right) implies (IE; left) and we have the following result. 

THEOREM (6A). (IB) of the main theorem implies (IE). 

Definition and Remark. For a ring with identity, R/(rad R) is a division 
ring if and only if the non-units of R form an ideal (6, p. 56 and p. 58, 
Proposition 1). Such a ring is called a completely primary ring. 

Remark. As mentioned in Remark (3P), a ring having nil radical is an SBI 
ring. From (6, p. 56, Theorem 1 and p. 59, Theorem 3) we record the following 
result. 

THEOREM (6B). Let T be an SBI ring such that T/(rad T) is a simple artinian 
ring. Then T is isomorphic with an n X n matrix ring over a completely primary 
ring. The integer n and, up to isomorphism, the completely primary ring are 
unique. 

THEOREM (6C). (IE) of the main theorem implies (IF). 

Proof. We show that (IE; left) implies (IF; left). Let R be a left perfect 
ring with radical P and let e1} . . . , ek be central orthogonal idempotents of R 
such that Y^ei equals the identity of R and for each i (et + P) (R/P) ~ 
(eiR/etP) is a simple artinian ring. For i = 1, . . . , k, Rt = etR is an ideal, 
since et is central, and R is the direct sum of the Ru since {et} is a set of 
orthogonal idempotents whose sum is the identity of R. Since R is left perfect, 
P is left T-nilpotent by Theorem (3A). Since the radical of Rt is etP, it is left 
T-nilpotent, and i ^ / ( r a d i ^ ) is a simple artinian ring. Thus, Rt is a left 
perfect ring. By the remark preceding Theorem (6B), Rt is an SBI ring, 
i = 1, . . . , k. By Theorem (6B), there is a unique positive integer nt such 
that Rt is an nt X ?ii matrix ring over a completely primary ring Su which is 
unique up to isomorphism. Since St is a division ring modulo its radical, 
Si is left perfect if its radical / is left T-nilpotent. If / is not left T-nilpotent, 
there exists a sequence {Ui}, ut G / , such that the product U\U2 . . . um j* 0 
for every positive integer m. The left 7"-nilpotence of Jni is then contradicted 
by the sequence Uil, u2I, . . . , where I is the identity of (Si)ni. But this 
contradicts the fact that Rt is left perfect since (rad Rt) = Jni (6, p. 11). 
Thus, J is left T-nilpotent and Si is a left perfect, completely primary ring. 
Thus, ( IF; left) has been obtained from (IE; left), completing the proof of 
the theorem. 

PROPOSITION (6D). (IF) of the main theorem implies (1A). 

Proof. We shall obtain (1A; left) from (IF; left). We need to prove that a 
ring R is left perfect and, modulo its radical P , is simple artinian, given that 
R is an n X n matrix ring over a left perfect, completely primary ring S. If 
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J = ( radS), then by the definition of completely primary, S/J is a division 
ring. Since (rad R) = Jn (6, p. 11), R/P = Sn/Jn= (S/J)n is a simple 
artinian ring. Thus, by (3B), R has no infinite sets of orthogonal idempotents. 
R will be left perfect if every right i?-module has an irreducible submodule. 
By Proposition (3C), it is sufficient to show that R/X has non-zero right socle 
for every ideal X ^ R. I t is easy to see, for every matrix unit Etj, that 
kEij G X if k G S is a non-zero entry in a matrix belonging to X, so that 
X = Yn for some ideal F of 5, Y 9^ S. Since 5 is left perfect, S/ Y has an 
irreducible right ideal T by Theorem (3A). Then TEn + TEU + . . . + 
TEin = F is an irreducible right ideal of R/X (since, for i = 1, . . . , n and 
for any non-zero t £ T, tEu Ç fR if / is a non-zero element of F). Thus, R is 
left perfect and the proposition has been proved. 

Remark (6E). The first six statements of the main theorem are equivalent. 

Proof. By Remark (5D), the first four statements of the main theorem are 
equivalent and by Theorem (6A) any one of them implies (IE). By 
Theorem (6C), (IE) implies (IF), and by Theorem (6D), the first four state
ments of the main theorem are implied by (IF), completing the proof. 

(6F) Final steps of the proof of the main theorem. We have just proved the 
equivalence of statements (1A) —(IF). Clearly, a ring R which satisfies these 
statements satisfies (1G): R is a right perfect ring and every right 7^-module 
is rationally complete. If a ring R satisfies (1G), then by the remarks at the 
beginning of this section, R is a left perfect ring and the full set of primitive 
orthogonal central idempotents of R/(rad R) can be lifted to orthogonal 
central idempotents of R whose sum is the identity of R. Since R is right 
perfect, (IE) holds, whence R satisfies the first six statements. Thus, the 
equivalence of statements (1A)-(1G) has been proved. By symmetry, the 
proof of the theorem is complete, since (1H) is the left analogue of (1G). 

7. Evidence of asymmetry. To obtain a view of left-right asymmetry, 
qua perfectness of rings and rational and corational completeness of modules, 
we mention some theorems which are implied by the results in §§ 2-6. 
Theorem (2D) states that no proper corational extensions by corationally 
complete right modules exist. Together with Theorem (5B), this implies the 
following theorem. 

THEOREM (7A). Let R be a left perfect ring over which every right module is 
corationally complete. Then every right R-module is rationally complete. 

(1C; left) is implied by (1A; left), which is implied by (IB; right) 
(Theorems (4A) and (3Q), respectively). Since, by the left analogue of 
Theorem (2E), ( ID; left) and (1C; left) are equivalent, we conclude that 
(IB; right) implies ( ID; left). 

THEOREM (7B). If every right R-module is rationally complete, then R is a left 
perfect ring and every left R-module is corationally complete. 
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(7A) and (7B) yield the following result. 

THEOREM (7C). If R is a left perfect ring over which every right module is 
corationally complete, then every left R-module is corationally complete. 

Remark. If it can be proved that the hypotheses of (7C) imply that the 
ring R is right perfect, then the rings of this paper are the left perfect rings 
over which every right module is corationally complete. This is an open 
question. 

(7D) Example of a ring over which every right module, but not every left module, 
is rationally complete.1 Let K be a field and let S be the ring of linear trans
formations on a vector space of countable dimension over K. Using matrix 
notation, let {Etj\ i > j \ generate over K a subalgebra P of S. Then P is nil 
and is the radical of the algebra R which P and the identity transformation 
generate over K. Since R/P is a field, P is the only maximal right or left ideal 
of R. We claim that P is a rational submodule of the left jR-module R. If, on 
the contrary, a non-zero homomorphism existed from the left module R/P to R, 
R would have an irreducible left ideal. This cannot be, since Px = 0, x Ç R, 
implies that x = 0. Thus, if x = Y,kjEiaj for some i, then Ei+itix = 
J^kjEi+i^j = 0 proving that k\ = k2 = . . . = 0 and x = 0. Obviously, x = 0 
can be proved if x is a K-sum of matrix units with varying first subscript. 

We next prove that R/X has non-zero right socle for every ideal X ^ R of 
R. I t is easy to verify that (for m — 1, 2, . . .) Pm is generated over K by 
{Eijli^j + m} and that the left annihilator L(Pm) is generated by 
{Etj\ 1 Sj^m,j<i} ; also, that L(P°) = 0, where P° = R. Evidently, P is 
the union of the L(Pm). Now, R/X is irreducible if X = P and we show that 
R/X has irreducible right modules when P properly contains X. Let m be 
the unique non-negative integer such that L(Pm) C X and L(Pm+1) Ç/_ X. 
Thus, for some t £ X,t£ L{Pm^), so that tP C L(Pm) Ç X. Thus, it + X)/X 
generates an irreducible submodule of the right i?-module R/X. As observed 
in Proposition (3C), every right i?-module then has an irreducible submodule. 
Furthermore, if T is an irreducible i^-module, then by Remark (3M), 
T == R/P, since P is the only maximal right ideal of R. If an .R-module M 
has a proper non-zero submodule N, then M/N and N have irreducible 
submodules which are i^-isomorphic with R/P. This proves that N is not a 
rational submodule of M. Every right i^-module is rationally complete. 

Remark. The ring of example (7D) does not satisfy (IB), proving that the 
rings of the main theorem are not those for which every right module is 
rationally complete. Nor are they the left perfect rings over which every left 
module is corationally complete, since the ring of example (7D) is such a 
ring by Theorem (7B). 

^his example is mentioned, without proof, in (1, p. 476). 
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