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A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM FOR
NONLINEAR MINIMAX PROBLEMS

QlNG-JIE HU AND JU-ZHOU Hu

In this paper, an active set sequential quadratic programming algorithm with non-
monotone line search for nonlinear minmax problems is presented. At each iteration
of the proposed algorithm, a main search direction is obtained by solving a reduced
quadratic program which always has a solution. In order to avoid the Maratos effect,
a correction direction is yielded by solving the reduced system of linear equations.
Under mild conditions without the strict complementarity, the global and superlinear
convergence can be achieved. Finally, some preliminary numerical experiments are
reported.

1. INTRODUCTION

It is well known that many engineering design problems can be expressed in a min-
imax form as follows

(1.1) (P) min{F(s) | x E Rn},

where F(x) = max{/,(i), j € / } with / = {1,2,... ,m}, which enables the designer to
minimise the maximum violation of design specifications, (see [11, 16,18, 20]). Since the
objective function F(x) contains the max operator, it is continuous but nondifferentiable
even when the fi{x),i = l , . . . ,m, are all differentiable. In particular, at points where
the max is attained in two or more functions fi(x), F(x) is nondifferentiable. So, the
classical methods for smooth optimisation problems may fail to reach an optimum if they
are applied directly to the nonlinear minmax problem.

Many of the schemes that have been proposed for solving minimax problems are
based on an equivalent translation of the original problem (1.1) as follows

(1.2) (P') min{j/| (x,y)eBn+1:fj(x)^y, j 6 /} ,

but there are drawbacks to use the form (P') directly to obtain a solution of (1.1) since
some properties of the primal problem may be thrown away (see [15]).
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Obviously, the Karush-Kuhn-Tucker conditions of (1.2) can be stated as follows

Xj(fj{x) -y) = 0, j € /,

and these relationships are equivalent to

(1.3) ^AjV/i(x)=0, £ > = 1; Xj(fj(x)-F(x))=0, Xs^O,j€l.
jei jei

So, a point x 6 R1 is called as stationary point of (P) ([5]) if there exists a vector
A = (Xj,j € / ) such that (1.3) holds, where A is said to be multiplier vector.

Since the sequential quadratic programming method has satisfactory convergence,
it is one of the most effective algorithms for solving nonlinearly constrained optimisation
problems and it is studied widely and deeply, (see [10, 12, 8, 7, 17, 4]). So several
authors have extended the popular sequential quadratic programming scheme to the
minimax problems (see [1, 9, 14, 13, 21, 22]). Global convergence is usually ensured by
means of a suitable line search. Based on the equivalent relationship between the Karush-
Kuhn-Tucker point of (P') and the stationary point of (P), many algorithms focus on
finding the stationary point of (P), namely solving (1.3). Zhou and Tits proposed an
algorithm ([23]): the search direction is generated by solving two quadratic programs,
and avoiding the Maratos effect by means of nonmonotone line search. Unfortunately,
it obtains only two-step superlinear convergence and needs the strict complementarity
(namely the multiplier Xj > 0 for j satisfying fj{x) = F(x)) which is rather difficult for
testing. Recently, some sequential quadratic programming algorithms have been proposed
to overcome the shortcoming of the two-step superlinear convergence and obtain one-step
superlinear convergence, such as [21], but their assumptions are rather strong: (1) the
iteration sequence {xk} generated by the algorithm is assumed to satisfy lim xk = x*\

k-*oo

that is, the algorithm is assumed to be strongly convergent; (2) the step size is supposed
to always equal one after finite iterations; (3) the sufficient condition for the superlinear
convergence is rather strong.

In this paper, we present an improved sequential quadratic programming algorithm
for the minimax problem (1.1). In this algorithm, a main search direction is obtained by
solving a quadratic program which always has a solution. In order to avoid the Maratos
effect, unlike ([23]), a correction direction is yielded by solving a system of linear equa-
tion. Under mild conditions without the strict complementarity, global and superlinear
convergence can be obtained. Finally, some preliminary numerical experiments are re-
ported.

The balance of this paper is organised as follows. The algorithm and its properties
are presented in Section 2. Global and superlinear convergence are analysed in Section 3
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and Section 4, respectively. Numerical results are reported in Section 5. Section 6 is
devoted to final remarks.

2. ALGORITHM

For convenience of presentation, for a given x e .ft", we use the following notation
throughout the remainder of this paper

(2.1) f(x) = (fj(x),jeI)T, I(x) = {j€l:fi(x) = F(x)},

9j(x) = Vfj(x),j 6 / , g(x) = (9j(x),j € /).

We assume that the following assumptions hold in this paper.

(HI) Functions fj (j £ I) are all at least first order continuously differentiable.

(H2) Vectors I ( 9i^X' j,j € I{x) \ in iF*+1 are linearly independent.

REMARK 1. It is easy to prove that (H2) is equivalent to the following condition: For
each t € I{x), vectors {gj{x) - gt(x),j € I(x) \ {£}} are linearly independent. This can
also be illustrated from the following example: Let I{x°) = {1,2,3} and

* ( * » ) = ( I ) , 92(*°) = ^ ) ' ^ ° > = ( l )

for some x° e Rn. Obviously,

are linearly independent and {gj(x°) — gt(x°),j € I{x°) \ {t}} are linearly independent
for each t e /(x°).

Let i* e i f be a given iteration point. Based on (H2), we use the following pivoting
operation to generate an e-active constraint subset Ik D I(xk) such that the matrix

Ak A / / 9j{x ) \_.. ̂  I \ ig o f M 1 c o l u m n r a n k

PIVOTING OPERATION POP.

STEP (i) Select an initial parameter e = e^-i > 0.
STEP(U) Generate the e-active constraint subset 7(i*,e) and matrix Mk by
(2.2)

I(xk,s) = {j€l: - e ^ /,-(**) - F(xk) < 0 } , ^

STEP(iii) If det(Af^Affc) ^ e, set /* = J( i* ,e) , Ak := Mk and e* = e, stop; otherwise
set e := (l /2)e and repeat Step (ii).
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In order to show some beneficial properties of the pivoting operation above, which is
helpful for discussing the convergence of our algorithm, we present the following lemma,
and its proof is similar to [3, Lemmata 1.1 and 2.8], so it is omitted here.

LEMMA 2 . 1 . Suppose that (HI) and (H2) hold, and let xk 6 Rn. Then

(i) tie pivoting operation can be finished in a finite number of computations,

that is, there is no infinite times of loop between Step (ii) and Step (iii);
(ii) if a sequence {xk} of points has an accumulation point, then there exists

an e > 0 such that the associated sequence {ek} of parameters generated

by pivoting operation satisfies ek ^ e for all k.

For a given iteration point xk € R1 and a symmetric positive matrix
Hk = H(xk) (How to choose Hk will be discussed much later), we introduce a new
quadratic program as follows:

(2.3) minimize z + -dTHkd

such that fj{xk) + gj(xkfd - F(xk) < z, j£ Ik.

To describe the main characters of (2.3), we give two lemmas as follows.

LEMMA 2 . 2 . Suppose that the matrix Hk is symmetric positive definite. Then

(i) (2.3) ias a unique optimal solution;

(ii) (zk, d
k) is an optimal solution of (2.3) if and only if it is a Karush-Kuhn-

Tucker point of (2.3).

It is not difficult to finish this proof, and is omitted.

LEMMA 2 . 3 . Suppose that the assumptions (HI) and (H2) hold, and (zk,dk) is
an optimal solution of (2.3). Tien

(i) zk + (l/2)(dk)THkd
k ^ 0, zk£0; dk = 0&zk = 0;

(ii) dk = 0 •** xkis a stationary point of (P);

(iii) ifdk 7̂  0, tien zk < 0, moreover, dkis a descent direction of F(x) at point
xk.

PROOF: (i) From the fact that (0,0) is a feasible solution of (2.3) and Hk is positive
definite, one has

zk + \{dk)THkd
k £ 0, zk^ -±{dk)THkd

k ^ 0.

If dk = 0, then from the constraints of (2.3) we have

F(xk)-fj(xk) + zk^0, jelk.

In view of <j> ^ I(xk) C Ik, one has zk ^ 0. Since that zk ^ 0, we have zk = 0.
Conversely, if zk = 0, then {l/2)(dk)THkd

k = {l/2)(dk)THkd
k + zk ^ 0, taking into

account the positive definite property of Hk, one has dk = 0.
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(ii) In view of Lemma 2.2 (ii), we know that the optimal solution (zk, d
k) of (2.3) is

a Karush-Kuhn-Tucker point of (2.3), then there exists a corresponding Karush-Kuhn-
Tucker multiplier vector A* = (Xk,j 6 h,0i\ik) such that

(2-4) \fj(x
k)+gj(x

k)Tdk-F(xk)-zk^Q, j€

(/>(«*) + 9Mk)Tdk - F(xk) - zk)X
k = 0, j e Ik,

X$2 0,j€lk; Aj = 0, jel\lk.

If d* = 0, then we get zjt = 0 from Lemma 2.3 (i), and we further have from (2.4)

(2.5)

Hence i* is a stationary point of (P) from (1.3).
Conversely, if x* is a stationary point of (P), then zk •= 0 together dk := 0 satisfies (2.4)
and (0,0) is the unique optimal solution of (2.3) from Lemma 2.2. Therefore dk = 0.

(iii) Using zk + (l/2){dk)THkd
k ^ 0,d* ^ 0 and the positive definite property of

the matrix Hk, we know that zk < 0 holds. Furthermore, in view of the constraints of
(2.3), one gets

9j(x
k)Tdk F(xk) - fi{xk) = zk < 0, j e

On the other hand, it is easy to know that the directional derivative F'(x; d) of F(x) at
point x along direction d can be expressed as

(2.6)

Thus

(2.7)

F'(x; d) = = max{gj(x)Td,

F'(xk;dk)^zk<0,

and dk is a descent direction of F(x) at point x*. The whole proof is completed. D
Now we give the details of our algorithm as follows.

ALGORITHM A.

Parameters: e-i > 0, r € (2,3), a € (0,0.5), 0 6 (0,1), 7 < 0.
Data: x° G if, a symmetric positive definite matrix Ho € iP*xn (Usually, Ho is chosen as
a unity matrix).
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S T E P 0. Initialisation: Let k := 0.

S T E P 1. Pivoting operation: Set parameter e = ek-i, generate an active constraint set
Ik by the pivoting operation and let £> be the corresponding termination parameter.

S T E P 2. Quadratic programming: Solve (2.3) to get a solution (zk,dk) with the corre-
sponding Karush-Kuhn-Tucker multiplier vector A*t = (A*, j € Ik). If dk = 0, then xk is
a stationary point of problem (P) and stop; otherwise, enter Step 3.

S T E P 3. Generate a correction direction dk: Compute direction dk by solving the fol-
lowing system of linear equations

(2.8) — -U l m f °
_ jyj [-\\dk\\re-fk

where

and fk = (%,j € /*), / / = fj(x* + dk) - fj(x
k)-gj(x

k)Tdk, j € Ik. If ||d*|| ^ ||d»||, set
dk = 0.

S T E P 4. Perform line search: Compute the step size tk, the first number t of the
sequence {1, /3, p"2,...} satisfying

(2.9) F{xk + tdk +1 2 ^ ) < max F(xk~l) - at(dk)THkd
k.

STEP 5 Update: Generate a new symmetric positive definite matrix Hk+\ using the
formula proposed by [2], set xk+1 = xk + tkd

k + t\dk and k := k + 1. Go back to Step 1.

To show that the algorithm is well defined, we introduce the following lemma.

LEMMA 2 . 4 . Tie line search in Step 4 can be carried out ifdk jt o, that is, there
exists ik>0 such that (2.9) holds.

PROOF: By contradiction, we assume that (2.9) does not hold for A = ft,
j = 1,2,..., then from (2.7), (2.6), a € (0,0.5), /? 6 (0,1) and Lemma 2.3 (i), we
have

Km . }im
j-foo p3 j-mo

^ ,. F(xk + fid"
^ lim —

j-too pj

> - lim a(dk)THkd
k > -\{dk)THkd

k > zk,

which is a contradiction. The proof is completed.
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3. G L O B A L C O N V E R G E N C E

In this section, we shall establish the global convergence of the proposed algorithm.
If the solution dk generated at Step 2 equals zero, then Algorithm A stops at x*, and
from Lemma 2.3 (ii) we know that xk is a stationary point of the problem (P). And if
dk ^ 0, one knows from Lemma 2.3 (iii) that dk is a descent direction of F(x) at point
xk.

We further assume that an infinite sequence {x*} of points is generated by Algorithm
A, and the consequent task is to show that every accumulation point x* of {x*} is a
stationary point of problem (P). Firstly, the following assumption is necessary in the rest
of this paper.

(H3) The sequence {Hi,} of matrices is uniformly positive definite, that is, there exist
two positive constants a and b such that

6||d||2, Vd e BT, VJfc.

(H4) For any x° € i?n, the set fi = {x € Rn : f(x) ^ /(x0)} is compact.

In the rest of this paper, we suppose that x* is a given accumulation point of {x*},
therefore, in view of Ik being the subset of the fixed and finite set / and Lemma 2.1,
we may assume without loss of generality that there exist an infinite index set K and a
constant e > 0 such that

(3.1) 3*-+x; I(xk) = I.?<t>, Ik = I',\/keK; ek>e,Vk.

LEMMA 3 . 1 . ([23]) Tie sequence {xk} is bounded and tie sequence{tkd
k} and

{xk+1 — x*} bofci converge to zero.

LEMMA 3 . 2 . Suppose that the assumptions (H1)-(H3) iold. Tien

(i) the sequences {zk, k e K}, {dk, k e K} and {dk, k G K) are all bounded;

(ii) lim dk = lim dk = 0, lim zk = 0.

PROOF: (i) Due to the fact that (0,0) is a feasible solution of (2.3), combining
assumption (H3) and the constraints of (2.3), we have

0 > zk + \{dk)THkd
k > fj(xk) + 9j(x

k)Tdk - F(xk) + \{dk)THkd
k

= 9i(xkfdk + \{dk)THkd
k > -\\9Axk)\\ • \\dk\\ + \a\\dk\\\ Vj e /(**), V*.

These inequalities show that {zk, k G K} and {dk, k £ K} are all bounded. Taking into
account the definition of dk at Step 3 of Algorithm A, we can conclude that {dk, keK}
is bounded.

(ii) Similar to the proof of [23, Theorem 3.1], we can prove lim dk = 0. This shows

that conclusion (ii) is true. D
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LEMMA 3 . 3 . The whole multiplier sequence {A* = (A*t, 0/\/J} is bounded.
m

PROOF: From (2.4) we get XZ A* = 1 and A* ^ 0, j e /. Thus sequence {A*} is
. 7 = 1

bounded. D
Now, it is sufficient to establish the following globally convergent theorem for the

proposed algorithm.

THEOREM 3 • 1 . Suppose that the assumptions (H1)-(H4) hold, then the pro-
posed Algorithm A either stops at a stationary point of problem (P) in a finite number of
iterations, or generates an infinite sequence {xk} of points such that each accumulation
x* of {x*} is a stationary point of (P).

The proof is similar to the one of [23, Theorem 3.1].

4. RATE OF CONVERGENCE

Firstly, we give a proposition as follows, which would be useful in the rest discussions.

PROPOSITION 4 . 1 . Suppose that the assumptions (HI) and (H2) hold. Then
the multiplier vector corresponding to a stationary point x of (P) is unique.

PROOF: Suppose that A, /x are two multiplier vectors corresponding to a same sta-
tionary point x. Then we have from (1.3)

T, A, (9i{1£)) = ( ° ) , £ \ ( \ A Tl - 0
- l ~ I _ i ' A'\'(Z) - W\/<2) = °-

These two equations give £ (Jij-Xj)\ m ' = 0. Then A = Ji follows from (H2). D
j€/(») V - 1 /

THEOREM 4 . 1 . Suppose that the assumptions (H1)-(H4) hold. Then

lim dk = lim 31 = 0, lim zk = 0.
k—•<» fc->oo k—K»

The proof is similar to the one of [23, Theorem 3.1].
In order to obtain the superlinearly convergent rate of the proposed algorithm, from

Proposition 4.1 above, we further suppose that the following assumption holds.
(H5)

(i) The functions /j(x) {j € /) are all twice continuously differentiable for any

(ii) The sequence {x*} generated by Algorithm A possesses an accumulation
point x* with the corresponding unique multipliers fj,* (by Theorem 3.1, x*
is a stationary point of problem (P)), such that the stationary point pair
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(x*, //*) of problem (P) satisfies the following strong second-order sufficiency
conditions for some index t0 e /+

cFVlxL(x\ »')d > 0, Vd e i?" : d ± 0, (9j(x*) - fleo(x*))Td = 0, j e /.+,

where

/.+ = {i e i : M* > o}.
jtit

REMARK 2. Since the assumption (H5) above does not include the so-called strict com-
plementary condition, namely /zj > 0 for all j € I(x*), which is assumed to be hold in
assumption in [23, A5] and [22, Assumption 3.4], it is a weaker hypothesis.

Now we prove that x* is an isolated stationary point of (P) under certain conditions.

LEMMA 4 . 1 . Suppose that assumptions (H2) and (H5) hold. Then x* is an
isolated stationary point of (P).

The proof is similar to the one of [6, Theorem 1.2.5].

THEOREM 4 . 2 . Suppose that the assumptions (H2)-(H5) hold. Then
lim x* = x*.

fc—KX>

P R O O F : From Lemma 4.1, we know that x* is an isolated stationary point of (P).
Furthermore, one can conclude x* is an isolated limit point of {x*} and this together
with Theorem 4.1 (ii) implies lim xk = x* (see [6, Theorem 1.1.5]). D

LEMMA 4 . 2 . Under all the above-mentioned assumptions, when k is sufficiently
large, the matrix

. , */ \Hk At]

is nonsingular, furthermore, there exists a constant C > 0 such that IIM^H < C.

The proof of Lemma 4.2 is similar to that of [6, Lemma 2.2.2], and is omitted.

LEMMA 4 . 3 . Suppose that the assumptions (H2) and (H3) hold. Then \\dk\\

PROOF: Taking into account Taylor expansion, the definition of /* and Theorem
4.1 (i), we obtain

J} = /,(** + dk) - /,(**) - 9j(x
k)Tdk = O(||d*||2).

So, by using the Lemma 4.2, r 6 (2,3) and (2.8), we have ||d*|| = O(||d*||2). D

LEMMA 4 . 4 . If assumptions (H2)-(H5) are all satisfied, then the Karush-Kuhn-

Tucker multiplier X1} of (2.3) corresponding to (zk,dk) satisfies lim A* = n' with
k-*oo
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PROOF: We assume by contradiction that lim A* ^ n*, then there exists an infinite
k-*oo

subset K and a constant a > 0 such that

In view of lim xk = x* and the boundedness of {A*}, there exists another infinite set

K' CK such that

(4.1) x * - > i ' , | |A*-Ai' | |^S, A* -> A*, Jfc e K' C tf.

Taking into account of Theorem 4.1 and passing to the limit k E K' and k -+ oo in (2.4),
we have

From above we know that (x*, A*) is a stationary point pair of (P), thus A* = n* (since
the multiplier vector is unique), which contradicts (4.1). So the whole proof is finished. D

In order to obtain the superlinearly convergent rate of the proposed algorithm, first
of all, we should guarantee that the step size unit is accepted by the line search for k
large enough. For this purpose, the following additional assumptions are necessary.
(H6) Suppose that | (?*,£(**, A*) - Hk)d

k\\ = o(\\dk\\).

THEOREM 4 . 3 . Under all above assumptions (H2)-(H6), tie step size in Algo-
rithm A always equals to one, that is, tk = l,ifk is sufficient large.

PROOF: It is sufficient to show that (2.9) holds for t = l. Firstly, in view of Taylor
expansion, Theorems 4.1, 4.2 and Lemma 4.2, we get

(4 2) fi(xk + dk + dk) = fi(x
k + dk)+9i(x

k+dk)Tdk + O(\\dk\\2)
1 ' ' = fi{xk + dk) + 9i(x

k)Tdk + O(\\dk\\3), i £ Jk.

Where Jk = {i\ /,•(**) + 9j(x
k)Tdk - F(z*) = zk).

From (2.8), we also have

/ -s. \
*I1T^ _. 7k „ t~k\T jfc _ ~ II jfcllT(4.3) Al (*\ = -\\dk\\Te - Jk, 9i{xk)T? = zk- \\dk\Y - f*, i e Jk C Ik.

Hence from (4.2), (4.3) and the definition of /*, we have

U{xk + dk + dk) = Mx" + dk) + zk- \\dk\r - fi" + O(\\dkf)
= zk- ||d*||T + /<(**) + 9i{xk)Tdk

= F(xk) + zk + zk- \\dk\\- + O(\\dk\\3),
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So
fi{j* + dk + dlc) = F(xk) + zk + zk- ||d*||T + O(\\dk\\3), j G Jk.

Thus from the two formulas above, we obtain

(4.4) fi(xk + dk + d><) = fj(xk + dk + d><) + O(||d*||3),Vi, j G Jk.

Now we shall show that for k large enough

F(xk + d* + <?) = Jj{xk + dk + 3') + O(||d*||3), Vj € Jk.

In view of I(xk + dk + dk) C I(x*), Jk Q I(x*) C Ik for k large enough, one has

F{xk + dk + d*) = maxj/iOr* + d* + ? ) , i € Jfc, /j(s* + dk + &), i e I(x')\Jk}.

CASE A. If there exists an index j0 € Jk such that F(xk + d* + dk) = /,-0(i* + d* + d*),
then from (4.4) we have

F(xk + dk + S') = fj{xk + dk + d1) + O(||d*||3),Vj € Jk-

CASE B. If fj{xk + dk + d*) < F( i* + d* + d*),Vj e Jk, then there exists an index
ji G /(x*) \JkQh\Jk such that

F(x* + d* + <?) = /,-, (s* + d* + d>=).

From Taylor expansion, we have

In view of (2.8), similar to (4.3), one gets

gji(x
k)Td?' = zk- \\dkf - Jk

x,jx G /(*•) \ Jk C Ik \ Jk.

Thus

/,-, (xk + dk + &) = fh (xk + dk) + zk- ||d*|r + fh(x
k) + 9jl (xk)Tdk

- \\dk\r + O(\\dk\\3)

that is
F(xk + dk + d1<)< F(xk) + zk + zk- ||d*|r + O(||d*||3), i G Jk,

combining
fi(xk + dk + dk) = Fix") + zk + zk- \\dk\Y + O(\\dk\\3),
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imply that
F{xk + dk + dle) = fj(xk + dk + &) + O(||d*||3),Vj € J*.

On the other hand, from Theorem 4.1 it is easy to get Jk C I(x') for k large enough.
Thus, from (2.4), Lemma 3.2, Taylor expansion and Lemma 4.2, we get

) , jeJk,

F(xk + dk + dfe)

(4.5) = £ XkF(xk + dk + dk) = Y, A*/i(xfc + dk + dk) + O(\\dk\\3)

d + d) + (

Also, from (2.4) and Lemma 4.2, one has

(4.6) £ \k
9j{^)T{dk + &) = -(dk)THkd

k + o(||d*||2),

o(\\dk\\2).

and

(4.7) £ Xkfj(xk) $ £ ^F(s*) = F{x*).

Q

So, from (4.5)-(4.7), (H3) and (H5), we have

F( i* + d* + <?=)

) - (d*)Ti/fcd* + \{dkf fc ^V2/>(x*))d* + o(\\dkf)
\eJk '

moax2F(x*-') - \{dk)THkd
k + \{dk)T(^ A*V2/>(**) - ^ ) d * + 0(||d*||2)

i£Jk '

fc-') - a(dk)THkd
k +(a-\) (dk)THkd

k + o{\\dk\\2)

-') - a(dk)THkd
k +(a- \)a\\(dk)\\2 + o(||d*||2).

Taking into account a € (0,1/2), we have for k large enough

F{xk + d* + d1) «; max F(a*~') - a(dk)THkd
k,

that is (2.9) holds for t = 1 and A: large enough. So the whole proof is finished. 0
To analyse the superlinear convergence, we further give a lemma as follows.
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LEMMA 4 . 5 . Suppose that the assumptions (H2)-(H5) hold and let

Rk = R(xk) = (9j{xk) - 9to(x
k),j e Jk\{t0}), Pk = En~ R.iRlR^Rl

Then for k large enough the following matrix

<^(ftV1*«r"-)*)
is nonsingular and there exists a constant c such that WG^W ^ c.

The proof of this Lemma is similar to the one of Lemma 4.2, and is omitted.

THEOREM 4 . 4 . Let the assumptions (H2)-(H6) be satisfied. Then the proposed
algorithm A is superlinearly convergent, that is, the sequence {xk} generated by algorithm
A satisfies

\\xk+l-x'\\ = o(\\x
k-x'\\).

The proof is similar to the one of [6, Theorem 2.2.3].

5. NUMERICAL EXPERIMENTS

In this section, we test some practical problems based on the proposed algorithm.
The numerical experiments are implemented on MATLAB 6.5, under Windows XP and
1000MHZ CPU. The (2.3) and (2.8) are solved by the Optimisation Toolbox.

A slight modification of the Broyden-Fletcher-Goldfarb-Shanno formula, which is
proposed in [2], is adopted in the algorithm.

r*n H H H k s k ( s k ) T H k y k { v k ) T , , > m

(5.1) tft+1=tffc _ _ _ _ + _ _ _ {k>0)

where

sk = xk+l -xk,yk=yk + ak(lks
k+ AkA

T
ks

k), lk = min{||d*||2,£}, £ € (0,1)

yk = VxL(xk+1,Xk) - VIL(xt,Afc), Ak = {9j(

VxL(x,A)= £ \i9i(x),

0, if (sk)Tyk>6\\sk\\\6z (0,1);

1, if 0 s

During the numerical experiments, we set

Ho = I, T = 2.5, 0 = 0.6, a = 0.45, e.x = 2.1,
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where / is an unity matrix. The test problem in Table 5.1 are selected from [21] and
[19]. The initial points for the selected problems are as same as the ones in [21] and [19].
The columns of Table 5.1 have the following meanings: The prob column lists the test
problem taken from [21] and [19]. The columns labelled Ni give the number of iterations
required to solve the problem. The columns labelled objective, dnorm and eps denote
the final objective value, the norm of dk and the step criterion threshold e, respectively.

The detailed information of the solutions to the test problems is listed in the following
Table 5.1. It can be seen from Table 5.1 that the proposed algorithm is effective, since it
can successfully reach a near-optimal point for all the tested problems. However, we also
observe that the numerical results reported here have more number of function evaluations
than those reported in [21], in that our algorithm needs the PIVOTING technique which
results in a reduction of the size of the quadratic programming subproblem.

Table 5.1 Numerical results
Prob

1
2

3

4

5

8

9

Vardi-3

Ni

10

31
11

22

15
23

34

10

objective
1.9522
2.0000

-44.0000
0.6164
3.5997

680.6301
24.3062
-48.0158

dnorm
4.2478e-006
1.9866e-015
8.2939e-006
8.7974e-006
1.8327e-006
1.5379e-006
2.5866e-006
4.5843e-008

eps

O.le-04
O.le-04
O.le-04
O.le-04
O.le-04
O.le-04
O.le-04
O.le-04

6. CONCLUDING REMARKS

In this paper, we propose a nonmonotone descent sequential quadratic program-
ming algorithm for nonlinear minimax problems. At each iteration, by solving a reduced
quadratic programming subproblem, a main search direction is obtained. Then we correct
the main search direction by solving a reduced system of linear equation. A nonmono-
tone line search is performed on F(x) to obtain the next iteration point. Under weaker
conditions without the strict complementarity, the global and one-step superlinear conver-
gent properties are obtained. Preliminary numerical results also show that the proposed
algorithm is effective.

REFERENCES

[1] A.R. Conn and Y. Li, 'An efficient algorithm for nonlinear minimax problems', Report
CS-88-41, University of Waterloo, Waterloo, Ontario, Canada.

[2] J.F.A. De, 0. Pantoja and D.Q. Mayne, 'Exact penalty function algorithm with simple
updating of the penalty parameter', J. Optim. Theory Appl. 69 (1991), 441-467.

https://doi.org/10.1017/S0004972700039745 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700039745


[15] Nonlinear minimax problems 367

[3] Z.-Y. Gao, G.-P. He and F. Wu, 'A method of sequential systems of linear equations with
arbitary initial point', Sci. China Ser. A 27 (1997), 24-33.

[4] S.P. Han, 'A globally convergent method for nonlinear programming', J. Optim. Theory
Appl. 22 (1977), 297-309.

[5] S.P. Han, 'Variable metric methods for minimising a class of nondifferentiable functions',
Math. Programming 20 (1981), 1-13.

[6] J.-B. Jian, Researches on superlinearly and quadratically convergent algorithms for non-
linearly constrained optimization, (Ph. D. Thesis) (School of Xi'an Jiaotong University,
Xi'an, China, 2000).

[7] J.-B. Jian and C.-M. Tang, 'An SQP feasible descent algorithm for nonlinear inequal-
ity constrained optimization without strict complementarity', Comput. Math. Appl. 49
(2005), 223-238.

[8] J.-B. Jian, K.-C. Zhang and S.-J. Xue, 'A superlinearly and quadratically convergent
SQP type feasible method for constrained optimization', Appl. Math. J. Chinese Univ.
Ser. B 15 (2000), 319-331.

[9] L. Luskan, 'A compact variable metric algorithm for nonlinear minimax approximation',
Computing 36 (1986), 355-373.

[10] D.Q. Mayne and E. Polak, 'A superlinearly convergent algorithm for constrained opti-
mization problems', Math. Programming Stud. 16 (1982), 45-61.

[11] D.Q. Mayne, E. Polak and A. Sangiovanni-Vincenteli, 'Computer-aided design via opti-
mization: A review', Automatica 18 (1982), 147-154.

[12] E.R. Panier and A.L. Tits, 'On combining feasibility, descent and superlinear convergence
in inequality constrained optimization', Math. Programming 59 (1993), 261-276.

[13] R.A. Polyak, 'Smooth optimization methods for minimax problems', SIAM J. Control
Optim. 26 (1988), 1274-1286.

[14] E. Polak, D.Q. Mayne and J.E. Higgins, 'A Superlinearly convergent algorithm for min-
imax problems', Proceedings of the 28th IEEE Conference on Decision and Control,
Tampa, Florida 1 (1989), 894-898.

[15] E. Polak, D.Q. Mayne and J.E. Higgins, 'Superlinearly convergent algorithm for min-max
problems', J. Optim. Theory Appl. 69 (1991), 407-439.

[16] E. Polak, D.Q. Mayne and D.M. Stimler, 'Control system design via semi-infinite opti-
mization: A review', Proceedings of the IEEE 72 (1984), 1777-1794.

[17] M.J.D. Powell, 'A fast algorithm for nonlinearly constrained optimization calculation',
in Numerical Analysis (Proc. 7th Biennial Conf., Univ. Dundee, 1977), Lecture Notes in
Math. 630 (Springer-Verlag, Berlin, 1978), pp. 144-157.

[18] S.E. Salcudean, Algorithms for optimal design of feedback compensators, (Ph.D. Thesis)
(Department of Electrical Engineering and Computer Sciences, University of California,
Berkeley, CA, 1986).

[19] A. Vardi, 'New minimax algorithm', J. Optim.Theory Appl. 75 (1992), 613-634.
[20] T.L.S. Wuu, Delightmimo: An interactive system for optimization-based multivariable

control system design, Ph.D. Thesis (Department of Electrical Engineering and Computer
Sciences, University of California, Berkeley, CA, 1986).

[21] X. Yi, 'The sequential quadratic programming method for solving minimax problem', J.
Systems Sci. Math. Sci. 22 (2002), 355-364.

https://doi.org/10.1017/S0004972700039745 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700039745


368 Q-J. Hu and J-Z. Hu [16]

[22] Y.H. Yu and L. Gao, 'Nonmonotone line search algorithm for constrained minimax prob-
lems', J. Optim. Theory Appl. 115 (2002), 419-446.

[23] J.L. Zhou and A.L. Tits, 'Nonmonotone line search for minimax problems', J. Optim.
Theory Appl. 76 (1993), 455-476.

Department of Information Institute of Applied Mathematics
Hunan Business College Hunan University
410205, Changsha 410082, Changsha
Peoples Republic China Peoples Republic of China
e-mail: hoJ0525@126.com.cn

https://doi.org/10.1017/S0004972700039745 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700039745

