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Abstract
The identification of functional processes taking place in microbiome communities augment traditional
microbiome taxonomic studies, giving a more complete picture of interactions taking place within the
community. While there are applications that perform functional annotation on metagenomes or meta-
transcriptomes, very few of these are able to link taxonomic identity to function or are limited by their input
types or databases used. Here we present MetaFunc, a workflow which takes RNA sequences as input reads,
and from these (1) identifies species present in the microbiome sample and (2) provides gene ontology
annotations associated with the species identified. In addition, MetaFunc allows for host gene analysis,
mapping the reads to a host genome, and separating these reads, prior to microbiome analyses. Differential
abundance analysis for microbe taxonomies, and differential gene expression analysis and gene set
enrichment analysis may then be carried out through the pipeline. A final correlation analysis between
microbial species and host genes can also be performed. Finally,MetaFunc builds an R shiny application that
allows users to view and interact with the microbiome results. In this paper, we showed howMetaFunc can
be applied to metatranscriptomic datasets of colorectal cancer.
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Background

Metagenomic or metatranscriptomic studies of microbiome communities allow for characterisation of
functional contributions as well as taxonomic load, by allowing the identification and quantification of
genes possibly contributed by themicrobial community. The ability to identify functional processes from
the microbiome gives a more complete picture of microbe–microbe and/or microbe–host interactions
that drive community dynamics (Langille, 2018).

There are existing bioinformatics programmes (Nayfach et al., 2015; Sharma et al., 2015; Silva et al.,
2016) that perform functional annotation on metagenomes and metatranscriptomes, but most of these
are unable to link taxonomies (the microbes under study) to their respective functional processes.
Existing packages with this capacity include PICRUSt and PICRUSt2 (Douglas et al., 2019; Langille et al.,
2013), andHUMAnN2 (Franzosa et al., 2018). PICRUSt andPICRUSt2 predictmetagenome function by
inferring genes present inOTUs based on their phylogenetic similarities to otherOTUswith known gene
content (Douglas et al., 2019; Langille et al., 2013). However, they do not directly measure the genes
involved, but rather rely on 16S genemarker sequences, which, being highly conserved, are useful for the
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identification of bacterial genera (Bashiardes et al., 2016; Ternes et al., 2020) and are not present in other
microbes aside fromBacteria andArchaea (Ye et al., 2019). Thus 16S based taxonomic identification, and
subsequent functional predictions, may be unsuitable for species-level identification, and for recognising
other microbes aside from Bacteria and Archaea. HUMAnN2’s taxonomic profiling, meanwhile, is
reliant on MetaPhlAn2 (Segata et al., 2012; Truong et al., 2015), which uses clade-specific marker genes
from reference genomes. Benchmarking efforts by Ye et al. (2019) highlight the limitations of using the
MetaPhlAn2 package, and therefore HUMAnN2, which results in relatively lower precision and recall in
its classification.

To augment such meta-omic studies, we present here a simple, straight-forward pipeline named
MetaFunc, a snakemake workflow (Köster and Rahmann, 2012) that maps function to a microbiome
(and optionally host) sample, using RNA sequences as input. MetaFunc uses Kaiju (Menzel et al., 2016)
as its main taxonomic classifier. Kaiju uses protein translations of input reads to generate taxonomic
profiles. By generating protein-based classifications using metatranscriptomic reads, MetaFunc identi-
fies microbes based on their gene expression, allowing more focus on the functional contributions of
microbes. MetaFunc then uses protein accession numbers from Kaiju results to obtain the set of gene
ontology (GO) terms associated with themicrobiome community. Furthermore, Kaiju outputs provide a
direct protein – taxonomy ID relationship that makes it possible for MetaFunc to establish which
organisms are contributing to the functional GO terms. MetaFunc also has options for pre-processing of
reads before running Kaiju: trimming of input reads with fastp (Chen et al., 2018) can be performed in
addition to pre-mapping to a host genome (eg. human) using STAR (Dobin et al., 2013). The unmapped
reads following STAR processing are the input used by MetaFunc for microbe identification, while host
gene expression information can be obtained from STAR-mapped reads. Thus, MetaFunc allows
simultaneous investigation of host and microbe community active functional processes, as well as active
host genes and microbes.

Protocol

Workflow

Figure 1 shows the workflow that takes place withinMetaFunc. Paired-end and/or single-end sequencing
reads are used as input in fasta or fastq format. If trimming and mapping are not enabled, reads are used
as input to Kaiju and subsequent microbiome analyses (Figure 1a). If trimming is enabled, reads are

Figure 1. MetaFuncWorkflow. Theworkflow uses FASTQ or FASTA as input and processes reads through themicrobiome pipeline to
give microbial abundance and function (a) and/or host gene analysis (b) which will first map reads to a host before sending
unmapped reads to the microbiome pipeline. Applying host read analysis will give gene expression analysis results as well as host
gene-microbial species correlation. Solid boxes indicate steps with an output while dotted boxes indicate intermediate steps in the
pipeline. NR: NCBI Blast nr database.
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trimmed for adapters and undergo quality controls using fastp. Ifmapping is enabled, either the trimmed
reads or raw input reads are first mapped to a designated host genome using STAR. Unmapped reads
after host mapping are then used as input to Kaiju. STAR results are then used to obtain host gene
information (Figure 1b).

Microbiome analysis

MetaFunc parses through Kaiju results and gathers taxonomy IDs of species for taxonomic character-
isation per sample and their corresponding protein accession numbers, which are subsequently anno-
tated with GO terms (Figure 1a).

Taxonomy
Each classified read matches to a taxonomy ID in Kaiju. MetaFunc gathers the species level matches and
adds up the raw reads matching to each species taxonomy ID. In cases of strain level identification,
MetaFunc adds this count to its parent species. It also obtains scaled read counts in percentages by
dividing the final read count of each taxonomy ID by the total reads that have mapped to species-level
taxonomies (then multiplying by 100). For a dataset, the pipeline removes any taxonomy ID that is less
than 0.001% in abundance in all samples of the dataset; this filter removes thousands of species that are
likely to be false positives while retaining more confident classifications. Any remaining false classifi-
cations are thought not to affect downstream analyses, as the levels would be too low to impact true
abundance (Ye et al., 2019), however, this value can be adjusted by the user. The taxonomy IDs that have
passed the cutoff are then used in subsequent analyses. It should be noted that the pipeline still uses the
original scaled percent abundances even after filtering. The pipeline would also include the lineage of the
taxonomies using TaxonKit (Shen and Ren, 2021).

For a dataset, the MetaFunc pipeline outputs two tables containing species as rows and samples as
columns with values being raw read counts or percent abundance for each species in the samples. If the
user wishes to compare groups or conditions (eg. disease state vs. control), the pipeline calculates the
average percent abundance of species among samples belonging to a group and this table is also given as
an output. Differential abundance of microbes between groups is also carried out in MetaFunc using
edgeR (McCarthy et al., 2012; Robinson et al., 2010). Raw read count tables are first filtered using the
function filterbyExpr with threshold of 1, which is user-adjustable, and normalisation factors are
calculated by calcNormFactors with default settings. exactTest is then applied to calculate differential
abundance with p-values adjusted using Benjamini and Hochberg correction or false discovery rate
(FDR).

Proteins
Kaiju outputs the accession number(s) of the protein match(es) with the highest BLOSUM62 alignment
score of the read after translation into six open reading frames (ORF). It is possible to havemore than one
best proteinmatch if two ormore proteinmatches have equal scores in Kaiju. In order to account for this,
we use proportional read counts per protein accession number where one read is divided by the number
of best protein matches it has. Similar to that for taxonomy IDs, the pipeline adds up the proportional
read counts per protein accession number of a species. Scaled reads as percent abundances are obtained
by dividing the proportional count of each accession number by the total read counts that have mapped
to a species (then multiplying by 100).

GO: database construction
MetaFunc relies on Kaiju’s nr_euk database for its taxonomic identification and corresponding protein
matches. The nr_euk database is built on a subset from NCBI BLAST nr database containing Archaea,
Bacteria, Fungi, Viruses, and other Microbial Eukaryotes (see https://raw.githubusercontent.com/bio
informatics-centre/kaiju/master/util/kaiju-taxonlistEuk.tsv). Identical sequences in the nr database are
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compiled into one entry and Kaiju only outputs the first protein accession number of an entry that has
multiple identical sequences (Menzel et al., 2016). Thus, we needed to construct the protein-to-GO
database such that all functional terms of any protein compiled in one nr entry are considered.

To facilitate GO annotations, we constructed an sqlite database in which GO annotations of a protein
accession number from Kaiju can be looked up. We first gathered relevant NCBI nr database entries,
converted all of the proteins of an nr entry into UniProt (Huang et al., 2011; The UniProt Consortium,
2017) entries, and then gathered corresponding GO annotations using the Gene Ontology Annotation
(GOA) database for all those proteins (Camon et al., 2004). All GO annotations of one nr entry are then
linked to the first protein of that entry in an sqlite database, which is used to annotate Kaiju protein
accession matches with GO IDs. For more detailed information, please see the Notes section of the
pipeline’s documentation page (https://metafunc.readthedocs.io/en/latest/notes.html). For MetaFunc,
we provide pre-made databases for download (Sulit et al., 2021a, 2021b) but users can make their own
updated databases following instructions from https://gitlab.com/schmeierlab/metafunc/metafunc-
nrgo.git.

GO: protein annotation
For each sample, the pipeline obtains only the proteins that are from taxonomy IDs that passed cutoffs in
the section “Taxonomy” described above. Their scaled proportional read counts, as in the
section “Proteins” above, are still scaled against the total number of reads that mapped to a species. In
order to compare groups or conditions, the pipeline first calculates the average of the corresponding
proportional reads and scaled proportional reads of a protein accession number among samples of a
group. It then searches for the GO terms annotating the (nr) protein using the created sqlite database
described in GO: Database Construction. Each GO term set annotating an accession number is then
updated by accessing parent terms related to the GO terms by “is_a” or “part_of” using GOATOOLS
(Klopfenstein et al., 2018). Note that this update takes the entire set of GOs annotating the accession
number into consideration such that no GO terms or path/s to the top of the GO directed acyclic graph
(DAG) is doubled. GOATOOLS also parses other information regarding the go term such as description,
namespace, and depth through the go-basic.obo file (Ashburner et al., 2000). The proportional and
scaled read counts are then added to all GO terms annotating a protein, including updated terms. Finally,
the percentage of reads covering aGO termwithin a namespace (Biological Process,Molecular Function,
and Cellular Component) is calculated by dividing the scaled read count of a GO term by the total scaled
read counts covering a namespace and multiplying by 100. The final output table of the pipeline is a
contingency table with GO IDs of all namespaces as rows and samples or groups as columns, with
percentage within a namespace as values.

Visualisation
To facilitate the exploration of results from MetaFunc, MetaFunc automatically builds an R shiny
application, such that users can view and interact with the taxonomy and GO tables. The application
allows users to select GO terms and identify the species whose proteins are annotated with the searched
for term. Conversely, users may search for a species and obtain all GO terms associated with the searched
for species. See the pipeline’s documentation page for more information (https://metafunc.readthedocs.
io/en/latest/rshiny.html).

Host analyses

Manymicrobiome communities are often associated with a host genome (Figure 1b). Reads belonging to
the host genome have the capacity to misclassify as microbiome (Ye et al., 2019) and filtering of host
reads has been a part of many microbiome studies, either prior to sequencing or in silico (Hugerth and
Andersson, 2017; Macklaim and Gloor, 2018; Xia et al., 2018). The MetaFunc pipeline offers the option
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ofmapping reads to a host genome using the programme STAR and using the unmapped reads from this
step as input to Kaiju for the microbiome analysis.

MetaFunc also allows additional analyses of host reads after STAR mapping. Host genes are
quantified using featureCounts (Liao et al., 2014) of the subread package. If comparisons between
groups are indicated, edgeR is used to perform differential gene expression analysis (DGEA). Addition-
ally, supplying a gene matrix transposed (.gmt) file from, for example, the molecular signatures database
(GSEA, n.d.; Liberzon et al., 2011; Subramanian et al., 2005) allows for gene set enrichment analysis
(GSEA) of host genes using the clusterProfiler package (Yu et al., 2012).

Host gene–microbe species correlation
When a comparison between groups is specified, the pipeline also performs Spearman correlation
analysis between the top most significant differentially expressed genes (DEGs), expressed as transcript
permillion (TPM), and topmost significant differentially abundant (DA)microbes, expressed as percent
abundance. Results of these correlations are summarised in a matrix on which hierarchical clustering is
performed and a heatmap is generated using Clustergrammer (Fernandez et al., 2017). Through this
heatmap and table, a user can investigate the strength of correlation (rho) between a DA microbe and a
DEG, and which microbes and genes have similar patterns of correlations.

Tutorial/manual

For a more detailed description of the workflow, usage instructions, and results, documentation of the
MetaFunc pipeline may be found at https://metafunc.readthedocs.io/en/latest/index.html.

Illustration of tool use

Dataset PRJNA413956: matched colorectal cancer and adjacent non-tumour tissue

In order to demonstrate the utility of the MetaFunc pipeline, we obtained publicly available transcrip-
tomics data from the study of Li et al. (2018) consisting of 10 tumours and corresponding adjacent non-
tumour colorectal tissue samples. Raw sequencing data were downloaded from https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE104836 and input to the pipeline and the full workflow carried out,
generating data for host, microbiome, and host-microbiome correlation.

Microbiome results
Taxonomy TheMetaFunc pipeline outputs a table of percent abundances of species that are identified in
each sample and an average of these abundances across members of the same group if a grouping
condition is applied. We ran the pipeline with the intent of comparing microbiome species and function
between colon cancer samples and non-tumour matched samples.

Previous studies have already established that certain microbes associate more with colorectal cancer
(CRC) samples compared to healthy controls. We searched for Fusobacterium nucleatum, Parvimonas
micra, and Porphyromonas asaccharolytica in the averaged group results. These microbes have previ-
ously been found to be more abundant in CRC cohorts in meta-analyses of several datasets (Dai et al.,
2018; Thomas et al., 2019). We also searched for Bifidobacterium species, Bifidobacterium bifidum and
Bifidobacterium longum; Bifidobacteria are thought to confer protection from CRC (Wei et al., 2018).

The bars in Figure 2a show the average percent abundance of the species between samples from
tumour and matched non-tumour tissue as identified through MetaFunc. As MetaFunc provides a per
sample data, we are also able to plot individual values of CRC (red) and matched normal (blue) samples.

As seen in Figure 2a, MetaFunc identified F. nucleatum, P. micra, and P. asaccharolytica as being
relatively more abundant (ie. have higher average percent abundance) in the CRC group while the
Bifidobacterium species are relatively more abundant in the normal group.
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MetaFunc also has a step that utilises edgeR to perform differential abundance on per sample species
read counts, stratified according to CRC and non-tumour grouping. This resulted in a total of 117 species
that were significantly different between the groups (FDR < 0.05). There are 59 species upregulated and
58 downregulated in colon cancer samples. Through the MetaFunc results, we identified Tanerella
forsythia as the most prominent enriched species in the colon cancer cohort with a log2 FC = 7.40.
T. forsythia is a known oral pathogen, thought to be part of the so-called Red complex of periodontal
pathogens, along with Porphyromonas gingivalis, and Treponema denticola (Malinowski et al., 2019).
Members of this Red Complex have been found to be enriched in subtype CMS1 of CRCs (Purcell et al.,
2017), the subtype most associated with immune process activation in CRC (Dienstmann et al., 2017;
Guinney et al., 2015; Inamura, 2018).

Function MetaFunc is intended to enable comparisons of the functional potential of the microbiome
between groups. MetaFunc uses GO annotations of protein matches from Kaiju. To demonstrate, we
focused on polyamine biosynthetic processes GO terms. Polyamines (PAs) are polycations found to play
important biological functions in cell growth. These molecules have been found to be associated with
tumour progression and growth (Gerner andMeyskens, 2004; Soda, 2011; Tofalo et al., 2019). Although
cells are able to biosynthesize polyamines and even export them, a large source of cellular polyamines
comes from uptake from their surroundings and, importantly, the microbiota is thought to be an
essential source (Soda, 2011; Thomas et al., 2019; Tofalo et al., 2019) with spermidine and putrescine
being the most common of bacterial PAs (Tofalo et al., 2019).

The bars in Figure 2b show the percent of reads among biological process GOs covering PA
biosynthetic processes in the CRC and Normal conditions, superimposed with the individual values
of samples from the CRC (red) and Normal (blue) groups. From Figure 2b, we saw that several of
the polyamine biosynthetic processes were relatively more abundant (ie. higher percent of reads among
biological process GOs) in the CRC cohort compared to the normal cohort, using protein annotations.

We used the built-inMetaFunc shiny application to facilitate an inquiry into themicrobes species that
may contribute to polyamine synthesis. To illustrate, we searched for “polyamine biosynthetic process” in
the “GO to TaxIDs” tab of the application, and obtained a total of 126 TaxIDs contributing to the GO
term in both CRC and normal samples. Of these TaxIDs, we identified Escherichia coli and B. fragilis to
be most abundant in both cohorts. However, differences in the relative abundance of some microbial
species can be identified between cancer and normal cohorts, notably several of which are oral pathogens
from the genus Prevotella. A striking difference in abundance was seen in T. forsythia, which was
previously found to be significantly more abundant in the CRC cohort via edgeR (Figure 2c). These data
suggest that T. forsythia represents one of the bacterial species that most contributes to increased
polyamine synthesis in CRC samples in this cohort.

Host results
The dataset we used for this studywas from a total RNA transcriptomics run aiming to identify long non-
coding RNAs (lncRNAs) and mRNAs in CRC samples (Li et al., 2018). Therefore, we first mapped the
reads to the human genome using the STARmapping utility of the pipeline, subsequently using only the
unmapped reads for themicrobiome analyses. From the readsmapped to the human genome,MetaFunc
was able to obtain counts of reads covering human genes and using these, obtained DEGs between CRC
and matched normal samples through edgeR. MetaFunc results showed a total of 1,476 DEGs with an
FDR < 0.05 and |log2fold change| > 2. From these, we found all the top 5 upregulated and top
5 downregulated genes as reported in the source publication (Li et al., 2018), as well as all the genes
they had randomly selected for expression confirmation via qPCR. Figure 2d shows their fold change as
found through MetaFunc.

MetaFunc is also able to perform host gene set enrichment analysis using the DEGs. Significant gene
sets (p.adjust < 0.05) with the highest normalised positive enrichment scores (NES) included such terms
as ribosome biogenesis, DNA replication, mitotic nuclear division, and condensed chromosome (see
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Figure 2. MetaFunc Microbiome and Host Analyses of Dataset PRJNA413956. (a) Average percent abundance of selected bacterial species in CRC tissue compared to matched non-tumour
(normal) samples. From MetaFunc tabulated results, we plotted the percent abundances of selected bacteria in CRC and matched normal samples. Raw values were first log2 transformed, with prior
addition of 1 as a pseudocount to account for 0 values. Individual points represent per sample transformed values in red (CRC) and blue (Normal). Per groupmeans are represented by the horizontal lines.
Dotted lines connect matched CRC and normal samples. (b) Percent abundance of specific polyamine biosynthetic process GO terms among all biological process GOs in a sample/group compared
between CRC (red) and normal (blue) samples. Values were calculated as described in section “GO: protein annotation” and output in MetaFunc tables or in the R Shiny application. These values were
plotted, overlaying groupmeans (horizontal lines) and individual values (data points). (c) Screenshot fromMetaFunc R shiny application.This view shows the first 10 species with proteins contributing to
the GO polyamine biosynthetic process. The R Shiny application columns include a URL (not shown in screenshot), which is linked to the NCBI’s Taxonomy Browser, the Species Taxonomy ID, Lineage
(indicated as “…” in screenshot), Root Taxon, and percent abundances of the species in the two groups being compared: CRC and normal samples. Note that percent abundances refer to the total
abundance of the species in question, not just the proteins contributing to the GO term. Results shown are sorted from highest to lowest percent abundance in the colon cancer cohort. (d) Fold change of
representative upregulated and downregulated human genes (Li et al., 2018) between CRC andmatched normal samples in this study. Fold change values were obtained from the edgeR results of the
pipeline. All these genes are significant (FDR < 0.05) in both this study and the source publication.
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Supplementary Table S1), many of which appear to be related to cell division or replication, consistent
with the findings of the source publication (Li et al., 2018), that the upregulated lncRNAs they foundwere
involved in mitosis, cell cycle process, and mitotic cell cycle.

Host–microbiome correlations
We set MetaFunc’s default abundance cutoff for microbial identification to 0.001% to remove most
probable contaminants and so as not to lose any othermeaningful taxonomies. It has been shown in a prior
study (Ye et al., 2019), however, that most classifiers call false positives at below 0.01% abundance. We,
therefore, applied this 0.01% cutoff in looking at the host–microbiome correlations in this dataset to narrow
our focus on microbes that are more likely to be involved in our test case.

In using the 0.01% cutoff, MetaFunc was able to only identify 19 DAmicrobes. Their correlations with
the top 100 significantly abundant genes can be seen at the URL: http://amp.pharm.mssm.edu/cluster
grammer/viz/5f02a49e8ec9bb33170b865c/cor.deg-tax.matrix.tsv. Table 1 highlights some notable correl-
ations between DAmicrobes and differentially expressed human genes. T. forsythia, although significantly
abundant in CRC samples, do not correlate significantly with any DEGs in CRC. Among its highest
correlations, however, included the gene Colorectal Neoplasia Differentially Expressed (CRNDE).

Conversely, we investigated which species correlated with CRNDE. The highest correlations were
with microbes Candida lusitaniae, Cupriavidus necator, and Streptococcus pyogenes. All correlations
were determined to be significant. The same species were among the highest correlations of TCN1, and
WNT2. TCN1 was among the top DEGs in cancer identified in this study as well as in the source
publication (Li et al., 2018).WNT2meanwhile is part of the Wnt/β-catenin pathway, which has roles in
cell proliferation, cell migration, and cell differentiation.WNT2 is responsible for the hyperactivation of
β-catenin and is known to be upregulated in CRC (Jung et al., 2015).

Dataset PRJNA404030: consensus molecular subtypes of CRC samples

To illustrate MetaFunc’s capacity to compare more than two sample groups, we used MetaFunc to
analyse transcriptome reads from the study of Purcell and colleagues (Purcell et al., 2017) (raw readsmay
be accessed at https://www.ncbi.nlm.nih.gov/bioproject/PRJNA404030), which are grouped into four
CRC consensus molecular subtypes (CMS). A total of 33 samples were collected during surgical
resection of tumours, and sample preparation for RNA sequencing was carried out using the Illumina

Table 1. Spearman correlation between DA microbes and DGEs in CRC.

Gene name Gene ID TaxID Species rho p-value

CRNDE ENSG00000245694.10 28112 Tannerella forsythia 0.29 0.22

36911 Clavispora lusitaniae 0.70 0.00063

106590 Cupriavidus necator 0.65 0.0019

1314 Streptococcus pyogenes 0.63 0.0027

TCN1 ENSG00000134827.8 106590 Cupriavidus necator 0.71 0.00042

36911 Clavispora lusitaniae 0.61 0.0045

1314 Streptococcus pyogenes 0.60 0.0048

WNT2 ENSG00000105989.10 1314 Streptococcus pyogenes 0.84 4.07E-06

106590 Cupriavidus necator 0.75 0.00015

36911 Clavispora lusitaniae 0.75 0.00016
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TruSeq Stranded Total RNA Library preparation kit. For these samples, fastq-mcf from ea-utils
(Aronesty, 2011, 2013) and SolexaQAþþ (Cox et al., 2010) were used to trim reads, which were then
run through Salmon (Patro et al., 2017) to quantify transcript expression. The publicly available CRC
CMS classifier (Guinney et al., 2015) was used to categorise samples into one of four CMSs. Of the
33 samples, only 27 were classified into a CMS and of these, only one sample was classified into CMS4.
This sample was also removed from the dataset for lack of replicates leaving a total of 26 samples –
7 samples in CMS1, 11 in CMS2, and 8 in CMS3. Metafunc was used with default parameters, except for
the following options: trimming was set to false, and featureCounts with reverse stranded option
was used.

Microbiome results
Taxonomy MetaFunc performed pairwise differential abundance analysis on the three groups using
edgeR. FromMetaFunc’s results, we considered a species to be significantly abundant in a subtype if it is
significantly abundant compared to both of the other subtypes. For instance, a significantly abundant
species in CMS1 must be significantly abundant in the CMS1 versus CMS2 and CMS1 versus CMS3
comparisons. Using this definition, only CMS1 had species that were significantly abundant (FDR <
0.05) compared to both CMS2 and CMS3. Figure 3a shows the false discovery rate (FDR; diamonds) and
log2 fold change (bars) of the species in CMS1 compared to CMS2 (blue) and CMS3 (brown).

We take note of species in the genera Prevotella and Fusobacterium, which have previously been
associated with CRC. Fusobacterium nucleatum in particular has strong evidence of an association with
CRC (Dai et al., 2018; Gao et al., 2015; Ye et al., 2017). Most of these are also members of the oral
microbiota, which have also previously been associated with cancer development particularly through
inflammatory processes (Whitmore and Lamont, 2014). We found no species that were significantly
abundant in CMS2 or CMS3 using the given criteria.

Function Through the microbiome functional results of MetaFunc, we then investigated if processes
relating to pathogen-associated molecular patterns (PAMPs) were contributed by the microbial com-
munities, considering that CMS1 is characterised by immune responses, which are usually triggered
when the human immune system recognises suchmolecules.We used theMetaFunc R shiny application
to search for terms “lipopolysaccharide biosynthetic process,” “lipid A biosynthetic process” and
“peptidoglycan biosynthetic process,” and their relative abundances. Unsurprisingly, all PAMPs were
relatively more abundant in CMS1 (Figure 3b).

Using the MetaFunc R shiny application, we also searched for which species might be contributing to
the above terms. Figure 3c is a screenshot of the application showing the species contributing to any of
the terms in Figure 3b. Figure 3c is arranged from highest to lowest relative abundance in CMS1 and we
saw microbes that were among those identified to be significantly abundant in CMS1 such as
F. nucleatum, Hungatella hathewayi, and Prevotella species. These microbes have previously been
associated with CRC (Dai et al., 2018; Gao et al., 2015; Wirbel et al., 2019; Ye et al., 2017).

Host results
Gene set expression analysis MetaFunc calculated DEGs between subtypes in a pairwise manner
(ie. CMS1 versus CMS2, CMS1 versus CMS3, CMS2 versus CMS3). From the DEGs of the results,
MetaFunc was also able to calculate enriched gene sets for each comparison. Similar to identifying DA
microbes, we obtained a final set of enriched gene sets for a subtype if it showed enrichment compared to
both other subtypes (p.adjust < 0.05). Unsurprisingly, we saw several host GO terms involved in immune
response enriched in CMS1, including regulation of innate immune response, response to interferon
gamma, and positive regulation of cytokine production among others. Enriched host GOs in CMS2 are
involved in the cell cycle and ribosome biogenesis, with terms such as tRNA metabolic process,
ribosomal large subunit biogenesis, and DNA replication initiation, while host GOs enriched in
CMS3 involve metabolic processes, for example, primary xenobiotic metabolic process, flavonoid
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Figure 3. MetaFunc Microbiome Analysis of Dataset PRNJA4040030. (a) Microbes that are significantly more abundant (FDR < 0.05) in CMS1 compared to CMS2 (purple) and CMS3 (yellow).
Microbes are consideredDA in CMS1 if it is identified through edgeR as DA in both CMS1 versus CMS2 andCMS1 versus CMS3 comparisons. Log2FC (y-axis) is the log2 of the fold-change between CMS1 and
the other subtypes (eg. CMS1/CMS2); FDR (point sizes) is the false discovery rate adjusted p-values. (b) Percent abundance of specific PAMPs biosynthetic process GO terms among all biological
process GOs in a sample/group compared between CRC subtypes, CMS1 (red), CMS2 (purple), and CMS3 (yellow). Values were calculated as described in section “GO: protein annotation” and
output in MetaFunc tables or in the R Shiny application. These values were plotted, overlaying groupmeans (horizontal lines) and individual values (data points). (c) Screenshot of R shiny application
showing the relative abundances of species associated with PAMPs biosynthetic processes compared among CMS1, CMS2, and CMS3. This view shows the first 10 species, with the highest
abundances in CMS1, with proteins contributing to any of the PAMPs biosynthetic processes described above. The application columns show a URL (not shown in screenshot), which is linked to the
NCBI’s Taxonomy Browser, the Species Taxonomy ID, Lineage (shown as “…” in screenshot), Root Taxon, and percent abundances of the species in the three groups being compared: CMS1, CMS2, and
CMS3. Note that percent abundances refer to the total abundance of the species in question, not just the proteins contributing to the GO term. Results shown are sorted from highest to lowest percent
abundance in the CMS1 group.
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metabolic process, and lipid catabolic process. These results are consistent with the description of these
three CRC subtypes in the original CMS study (Guinney et al., 2015). The top enriched gene sets for each
subtype can be found in Supplementary Tables S2–S7.

Table 2. Spearman correlation between DA microbes in CMS1 and DGEs in CMS1.

Gene name Gene ID TaxID Species rho p-value

WARS1 ENSG00000140105.18 1802307 Candidatus Taylorbacteria bacterium
RIFCSPHIGHO2_02_FULL_43_55

0.59 0.0015

WARS1 ENSG00000140105.18 851 Fusobacterium nucleatum 0.55 0.0035

RNF213 ENSG00000173821.19 1802307 Candidatus Taylorbacteria bacterium
RIFCSPHIGHO2_02_FULL_43_55

0.54 0.0048

ICAM1 ENSG00000090339.9 1802307 Candidatus Taylorbacteria bacterium
RIFCSPHIGHO2_02_FULL_43_55

0.50 0.01

RNF213 ENSG00000173821.19 851 Fusobacterium nucleatum 0.50 0.01

PARP14 ENSG00000173193.15 851 Fusobacterium nucleatum 0.47 0.02

PARP14 ENSG00000173193.15 1802307 Candidatus Taylorbacteria bacterium
RIFCSPHIGHO2_02_FULL_43_55

0.47 0.02

PARP9 ENSG00000138496.16 851 Fusobacterium nucleatum 0.46 0.02

ICAM1 ENSG00000090339.9 851 Fusobacterium nucleatum 0.46 0.02

SLC15A3 ENSG00000110446.11 1802307 Candidatus Taylorbacteria bacterium
RIFCSPHIGHO2_02_FULL_43_55

0.46 0.02

STAT1 ENSG00000115415.19 386414 Prevotella timonensis 0.44 0.02

CD163 ENSG00000177575.12 1802307 Candidatus Taylorbacteria bacterium
RIFCSPHIGHO2_02_FULL_43_55

0.42 0.03

PARP14 ENSG00000173193.15 386414 Prevotella timonensis 0.42 0.03

CD163 ENSG00000177575.12 386414 Prevotella timonensis 0.42 0.03

ICAM1 ENSG00000090339.9 386414 Prevotella timonensis 0.41 0.04

PARP9 ENSG00000138496.16 1802307 Candidatus Taylorbacteria bacterium
RIFCSPHIGHO2_02_FULL_43_55

0.41 0.04

CD163 ENSG00000177575.12 851 Fusobacterium nucleatum 0.41 0.04

SLC15A3 ENSG00000110446.11 851 Fusobacterium nucleatum 0.40 0.04

STAT1 ENSG00000115415.19 851 Fusobacterium nucleatum 0.40 0.04

PML ENSG00000140464.20 1802307 Candidatus Taylorbacteria bacterium
RIFCSPHIGHO2_02_FULL_43_55

0.39 0.05

GBP1 ENSG00000117228.10 28448 Komagataeibacter xylinus �0.39 0.05

CEBPA ENSG00000245848.3 154046 Hungatella hathewayi �0.41 0.04

GNLY ENSG00000115523.16 28448 Komagataeibacter xylinus �0.43 0.03
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Host–microbiome results
Next, using correlation results from MetaFunc, we investigated which of the top significantly DEGs
correlated with the significantly abundant microbes in CMS1. We obtained the following statistically
significant correlations between host and microbiome abundances shown in Table 2.

Some of these correlations may be found in http://maayanlab.cloud/clustergrammer/viz/
610d8b3c97f268000ea37f41/cor.deg-tax.matrix.tsv. This is the hierarchical cluster obtained when cor-
relating top DAmicrobes and top DGEs in CMS1 compared to CMS2. It is to be noted that there may be
correlations in this clustering that are not found in CMS1 compared to CMS3 and are therefore not
reported in Table 2.

The Spearman correlations (rho) between DA microbes and DEGs were quite small in value (the
highest value being ~ |0.59| between WARS1 and Candidatus Taylorbacteria bacterium
RIFCSPHIGHO2_02_FULL_43_55). Nevertheless, several of the genes appeared to have a relevant
function with regards to CRC and immune responses. Table 3 shows information for genes that
correlated with Fusobacteria and Prevotella species in our analyses. These two microorganisms have
previously been associated with CRC.

Comparison of MetaFunc results to HUMAnN2

HUMAnN2 (Franzosa et al., 2018) is one of the packages most frequently used to assess functional
pathways of the microbiome, and to determine which organisms are contributing to the functional
pathways. HUMAnN2 works by pre-screening which taxonomies are present in a sample using
MetaPhlAn2, afterwards aligning the reads to pangenomes of the classified taxonomies for gene hits.
Unclassified reads then undergo an organism-agnostic translated search (Franzosa et al., 2018).
MetaPhlAn2 has a rather limited database for the pre-screening of organisms (Ye et al., 2019), resulting
in a high level of unmapped reads and a limited number of organisms identified.

We ran the same sequencing reads from the study PRJNA413956 (Li et al., 2018) through
HUMAnN2, first trimming with fastp and removing human-mapped reads using the same conditions
as for the MetaFunc pipeline. To be more comparable, we changed the pre-screen threshold of
HUMAnN2 to 0.001% of mapped reads. Part of HUMAnN2’s tiered search uses diamond (Franzosa
et al., 2018), which requires highermemory and run time compared toKaiju, used byMetaFunc (Ye et al.,
2019). From taxonomy identification, using Kaiju, to the generation of GO tables, took MetaFunc 11.39
hours to complete, while a comparable analysis using HUMAnN2 took 65.9 hours to complete, almost
six times slower than MetaFunc on the same machine (CentOS Linux release 7.9.2009). Notably,
HUMAnN2 has an additional pathway abundance and pathway coverage analysis absent from Meta-
Func. Runs for HUMAnN2 may be accessed at https://github.com/asulit08/Humann2_PRJNA413956.

Results showed that for the 20 samples analysed, 8.4–22.9% of reads were mapped after nucleotide
and protein alignment steps. In contrast, using Kaiju in the MetaFunc pipeline resulted in 33.8–56.2%
reads mapped to microbial species through protein matches. We also detected only 87 species across the
20 samples using HUMAnN2, compared with a total of 4,267 species using Kaiju in the MetaFunc
pipeline. Further, HUMAnN2 was only able to detect Bacteria and Viruses in the samples, while
MetaFunc analysis was able to detect Fungi and Archaea as well. We also investigated the concordance
of the microbial GO terms that had been classified to a taxonomy from the MetaFunc run with that of
HUMAnN2. We focused on only the Bacteria and Viruses – related GO terms as found in the
HUMAnN2 run. We found that the majority (69–100%) of the GOs found in HUMAnN2 was also
found in the MetaFunc run. There were more unique GO terms found in the MetaFunc run, which may
be due to the higher number of species detected with MetaFunc (Supplementary Figure S1).

We investigated the same species and polyamine (PA) biosynthetic process GO terms in our
HUMAnN2 results as we had in the MetaFunc run of dataset PRJNA413956 (Supplementary
Figures S2 and S3). We see in Supplementary Figure S2 that abundances of the species in CRC and
normal groups have the same trends in HUMAnN2 results as in that of MetaFunc (Kaiju) results. In
HUMAnN2 runs, however, we were not able to find B. bifidum among the identified species in the
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Table 3. Gene Information of DEGs correlated with DA Microbes in CMS1.

Gene
name Protein name

Relevant protein/gene
function Association with CRC and/or inflammation Sources

ICAM1 Intercellular adhesion
molecule 1

Mediates cell adhesion of
cytotoxic T
lymphocytes and
natural killer cells

Upregulation of ICAM1 inhibits tumour growth and metastasis; a
soluble form (sICAM1) is increased in CRC tissues compared to
normal, and is associated with an inflammatory tumour
microenvironment

Sánchez-Rovira et al., 1998;
Schellerer et al., 2019; Tachimori
et al., 2005

SLC15A3 Solute carrier (SLC) 15A3 Membrane transporter;
highly expressed in
macrophage
populations

Upregulated by LPS via NF-κβ pathway; influences pro-
inflammatory cytokine production triggered by TLR-4

Song et al., 2018; Wang et al., 2014

CD163 CD163 receptor M2 Macrophage marker M2 macrophages are anti-inflammatory macrophages and
CD163þ tumour-associated macrophages are with
mesenchymal transition and poor prognosis in CRC; are
correlated with CCL4

Argyle and Kitamura, 2018;
Bayoumi et al., 2016; De la
Fuente López et al., 2018; Pinto
et al., 2019

STAT1 Signal transducer and
activator of transcription 1

Transcription factor for
IFN signalling

Upregulated in CRCs; correlated with PD-L1 and PD1 immune
checkpoint inhibitors; pro-oncogenic in MSI CRCs

Leon-Cabrera et al., 2018; Tanaka
et al., 2020

PARP 9 Poly(ADP-ribose) polymerase
family member 9

Involved in cell migration Possible role in metastasis Vyas and Chang, 2014

PARP 14 Poly(ADP-ribose) polymerase
family member 14

Involved in IL-4 signalling
and cell migration

Involved in anti-apoptotic effects Vyas and Chang, 2014

RNF213 Ring finger protein 213 Involved in PI3K-AKT
pathway for cell growth

Involved in endothelial angiogenesis Ohkubo et al., 2015

WARS1 Tryptophanyl-TRNA
synthetase 1

Inhibitor of angiogenesis;
Involved in IFN-g
signalling

Involved in immune responses; cleaved form potentially inhibits
angiogenesis; increased levels indicate better CRC survival

Ghanipour et al., 2009; Jin, 2019
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PRJNA413956 cohort. Meanwhile, we also see the same trends in the abundances of PA biosynthetic
process GO terms in CRC samples compared to matched normal samples in HUMAnN2 runs, as in our
MetaFunc run (Supplementary Figure S3), except for nor-spermidine biosynthetic process, which was
not seen using HUMAnN2. Differences in abundance values were noted when comparing individual
samples, however, direct comparison between HUMAnN2 andMetaFunc is difficult as raw read-counts
scaled to species-classified reads are used in MetaFunc, while HUMAnN2 uses reads-per-kilobase
(RPK)-based relative abundances.

Discussion

MetaFunc allowed us to investigate the relative abundances of knownCRC – associated bacteria between
CRC samples and matched normal tissues using the PRJNA413956 dataset. MetaFunc results show that
the average abundance of microbes known to contribute to CRC progression are higher in cancer
samples while those protective against CRC have higher average abundance in normal samples. Through
MetaFunc, we also identified that Tannerella forsythia, a known oral pathogen and part of the Red
Complex that causes periodontal diseases (Malinowski et al., 2019), is significantly more abundant in
CRC tissues than in normal tissues. Oral pathogens have previously been seen to associate with CRC
samples (Flemer et al., 2018; Koliarakis et al., 2019; Thomas et al., 2019; Whitmore and Lamont, 2014).
By investigating the R shiny application from MetaFunc, we also found that T. forsythia, along with
bacteria in the Prevotella genera, contributed to polyamine biosynthetic processes indicating that some
oral pathogens contribute to cancer progression by producing polyamines that could be taken up by the
surrounding cells.

Furthermore, we were able to find known bacteria in the MSI-Immune subset of CRCs by
identifying the DA microbes in CMS1 compared to both CMS2 and CMS3 subtypes, as identified
by MetaFunc’s edgeR step. Fusobacteria have long been associated with CRC development (Dai et al.,
2018; Gao et al., 2015; Thomas et al., 2019; Ye et al., 2017) while Prevotella includes species that inhabit
the oral cavity; there have also been Prevotella species that were found to be abundant in CRC cohorts
(Dai et al., 2018; Flemer et al., 2018; Gao et al., 2015). In line with this, PAMPs were also found to be
relatively more abundant in the CMS1 cohort upon investigation through MetaFunc’s R shiny
application. The involvement of these bacteria in CMS1 as well as a relatively higher abundance of
proteins contributing to biosynthesis of PAMPs in CMS1 indicate a role of microorganisms in the
immune responses that drive the development of CRC in these tumours. This is further supported by
correlation with host genes involved in inflammation and/or CRC development as found using
MetaFunc’s spearman correlation step. The lack of significantly abundant microorganisms in
CMS2 and CMS3 may reflect that the CRC development in these subtypes are not as dependent on
immune dysregulation.

We created MetaFunc with the aim of identifying microbes and their functional contribution in a
microbiome environment. One of the most widely used packages for this is HUMAnN2 (Franzosa
et al., 2018) but we find the taxonomic identification generated byHUMAnN2 to be limited, because of
its reliance on marker genes. For our purposes, we found MetaFunc invaluable for investigating novel
microbes that did not have marker gene representation, in addition to being faster for larger amounts
of data, and compatible with downstream analysis programs. We showed in this paper that results
from the pipeline are biologically meaningful and corroborate previous literature. It was meant to be
an alternative or a complement toHUMAnN2 in this regard. Although similar trends were seen in taxa
and gene ontologies of interest between CRC and matched normal samples, fewer test reads were
designated as taxa using HUMAnN2 compared to MetaFunc in our comparative analysis. Unfortu-
nately, direct comparison was not possible because HUMAnN2 and MetaFunc use different abun-
dance outputs.

We acknowledge that, especially at the 0.001% abundance cutoff, some of these species we are seeing
could be false positives, or that these could be contaminants from sequencing and processing kits used
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(Goffau et al., 2018; Salter et al., 2014). We would caution users in interpreting data from microbes of
very low abundances and would recommend following the advice of including negative control samples
in sequencing (Salter et al., 2014). Indeed we could be seeing these effects upon looking at the microbes
correlating with significantly abundant host genes in CRC samples from PRJNA413956. While
C. lusitaniae is an opportunistic pathogen causing candidemia (Desnos-Ollivier et al., 2011; Krcmery
et al., 1999) possibly exploiting the lowered immune responses in cancer patients (Aslani et al., 2018),
and some Streptococcus species have previously been implicated in CRC (Kumar et al., 2017; Xia et al.,
2020), with S. pyogenes having been known to cause invasive infections in humans (Parks et al., 2015),
C. necator (formerly known as Ralstonia eutropha (Reinecke and Steinbüchel, 2009), is a soil bacterium
that may be a sequencing contaminant in this dataset. Cupriavidus and Ralstonia species have been
previously identified as common contaminants in meta-omics studies (Guo et al., 2019; Salter et al.,
2014).

MetaFunc analyses host and microbiome reads, providing a user-friendly, interactive R-shiny
application to investigate results, most useful for those with candidate microbes and function in
mind, or for exploratory analyses of the characteristics of a user’s dataset. It should be noted that
these values are based on raw counts and percent abundances. Microbiome datasets are considered
compositional (Gloor et al., 2017; Gloor and Reid, 2016), and this should be taken into consideration
during further analysis. We reiterate that values shown in the shiny application (eg. average of
microbial relative abundances within a group), are to be used as initial comparisons and description
of the data, and care should be taken in its interpretation, especially in the light of compositional data
analysis. Further downstream analysis, such as differential abundance of microbes, can also facilitate
parsing of tables in the shiny application. A gold standard for differential abundance analysis in
microbiome datasets is currently non-existent and different tools reach different results (Calgaro
et al., 2020; Nearing et al., 2022). We offer edgeR in MetaFunc as we believe it is a good initial tool to
explore DA microbes, though this is offset by being prone to false positives (Thorsen et al., 2016).
MetaFunc results provide potential starting points for more in-depth analyses or hypothesis
generation for experimental procedures. In this regard, we provide results in “.tsv” formats for
use in other downstream bioinformatics applications, so users might apply their own analyses of
choosing.

Correlation analysis on compositional data has the same contentious issue as differential abundance.
Although there is published literature supporting the use of Spearman rank correlation coefficient in this
analysis (Cremonesi et al., 2018; Dai et al., 2018; Geng et al., 2014), there are dissenting voices stating that
there are spurious correlations, especially in compositional data (Aitchison, 1982; Faust et al., 2012;
Friedman and Alm, 2012; Lovell et al., 2015; Pearson, 1897), and as such, conclusions from such
correlations are meaningless (Lovell et al., 2015). Nevertheless, Spearman correlation serves a useful
purpose, especially for an initial exploration of the data. Should users choose other analyses methods,
intermediate results are provided with the pipeline.

This method was developed specifically for an RNA-seq (transcriptomic/metatranscriptomic) data-
set, allowing for the common analysis applied to such studies. It is intended for an initial complete
analysis of the data, with only a single configuration file and sample sheet necessary once installation of
the tool has been done. Users can augment this analysis by accessing host gene and microbiome count
files supplied by the pipeline and use this as input in other applications. Users can also potentially use the
microbiome aspect of the pipeline on ametagenomic dataset, and can adjust this in the configuration file.
As Kaiju (Menzel et al., 2016) identifies a single best protein match (or multiple matches with equal
scores) of a read, we recommend its usage for short-read datasets. An exception could be made for long
read sets in which the user is certain an input read will only span one protein.

We used the MetaFunc pipeline to compare genes and microbes between or among groups, but
exploratory analyses of datasets from single groups can also be carried out.

While the methodology of this paper focuses on RNA sequences, metagenomic content could
affect variation seen in microbial community gene expression (Franzosa et al., 2014). It should be
noted that gene copy number, for instance, could affect transcript counts. Counts seen with
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metatranscriptomic data would also reflect a species’ gene expression contribution as opposed to
abundance. It would be prudent to take this into consideration when interpreting biological
implications of the results.

Conclusion

Here we presentedMetaFunc, a single pipeline for analysing host andmicrobiome sequencing reads and
their relationships. We found that we identified more microbes in our test datasets using MetaFunc
compared to HUMAnN2, while microbes and functions of interest were comparable between the two.
We have used MetaFunc to determine that microbes previously known to have associations with CRC
are indeed relatively more abundant in CRC samples compared to normal samples. Furthermore, we
were able to use MetaFunc to highlight that these microorganisms could contribute to CRC progression
through polyamine production.

For a dataset withmore than two groups, we have also usedMetaFunc to identify abundant bacteria in
a CRC subtype associated with immune responses, while conversely, we have not been able to identify
significant microbes in the other CRC subtypes. MetaFunc’s Spearman correlation step showed that the
significant bacteria correlate with human DEGs that function in immune responses and CRC progres-
sion.We showed thatMetaFunc was able to identify candidate microorganisms that differentiate sample
groups and provide insight on the functional capacities of these candidates.
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