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Abstract

The state controllability for generalised dynamical systems with constrained con-
trol is discussed in this paper. The main results of the paper are the following:

(1) a necessary and sufficient condition of the state controllability in the sense of
control energy or amplitude constrained for generalised dynamical systems is
obtained;

(2) a control function u(t) is constructed such that
a) u(t) satisfies constrained energy or amplitude condition,
b) the state driven by u(i) moves from an arbitrary z(0~) = xo to z(T(xo)) =

0,
c) the trajectory driven by u(t) has no impulsive behaviour within (0,T(zo)]-

1. Introduction

A generalised dynamical system can be described by

Ex = Ax + Bu, (1.1)

where x e Rn, u € Rr, E,A E RnXn, B E Rnxr, E, A and B are constant
matrices, E is singular, E and A satisfy det\sE — A] ^ 0. Earlier works on
generalised dynamical systems were by Rosenbrock [6], [7] and Luenberger [4],
who mainly discussed the decomposition of systems and the structure of solu-
tions. Later, Verghese [8] and others introduced concepts of strong controlla-
bility, strong observability and testing criteria. Then Cobb [1], [2] searched for
state feedback, pole assignment, optimal regulation, and so on. Some literature
has indicated that generalised dynamical systems can be extensively applied to
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network and socio-economical systems (Rosenbrock [6], [7], Luenberger and Ar-
bel [5]). Discussions developed in those papers, however, were mostly for systems
with unconstrained control. It seems to the present authors that the problem of
constrained control should be considered in many cases. In this paper, a prob-
lem of state controllability for generalised dynamical systems with constrained
control is emphasised. A constrained-control function is constructed which leads
to the state travelling from arbitrary a;(0~) = XQ to x(T(xo)) = 0, and is such
that the trajectory has no impulsive behaviour within (0,T(a;o)]-

2. State controllability for generalised dynamical systems
with constrained control

System (1.1) can always be restricted system equivalent (RSE) to a system

described by Rosenbrock:

(xt =Aj.xi+Biu (2.1)
' I Nx2 = x2 + B2u, (2.2)

where x\ € Rni, x2 G i?"2, n\ + n2 = n, u € Rr, Ai, Bi, B2 and N are constant
matrices with suitable orders, N is nilpotent and its index of nilpotency is v.
RSE means there exist nonsingular P, Q 6 RnXn such that

P(sE - A)Q =

PB =

Al

••ni

(2.3)

Obviously, RSE can be constructed by two transformations:
i) applying a row transformation P of full rank to system (1.1);
ii) applying a full rank transformation Q to the state x of system (1.1).

It is clear that the above transformations do not affect the dynamical structure
of system (1.1). Therefore, we can consider the state controllability of system
S instead. System E comprises two subsystems which are not coupled. The
linear system (2.1) is called the slow subsystem and (2.2) whose natural response
contains impulsive behaviour is called the fast subsystem.

DEFINITION 2 . 1 . For a given generalised dynamical system (1.1) with control
energy (or control amplitude) constrained by L, a state i 0 is controllable in the
sense of control energy (or control amplitude) constrained, if there exist a finite
T(XQ) and a control u(t), such that

0)
uTudt < L (2.5)
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or

\\u\\ =
\

(2.6)

where (uiU2-..ur)
T = u, and u(t) leads the state moving from x(0 ) = io

to x(T(xo)) = 0, and the trajectory x(t) has no impulsive behaviour within
(0,T{XQ)\. System (1.1) is called state controllable, in the sense of control en-
ergy (or control amplitude) constrained, if any state is controllable in the sense
of control energy (or control amplitude) constrained.

LEMMA 2.1 . [9] Let

Wk = I + CCT + --- + Ck-1(Ck-1)T (2.7)

where C € C n x n , andlT is conjugate transposed matrix of C. Then

W^1 -> 0 as k — oo

if and only if all eigenvalues ofC do not lie inside the unit circle, i.e. \\j(C)\ > 1,
j = l ,2 , . . . ,n .

LEMMA 2.2. [9] A linear system described by

x = Ax + Bu (2.8)

is state controllable in the sense of control energy (or control amplitude) con-
strained, if and only if

i) rank[SAB... An~1B) = n, where n is the dimension of the state;
ii) none of the eigenvalues of A has a positive real part.

This lemma shows that for linear systems, the state controllability subjected
to constraint (2.5) or (2.6) is equivalent to conditions i) and ii) in the lemma.

LEMMA 2.3. If system (2.1) is state controllable, let

( tm{i-t)m te[o,i]

{t-i)m(2-t)m te[i,2]
fm,no(t) = (2.9)

{t-no + l)m(n0 - t)m te [n0 - 1, n0],

where m, no are natural numbers. Then the matrix defined by
/•no

3 > l 1 0 ] T d t (2.10)
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is positive definite, and there exist positive ai(m), /3i(m), i = 1,2, such that

ai(m)W(fm<no,0,n0) < W(f2m,no,0,no) < /?i(m)^(/m,no,0,no) (2.11)

a2{m)W{n0) < W{fm,no,0,no) < /?2(m)^(no) (2.12)

where
no —1

W(no) = £ [exp(-A1i)][exp(-A1i)]
T. (2.13)

»=o

PROOF. Omitted.

If a generalised dynamical system E is described by (2.1) and (2.2), the initial
state is x(0~) = [x\0 X2o)T> *ne control u has up to (t> — 1) continuous derivatives,
and

«(<)) = tiW(O) = • • • = ^ " - ^ ( O ) = 0, (2.14)

where u^(-) denotes the zth derivative, then the solution of system E is of the
form (Cobb [1]):

exp[Ai{t - s)]Biu(s)ds, (2.15)/
Jo

E ^5a«W(0 (2.16)
i=0 t=0

where (5(t) is the Dirac-6 function. From (2.16), although X2(t) contains an
impulse at t = 0, it can be seen that the value of x<z{t) only depends on u^(t),
i = 0 , 1 , . . . , v — 1, as t > 0. Therefore, x{i) driven by u(t) can be transferred
from x(0~) = [x\Q X^QY to a;(T(a;o)) = 0 without any impulsive behaviour within
(0, T{XQ)\, provided that u(t) leads x\(t) moving from iio to xi(T(xo)) = 0, u(t)
is sufficiently smooth and uW(0) = 0, u ( l ) ( r( i o)) = 0, i = 0 , 1 , . . . , v - 1.

THEOREM 2 .1 . A generalised dynamical system (1.1) is state controllable in
the sense of control energy constrained, if and only if its RSE system E satisfies

i) the slow subsystem (2.1) is state controllable:
ii) the slow subsystem (2.1) has no eigenvalue whose real part is positive.

PROOF. Necessity. Since the state controllability of system E in the sense
of control energy constrained contains that of slow subsystem (2.1), applying
Lemma 2.2 to the slow subsystem (2.1) gives the necessity.

Sufficiency. Let the initial state x(0~) = [x\0 x\$'. The control function u[t)
can be constructed as the following:

W-1(/1,,no,0>no)*io, (2-17)
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where fv,no(t) is defined as in (2.9), v is the nilpotency index of matrix N,
W(/j/,noiO,no) is defined as in (2.10) and no is undetermined. It is clear that
u(t) has up to (v — 1) continuous derivatives, and satisfies

Hence, from (2.15) and (2.16), we know that i(no) = 0, and x(t) does not contain
any impulsive behaviour within (0,n0], when system S is driven by u(t).

Now let us investigate the control energy. Without loss of generality, let
iio ^ 0. Notice that

/•no /-no

I U Uut — IJQKK \Ji/,noi "> ^ 0 / I Ju.fi

Jo Jo
W-1(U,no,0,n0)x10 (2.19)

and
i/,noVc/ — J2u,no\1)- yi.M)

Considering (2.11)-(2.13) and (2.19)-(2.20) gives

uTudt
/o

<Pi{v) t raced" 1 )

All eigenvalues of exp(—A\) are obviously located on or outside the unit circle,
since eigenvalues of Ai have no positive real part. Applying Lemma 2.1 to (2.13),
it follows that VK-1(no) —* 0, as no —• oo. Equivalently, trace W"1 (no) —• 0, as
no —» oo. Therefore, for the given limited value L of the control energy, we can
determine a sufficiently large no, such that

t r aced" 1 (no) < aa(i/)J7(||sio||9/3i(i0). (2.22)

Thus

\Tudt<L, (2.23)

Jo

f
Jo
lo

that is, the energy of u is constrained by L.

LEMMA 2.4. If system (2.1) is state controllable, let

W{m,T,ni) • £ tt
kTm k + lT-tme -AtB dtX

exp A1tB1dtj

,-v x kT

r(*+i)T

(2-24)
IkT

where nj is the dimension of the state of system (2.1), m is a natural number,
and T>0, and let

(2.25)
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where

1
/i,Aj are eigenvalues of Ai with different imaginary parts

oo

e2 = I J e2(m), (2.27)
m=l

e2(m) = \e- I tm(0 ~ t)m expiXjt) dt = 0, Xj is an eigenvalue of At 1 ,

(2.28)

e is a denumerable set, and W{m,T,ni) is positive definite, as T €
(0, oo) - e.

PROOF, i) e is denumerable.
ei is obviously denumerable, since <r(Ai), the set of eigenvalues of Ai, is finite.

Denote
m ( ^ ~ 0 m exp(A,-«) d«. (2.29)

yo
Since

<Ta+1'l>m,j{8)/d0m+1 = mWm expiXjO), (2.30)

then tl>m,j(O) is of the form

(2.31)

where ^?i(^) and y?2(̂ ) are polynomials with complex coefficients, and they are
not identically vanishing. Equation (2.31) says that the set of zeros of tpmj(0)
is at most denumerable. Therefore, ei(m) is denumerable, and so are ei and e.

ii) W(m, T, n\) is positive definite, as T G (0, oo) — e.
Let

G = exp(^iT), (2.32)

fT

H0{m)= < m ( r -« ) m exp( J 4 1 0^ , (2.33)
Jo

H{m)=H0{m)Bu (2.34)
Also, W(m, T, ni) can be rewritten in the form

m-i
W(m,T,n1)= Y, G-(k+VH(m)HT{m)[G-(k+1)]T. (2.35)

fc=0

It is obvious that the state controllability of the linear discrete system [G, H(m)]
guarantees that W(m, T,n\) is positive definite.
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Now let us investigate the state controllability of [G, H(m)]. Noticing that
the product of Ho(m) and G is commutative, we have

rabk[H{m) GH{m).. .G^^Him)} = rank Jfo(m)[Bi GB1...G
ni~1Bi].

(2.36)
Since system (2.1) is state controllable and T e (0, oo) — e, the linear discrete
system [G, Bi] is state controllable (Guan and Chen [3]), that is,

rank[B1Gfl i - - -GB l - lBi]=n1 . (2.37)

From (2.27) and (2.28), and noticing that

det H0{m) = det / tm{T - t)m exp(yM) dt
Jo

"i r

= 17/
T

tm{T-t)mexp{Xjt)dt XjEaiAx), (2.38)

Ho{m) is full rank, as T e (0, oo) — e%. Thus, system [G, H(m)] is state control-
lable, as T € (0, oo) — e, and W(m,T, rii) is positive definite, as T e (0, oo) — e.
The lemma now has been proved.

LEMMA 2.5. Suppose system (2.1) is state controllable, n\ is the dimension
of the state of system (2.1), and e is defined as in (2.25)-(2.28), T € (0,oo) - e.
Let

£-1 f r(k+l)T
W(m,T,P) = J2\ (

tTn \JkT
-{k+l)T

(2.39)
/fcT •F

) = ^ exp(-A1m1T)[exP(->l1m1r)]T, (2.40)
»=o

w/iere P = niTV, iV is a natural number. Then W(m,T,P) is positive definite,
and there exist a(m,T), 0(m,T) > 0, such that

a{m,T)W(N,T) < W{m,T,P) < P{m,T)W[N,T). (2.41)

PROOF. Omitted.

THEOREM 2.2. A generalised dynamical system (1.1) is state controllable
in the sense of control amplitude constrained if and only if its RSE system E
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satisfies
i) the slow subsystem (2.1) is state controllable;
ii) the slow subsystem (2.1) has no eigenvalue whose real part is positive.

PROOF. Sufficiency. Choose T from (0,1) — e arbitrarily, where e is defined
as in (2.25)-(2.28). Denote

H = H{u)= I
Jo

(2.42)

where v is the nilpotency index of matrix TV. For the initial state x(0~) =
[x\0 X^QY, set the control function:

uo{t) te[0,T]

u(t) =
Ul(t) t€[T,2T)

(2.43)

*P_1(t) *e[(P-i)T,PT]

uk(t) = -(t - kT)u((k + 1)T - t)uHT{exp[-A1(k + l j T ^ ' W ^ T , P)x10

te[kT,(k + l)T], k = O,l,...,P-l, (2.44)
where W(v,T,P) is defined as in (2.39), P = niN, and N is undetermined. It
is clear that u(t) has up to (y - 1) continuous derivatives, and that

u(t ) (0) = «W (T) = • • • = u w (PT) = 0 i = 0 ,1 , . . . , v - 1. (2.45)

Notice

expf-^A; + 1)T)H = exp[-Ai(A; + 1)T] / t"{T - t)"exp[>li(r - t )52 dt
Jo

= I {t - kTy((k + l)T - ty exp{-A!t)Bi dt
JkT

(2.46)
p-i

J2 exp[-vi1(* + l)T]/f//T{exp[->li(/c + 1)T]}T = W(v,T,P), (2.47)

and the solution expressions (2.15) and (2.16) for the system E. Hence, driven
by u(t), the state x(t) of system E is zero at t = PT, and x(t) does not contain
any impulsive behaviour within (0,PT].

Now we are in the position to estimate u(t), as t € [0, PT]. Without loss of
generality, let Xio ̂  0. From (2.43) and (2.44), it is obvious that

\\u(t)\\2 = IMOH2

= {t- kT)2u{{k + 1)T - t)2v\\HT{exp\-Ai{k + l)T)}TW~l{i>,T,P)ziO||2

te[kT,{k + l)T], k = 0,l,...,P-l. (2.48)
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Since T € (0,1) - e, we have

{t - kT)2u{{k + 1)T - t)2" < (T/2)4" < 1. (2.49)

Therefore, from (2.47)-(2.49), and (2.41), we obtain

\\u(t)\\2 < 1 2

fc=0

= x\0W-1{v,T,P)xw < trace^-^ly.

< trace ly-1 (AT, T)| |x10| |2/a(^r). (2.50)

Eigenvalues of exp(—AitiiT) are located on or outside the unit circle, since
eigenvalues of Ai have no positive real parts. Applying Lemma 2.1 to (2.40)
gives trace W~1(N,T) —» 0, as N —> oo. Therefore, for the given limited value
L of control amplitude, we can determine a sufficiently large AT, such that

traceW~l{N,T) < L2a(jy,r)/| |i10| |2. (2.51)

Thus
||«(«)ll<i te[0,PT\, (2.52)

that is the amplitude of u is constrained by L. The sufficiency now has been
proved.

The necessity is trivial.
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