ON PERFECT AND EXTREME FORMS

P. R. SCOTT
(received 25 June 1963)

1. Introduction

Let $f(x)=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\sum_{i} \sum_{i} a_{i j} x_{i} x_{j}\left(a_{i j}=a_{i j}\right)$ be a positive quadratic form with determinant D, and let M be the minimum of f for integral $\boldsymbol{x} \neq \mathbf{0}$. Then f attains the value M for a finite number of integral $\boldsymbol{x}= \pm \boldsymbol{m}_{k}(k=1, \cdots, s)$ called its minimal vectors.
t is said to be perfect if the s equations

$$
f\left(m_{k}\right)=\sum_{i} \sum_{j} a_{i j} m_{k i} m_{k j}=M \quad(k=1, \cdots, s)
$$

uniquely determine the $\frac{1}{2} n(n+1)$ coefficients $a_{i j}$ of f; that is, if the equations

$$
g\left(m_{k}\right)=\sum_{i} \sum_{j} b_{i j} m_{k i} m_{k j}=0 \quad\left(k=1, \cdots, s ; b_{i j}=b_{j i}\right)
$$

have only the trivial solution $b_{i j} \equiv 0$.
f is said to be extreme if for all infinitesimal variations of the coefficients $a_{i j}, M^{n} / D$ is a maximum; defining $\Delta=(2 / M)^{n} D$, we see that f is extreme if Δ is a local minimum.

Let $F(y)=\sum_{i} \sum_{j} A_{i j} y_{i} y_{j}$ be the adjoint of f; we say that f is eutactic if $F(y)$ is expressible as

$$
\begin{equation*}
F(y)=\sum_{k=1}^{\dot{1}} \rho_{k}\left(m_{k}^{\prime} y\right)^{8}=\sum_{k=1}^{\dot{\sum}} \rho_{k} \lambda_{k}^{2} \quad\left(\rho_{k}>0 ; k=1, \cdots, s\right) . \tag{1.1}
\end{equation*}
$$

Voronoi [9] proved
Theorem 1.1. A positive quadratic form is extreme if and only if it is perfect and eutactic.

For forms with $n \geqq 6$, this is often not a simple criterion to apply; in § 2 I give a useful simplification of the general relation (1.1) in terms of the group of automorphs of the form. A more specialised result of this nature has been obtained by Barnes [1].

All the perfect and extreme forms are now known for $n \leqq 6$. In particular, Korkine and Zolotareff [8] found all the perfect forms for $n \leqq 5$, and recently Barnes [2] has given the complete enumeration of the perfect forms for $n=6$. Relatively little appears to be known about the forms for
$n>6$; most of the known perfect forms are listed in Coxeter [6] and Barnes [3,I]. All others are: K_{12} given in [7]; K_{11} of [3,II]; Φ_{10} of [5]; the unclassified forms given in [3,II]; and the sequences of forms of [4] and [10].

In §§ 3 and 5, I define two new classes of forms which considerably extend the list of known perfect forms. Thus for the early values of n, we find that these new forms R_{n}, S_{n} contribute:

$$
\begin{array}{ll}
\text { for } n=7, & 7 \text { perfect forms; } \\
\text { for } n=8, & 21 \text { perfect forms; } \\
\text { for } n=9, & 43 \text { perfect forms. }
\end{array}
$$

All except four of these are new, the exceptions being $R_{7}(3,2,2)$, $R_{9}(5,3,1), S_{7}(6,2)$ and $S_{7}(5,3)$ which appear as extensions in [3, II]. However, these forms are classified here for the first time. Tables of the forms R_{n}, S_{n} for $n=7,8$ and 9 are given at the end of $\S \S 3$ and 5 respectively.

Suppose the variables of the $(n+1)$-dimensional form $f(x)=$ $f\left(x_{1}, \cdots, x_{n+1}\right)$ are made to satisfy the non-trivial linear relation

$$
\begin{equation*}
\sum_{1}^{n+1} p_{i} x_{i}=0 . \tag{1.2}
\end{equation*}
$$

The form $f(x)$ and the condition (1.2) now define a new form $g(x)$ say; $g(x)$ is said to be the section of $f(x)$ by $\sum p_{i} x_{i}=0 . g(x)$ is in fact an n dimensional form; in practice, however, because of symmetry considerations, it is often more convenient to leave it expressed in $n+1$ variables. It should be noted that the form $g(x)$ (as an ($n+1$)-variable form) has no unique adjoint form; the adjoint $G(y)$ is in fact found to be dependent on the particular n variables from x_{1}, \cdots, x_{n+1}, remaining after elimination of a variable between $f(x)$ and (1.2). The forms S_{n} of $\S 5$ are obtained as sections of the forms R_{n+1} defined in § 3. In § 4, I obtain a number of results relating the properties of a form to those of its section. These are: (i) a necessary and sufficient condition that a section of a perfect form be perfect; (ii) formulae giving the adjoint and determinant of the section in terms of the known form. These results are then used to establish the properties of the forms S_{n}.

The definitions of the forms B_{n}, L_{n}^{*}, P_{n} and Q_{n}, referred to in this paper, are given in [3,I].

Finally, I wish to thank Professor E. S. Barnes for his helpful suggestions connected with this work.

2. Simplification of Voronoi's criterion for eutactic forms

As we saw in $\S 1$, the form $f(x)=\sum \sum a_{i j} x_{i} x_{j}$, is eutactic if its adjoint $F(x)=\sum \sum A_{i j} x_{i} x_{j}$ is expressible as

$$
\begin{equation*}
F=\sum_{1}^{p} \rho_{k} \lambda_{k}^{2}, \quad\left(\rho_{k}>0 ; k=1, \cdots, s\right) \tag{2.1}
\end{equation*}
$$

Let g be the group of automorphs of f. Then under the contragredient group G, the linear forms λ_{k} fall into the transitive systems

$$
\begin{equation*}
\left(\lambda_{1}^{(1)}, \cdots, \lambda_{k_{1}}^{(1)}\right), \cdots,\left(\lambda_{1}^{(r)}, \cdots, \lambda_{k_{f}}^{(r)}\right) . \tag{2.2}
\end{equation*}
$$

We now rewrite (2.1) as

$$
\begin{equation*}
F=\sum_{i=1}^{r}\left(\sum_{k=1}^{k_{i}} \rho_{k}^{(i)}\left(\lambda_{k}^{(i)}\right)^{2}\right), \quad \rho_{k}^{(i)}>0 \tag{2.3}
\end{equation*}
$$

We now prove
Lemma 2.1. (i) If F can be expressed in the form (2.3) with the $\rho_{k}^{(i)}$ unrestricted in sign, then there is an expression with

$$
\rho_{k}^{(i)}=\sigma_{i} \quad\left(k=1, \cdots, k_{i}, i=1, \cdots, r\right)
$$

(ii) The form f is eutactic if and only if there is now a solution of (2.3) with

$$
\sigma_{1}>0, \cdots, \sigma_{r}>0
$$

Proof. If the group G has order h, there are precisely $h / k_{i}(i=1, \cdots, r)$ elements of G which transform a form of the i th set of (2.2) into another given form of that set. Applying all the transformations of G to (2.3), and adding, we obtain

$$
h F=\sum_{i=1}^{r}\left\{\frac{h}{k_{i}}\left(\rho_{1}^{(i)}+\rho_{2}^{(i)}+\cdots+\rho_{k_{i}}^{(i)}\right) \sum_{k=1}^{k_{i}}\left(\lambda_{k}^{(i)}\right)^{2}\right\}
$$

Thus

$$
\begin{equation*}
F=\sigma_{1} \sum_{k=1}^{k_{1}}\left(\lambda_{k}^{(1)}\right)^{2}+\cdots+\sigma_{r} \sum_{k=1}^{k_{r}}\left(\lambda_{k}^{(r)}\right)^{2} \tag{2.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{i}=\frac{1}{k_{i}}\left(\rho_{1}^{(i)}+\rho_{2}^{(i)}+\cdots+\rho_{k_{i}}^{(i)}\right), \quad(i=1, \cdots, r) . \tag{2.5}
\end{equation*}
$$

This proves (i).
If now there is a solution of (2.4) with

$$
\sigma_{i}>0 \quad(i=1, \cdots, r)
$$

clearly this is also a solution of (2.3), and f is eutactic.
If, however, for some i, necessarily $\sigma_{i} \leqq 0$, then from (2.5) there is at least one value of j ($1 \leqq j \leqq k_{i}$), for which

$$
\rho_{j}^{(i)} \leqq 0
$$

and f is not eutactic. This completes the proof.
Corollary 1. If in (2.4) there is some value of i for which $\sigma_{i}<0$, then from (2.5), there is at least one value of $j\left(1 \leqq j \leqq k_{i}\right)$ for which

$$
\rho_{j}^{(i)}<0 .
$$

In practice, Lemma 2.1 has no great application, as a complete knowledge of the group G is required. However, we can use the lemma to obtain the following more general result.

Theorem 2.1. F has a representation of the form

$$
\begin{equation*}
F=\sum_{1}^{s} \rho_{k} \lambda_{k}^{2} \tag{2.6}
\end{equation*}
$$

with either $\rho_{k}>0(k=1, \cdots, s)$ or ρ_{k} unrestricted in $\operatorname{sign}(k=1, \cdots, s)$, if and only if there is a representation which also satisfies the condition that $\rho_{r}=\rho_{s}$ whenever λ_{r} and λ_{s} are equivalent under G.

Proof. The representation provided by Lemma 2.1 satisfies the condition of the theorem, since any two equivalent forms λ_{r}, λ_{2} are included in one system of transitivity under G.

3. The form $R_{m}\left(r_{1}, r_{2}, \cdots, r_{k}\right)$

3.1. Definition, Minimum and Determinant. We define $R_{m}=$ $\boldsymbol{R}_{\boldsymbol{m}}\left(r_{1}, r_{2}, \cdots, r_{k}\right)$ to be the form

$$
\begin{equation*}
f(x)=\sum_{t=1}^{k} A_{r_{t}}\left(x^{(t)}\right) \tag{3.1}
\end{equation*}
$$

with lattice the sublattice of the integral lattice

$$
\begin{equation*}
\sum_{1}^{m} x_{i} \equiv 0\left(\bmod \left(r_{1}+1\right)\right) \tag{3.2}
\end{equation*}
$$

where

$$
r_{1} \geqq r_{2} \geqq \cdots \geqq r_{k} \geqq 1 ; \sum_{t=1}^{k} r_{t}=m
$$

and $x=\left(x^{(1)}, \cdots, x^{(k)}\right)$;
and A_{r} is the connected, reflexible form of [6], defined by

$$
A_{r}(x)=x_{1}^{2}-x_{1} x_{2}+x_{2}^{2}-\cdots-x_{r-1} x_{r}+x_{r}^{2} .
$$

For example $R_{7}(6,1)$ is the form

$$
f(x)=\left\{\left(x_{1}^{(1)}\right)^{2}-x_{1}^{(1)} x_{2}^{(1)}+\cdots-x_{5}^{(1)} x_{6}^{(1)}+\left(x_{6}^{(1)}\right)^{2}\right\}+\left(x_{1}^{(2)}\right)^{2}
$$

with lattice the sublattice of the integral lattice

$$
\sum_{1}^{7} x_{i} \equiv 0(\bmod 7),
$$

where

$$
x=\left(x^{(1)}, x^{(2)}\right)
$$

Since A_{r} has determinant $(r+1) / 2^{r}$, we see that

$$
\begin{aligned}
D\left(R_{m}\right) & =\left(r_{1}+1\right)^{2} \prod_{t=1}^{k}\left(\frac{r_{t}+1}{2^{r t}}\right) \\
& =\frac{1}{2^{m}}\left(r_{1}+1\right)^{2} \prod_{t=1}^{k}\left(r_{t}+1\right) .
\end{aligned}
$$

We shall also show that

$$
M\left(R_{m}\right)=2, \text { with } \quad \Delta\left(R_{m}\right)=\frac{1}{2^{m}}\left(r_{1}+1\right)^{2} \prod_{i=1}^{k}\left(r_{t}+1\right)
$$

We first examine all integral vectors $\boldsymbol{x} \neq 0$ for which

$$
\begin{equation*}
t \leqq 2 \tag{3.3}
\end{equation*}
$$

Let $\boldsymbol{e}_{i}^{(t)}$ denote the unit vector in m-space corresponding to the coordinate $x_{i}^{(t)}$. Since

$$
A_{r_{t}}\left(x^{(t)}\right) \begin{cases}=0 & \text { if } \quad x^{(t)}=0, \tag{3.4}\\ =1 & \text { if } \pm x^{(t)}=\sum_{i=p+1}^{p+\Lambda} e_{i}^{(t)}, \quad\left(0 \leqq p<p+h \leqq r_{t}\right)_{r} \\ \geqq 2 & \text { otherwise, }\end{cases}
$$

in order to satisfy (3.3), $A_{r_{t}}\left(x^{(t)}\right)$ can be non-zero for at most two values of t.
(i) Suppose a single $A_{r_{t}}\left(\boldsymbol{x}^{(t)}\right)$ is non-zero. Since no $\boldsymbol{x}^{(t)}$ for which $A_{r_{t}}\left(x^{(t)}\right)=1$ satisfies the relation (3.2), we have $A_{r_{t}}\left(x^{(t)}\right) \geqq 2$.

If $\gamma_{t} \geqq 3$, there are vectors $X^{(t)}$ satisfying (3.2) for which $A_{r_{t}}\left(x^{(t)}\right)=2$; for example

$$
x^{(t)}=e_{i}^{(t)}-e_{j}^{(t)}
$$

$$
(j \neq i+1)
$$

(ii) Suppose $A_{r_{1}}\left(x^{(t)}\right)$ is non-zero for just two values of $t, t=t_{1}$, and $t=t_{2}$ say. Then from (3.4), $t \geqq 2$, equality holding when

$$
A_{r_{t_{1}}}\left(x^{\left(t_{1}\right)}\right)=A_{r_{t_{2}}}\left(x^{\left(t_{2}\right)}\right)=1
$$

In this case, we have

$$
\pm\left(x^{\left(t_{1}\right)} \pm x^{\left(t_{2}\right)}\right)=\sum_{i=p_{1}+1}^{p_{1}+\lambda_{1}} e_{j}^{\left(t_{1}\right)} \pm \sum_{j=p_{1}+1}^{p_{2}+\lambda_{2}} e^{\left(t_{2}\right)} \quad\left(0 \leqq p_{i}<p_{i}+h_{i} \leqq r_{t_{i}}, i=1,2\right)
$$

where $x^{\left(t_{2}\right)}, x^{\left(t_{2}\right)}$ are defined with like sign in (3.4 $)$. Of these, only the following satisfy (3.2), and so are minimal vectors:

$$
\begin{array}{lll}
\pm\left(x^{\left(t_{1}\right)}+x^{\left(t_{2}\right)}\right) & \text { with } & h_{1}+h_{2}=r_{1}+1, \\
\pm\left(x^{\left(t_{1}\right)}-x^{\left(t_{2}\right)}\right) & \text { with } & h_{1}=h_{2} .
\end{array}
$$

Hence the form $R_{m}\left(r_{1}, r_{2}, \cdots, r_{k}\right)$ has minimum 2 as required, provided $k=1, r_{1} \geqq 3$; or $k \geqq 2$.

We note that the forms B_{m}, L_{m}^{r} are special cases of R_{m} with

$$
\begin{array}{r}
r_{1}=r_{2}=\cdots=r_{m}=1 \\
2=r_{1} \geqq r_{2} \geqq \cdots \geqq r_{k} \geqq 1
\end{array}
$$

respectively. To avoid repetition, in what follows we assume $\boldsymbol{r}_{1} \geqq 3$.
3.2. Conditions for Perfection. We shall need the following minimal vectors of R_{m} :

Lemma 3.1. If the form R_{m} defined by (3.1) and (3.2) is perfect, then so is the form $R_{m+r_{0}}\left(r_{0} \leqq r_{1}\right)$:

$$
f_{0}\left(x, x^{(0)}\right)=f(x)+A_{r_{0}}\left(x^{(0)}\right)
$$

with lattice

$$
\sum_{1}^{m+r_{0}} x_{i} \equiv 0\left(\bmod \left(r_{1}+1\right)\right) .
$$

Proor. The minimal vectors of $R_{m+r_{0}}$ include
(i) the vectors $\left(3.5_{1}\right)$ with $t=0 ;\left(3.5_{2}\right)$ with $t_{2}=0$;
(ii) the vectors (3.61) with $t=0$; (3.62) with $t_{2}=0$;
(iii) the vectors (3.7) with $t=0$.

Suppose all the minimal vectors of $R_{m+r_{0}}$ satisfy the relation

$$
\begin{equation*}
\sum_{1}^{m+p_{0}} \sum_{i}^{m+r_{0}} p_{i j} x_{i} x_{j}=0 \tag{3.12}
\end{equation*}
$$

$$
\left(p_{i j}=p_{i t}\right)
$$

We set

$$
q_{i j}=q_{i t}=2 p_{i j}-p_{i i}-p_{j j} \quad(i \neq j)
$$

Since R_{m} is perfect

$$
\begin{align*}
& e_{i}^{(t)}-e_{j}^{(t)}\left(1 \leqq i<j \leqq r_{t}, \quad j \neq i+1 ; \quad 1 \leqq t \leqq k\right), \tag{3.5}\\
& e_{i}^{\left(t_{1}\right)}-e_{j}^{\left(t_{2}\right)}\left(1 \leqq i \leqq r_{t_{1}}, 1 \leqq j \leqq r_{t_{2}} ; \quad 1 \leqq t_{1}<t_{2} \leqq k\right), \\
& e_{i}^{(t)}+e_{i+1}^{(t)}-e_{j}^{(t)}-e_{j+1}^{(t)}\left(1 \leqq i<j \leqq r_{t}, j>i+2 ; 1 \leqq t \leqq k\right), \tag{3.6}\\
& e_{i}^{\left(t_{1}\right)}+e_{i+1}^{\left(t_{1}\right)}-e_{i}^{\left(t_{2}\right)}-e_{j+1}^{\left(t_{1}\right)}\left(1 \leqq i<i+1 \leqq r_{t_{2}}, 1 \leqq i<j+1 \leqq r_{t_{2}} ;\right. \\
& \left.1 \leqq t_{1}<t_{\mathrm{a}} \leqq k\right), \\
& \sum_{i=1}^{r_{1}} e_{i}^{(1)}+e_{j}^{(t)}\left(1 \leqq j \leqq r_{t} ; 2 \leqq t \leqq k\right), \tag{3.7}\\
& \left.\begin{array}{l}
\sum_{i=1}^{r_{1}-1} e_{i}^{(1)}+e_{j}^{(t)}+e_{j+1}^{(t)} \\
\sum_{i=2}^{r_{1}} e_{i}^{(1)}+e_{j}^{(t)}+e_{j+1}^{(t)}
\end{array}\right\}\left(1 \leqq j<j+1 \leqq r_{i} ; 2 \leqq t \leqq k\right) . \tag{3.8}
\end{align*}
$$

$$
\begin{equation*}
p_{i j}=0 \quad(1 \leqq i \leqq j \leqq m) \tag{3.13}
\end{equation*}
$$

and so

$$
\begin{equation*}
q_{i j}=0 \quad(1 \leqq i<j \leqq m) \tag{3.14}
\end{equation*}
$$

From the vectors (3.9),

$$
q_{i j}=0
$$

for i, j taken over the ranges given in (3.5).
If $r_{0} \geqq 2$, from the vectors (3.10) we obtain

$$
q_{i, i+1}+q_{j, j+1}=0
$$

where i, j take values as in (3.6). Using (3.14),

$$
q_{i, j+1}=0 \quad\left(m+1 \leqq j<j+1 \leqq m+r_{0}\right)
$$

and hence

$$
q_{i j} \equiv 0 \quad\left(1 \leqq i<j \leqq m+r_{0}\right)
$$

It follows that (3.12) must be of the form

$$
\left(\sum_{1}^{m+r_{0}} x_{i}\right)\left(\sum_{1}^{m+r_{0}} p_{i j} x_{j}\right)=0
$$

From (3.13), $p_{j j}=0(1 \leqq j \leqq m)$; now using the vectors (3.11),

$$
p_{j j}=0 \quad\left(m+1 \leqq j \leqq m+r_{0}\right)
$$

and $R_{m+r_{0}}$ is perfect.
We now examine those forms which cannot be obtained in this way.
I. Forms containing three terms $A_{r_{t}},\left(r_{1} \geqq r_{2} \geqq r_{3} \geqq 2\right)$.
and

$$
f(x)=A_{r_{1}}\left(x^{(1)}\right)+A_{r_{\mathrm{s}}}\left(x^{(2)}\right)+A_{r_{\mathrm{s}}}\left(x^{(3)}\right)
$$

$$
\sum_{1}^{m} x_{i} \equiv 0\left(\bmod \left(r_{1}+1\right)\right)
$$

We again consider a quadratic relation

$$
\begin{equation*}
\sum_{i}^{m} \sum_{1}^{m} p_{i j} x_{i} x_{j}=0 \tag{3.15}
\end{equation*}
$$

satisfied by all the minimal vectors.
From the vectors (3.5),

$$
q_{i j}=0,
$$

where i, j take the values given in (3.5) (with $k=3$). Similarly, from (3.6) we have

$$
q_{i, i+1}+q_{i, j+1}=0
$$

again with the ranges of i, j as in (3.6), and since f contains three terms, it follows that

$$
q_{i, i+1}=q_{3, j+1}=0
$$

Hence (3.15) can be written

$$
\left(\sum_{i}^{m} x_{i}\right)\left(\sum_{i}^{m} p_{i j} x_{j}\right)=0 .
$$

Finally, from the vectors (3.8) it easily follows that

$$
p_{j j}=0 \quad(1 \leqq j \leqq m)
$$

and R_{m} is perfect.
II. Forms containing just two terms $A_{r_{1}}, A_{r_{2}}\left(r_{1} \geqq r_{2} \geqq 2\right)$.

$$
f(x)=A_{r_{1}}\left(x^{(1)}\right)+A_{r_{2}}\left(x^{(2)}\right)
$$

with lattice

$$
\sum_{1}^{m} x_{i} \equiv 0\left(\bmod \left(r_{1}+1\right)\right)
$$

For $r_{1} \geqq 5$, it is easy to show that R_{m} is perfect, using the same method as in I. However, R_{m} is not perfect in the following cases:
$R_{5}(3,2)$: this case is trivial, since now $s<N=\frac{1}{2} m(m+1)$.
$R_{6}(3,3)$: all minimal vectors satisfy the relation

$$
\left(y_{1}+y_{2}+y_{3}\right)^{2}-\left(y_{4}+y_{5}+y_{6}\right)^{2}-4\left(y_{1} y_{2}+y_{2} y_{3}-y_{4} y_{5}-y_{6} y_{6}\right)=0
$$

$R_{6}(4,2):$ we find $s=20<N=21$.
$R_{7}(4,3)$: all minimal vectors satisfy

$$
-\left(\sum_{1}^{4} y_{i}\right)^{2}+\left(\sum_{5}^{7} y_{i}\right)^{2}+5\left(y_{1} y_{2}+y_{2} y_{3}+y_{3} y_{4}-y_{5} y_{6}-y_{6} y_{7}\right)=0
$$

$R_{8}(4,4)$: all minimal vectors satisfy
$g(y)=-\left(\sum_{1}^{4} y_{i}\right)^{2}+\left(\sum_{5}^{8} y_{i}\right)^{2}+5\left(y_{1} y_{2}+y_{2} y_{3}+y_{3} y_{4}-y_{6} y_{6}-y_{6} y_{7}-y_{7} y_{8}\right)=0$.
We note here that $R_{9}(4,4,1)$ is perfect. For, consider the relation

$$
k g(y)+2 \sum_{i<9} p_{i 9} y_{i} y_{9}+p_{99} y_{9}^{2}=0
$$

From the minimal vectors $e_{i}-e_{9}$, we have

$$
\begin{array}{ll}
2 p_{i 9}=p_{99}-k & (1 \leqq i \leqq 4) \\
2 p_{i 9}=p_{09}+k & (5 \leqq i \leqq 8)
\end{array}
$$

Now using the vectors

$$
e_{1}+e_{2}+e_{3}+e_{4}+e_{9}, \quad e_{5}+e_{8}+e_{7}+e_{8}+e_{9},
$$

we obtain

$$
p_{99}+k=0, \quad p_{99}-k=0
$$

hence f is perfect.
Similarly $R_{7}(3,3,1)$ is perfect.
III. Forms containing a single term A_{m}.

$$
f(x)=A_{m}(x)=x_{1}^{2}-x_{1} x_{2}+x_{2}^{2}-\cdots-x_{m-1} x_{m}+x_{m}^{2}
$$

with lattice

$$
\sum_{1}^{m} x_{i} \equiv 0(\bmod (m+1)) .
$$

If we apply the unimodular transformation

$$
x=T y=\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
\cdot & 1 & 1 & \cdots & 1 \\
\cdot & \cdot & 1 & \cdots & 1 \\
\cdot & \cdot & \cdot & & \\
\cdot & \cdot & \cdot & \cdots & 1
\end{array}\right) y
$$

we obtain the form

$$
2 f(x)=\sum_{1}^{m} y_{i}^{2}+\left(\sum_{i}^{m} y_{i}\right)^{2}
$$

with lattice

$$
\sum_{1}^{m} i y_{i} \equiv 0(\bmod (m+1))
$$

This is the form P_{m}, known to be perfect and extreme for $m \geqq 6$. (For $m \geqq 8$, perfection can be established as in I).
3.3. Equivalences to Known Forms. We have the following equivalences:
(i) $R_{7}(3,3,1) \sim P_{7}$ under the transformation

$$
y=T_{1} x=\frac{1}{4}\left(\begin{array}{rrrrrrr}
-3 & -2 & -1 & \cdot & 1 & -2 & -1 \\
-2 & \cdot & 2 & \cdot & 2 & \cdot & -2 \\
-1 & -2 & 1 & \cdot & -1 & -2 & -3 \\
1 & 2 & -1 & \cdot & 1 & -2 & -1 \\
2 & 4 & 2 & 4 & 2 & \cdot & 2 \\
3 & 2 & 1 & 4 & 3 & 2 & 1 \\
2 & \cdot & 2 & \cdot & 2 & \cdot & 2
\end{array}\right) x
$$

(ii) $R_{8}(3,3,1,1) \sim Q_{8}$ under the transformation
$\boldsymbol{y}=T_{2} \boldsymbol{x}=\frac{1}{4}\left(\begin{array}{rrrrrrrr}2 & -1 & \cdot & 1 & -2 & -1 & \cdot & 1 \\ 2 & \cdot & 2 & \cdot & -2 & \cdot & -2 & \cdot \\ \cdot & -1 & 2 & 1 & \cdot & -1 & -2 & 1 \\ -1 & \cdot & 1 & 2 & -1 & \cdot & 1 & -2 \\ \cdot & 2 & \cdot & 2 & \cdot & -2 & \cdot & -2 \\ -1 & 2 & 1 & \cdot & -1 & -2 & 1 & \cdot \\ -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right) \boldsymbol{x}$.
3.4 The Eutaxy of $R_{m}\left(r_{1}, \cdots, r_{k}\right)$. The adjoint $F(x)$ of the form (3.1) is a multiple of

$$
\begin{equation*}
f^{*}(x)=\sum_{i=1}^{k} A_{r_{i}}^{*}\left(x^{(t)}\right) \tag{3.16}
\end{equation*}
$$

where

$$
\frac{1}{2}\left(r_{t}+1\right) A_{r_{i}}^{*}\left(x^{(t)}\right)=\sum_{i=1}^{r_{i}}\left(x_{i}^{(t)}\right)^{2}+\sum_{i=1}^{r_{i}-1}\left(x_{i}^{(t)}+x_{i+1}^{(t)}\right)^{2}+\cdots+\left(\sum_{i=1}^{r_{t}} x_{i}^{(t)}\right)^{2} .
$$

We next consider the problem of deciding when $\boldsymbol{R}_{\boldsymbol{m}}$ is eutactic, i.e. when its adjoint $F(x)$ is expressible as

$$
\begin{equation*}
F(x)=\sum_{1}^{\dot{\prime}} \rho_{k} \lambda_{k}^{2}, \quad \quad \rho_{k}>0 \tag{3.17}
\end{equation*}
$$

where $\lambda_{k}(k=1, \cdots, s)$ are the associated linear forms.
If for some $i, j,(1<i<j \leqq k)$ we have

$$
r_{i}+r_{i}<r_{i}+1
$$

then $R_{m}\left(r_{1}, \cdots, r_{k}\right)$ is not eutactic.
For the coefficient of $x_{1}^{(i)} x_{1}^{(j)}$ in $F(x)$ is zero, and now the only linear forms λ_{k} for which λ_{k}^{2} involves a term in $x_{1}^{(i)} x_{1}^{(j)}$ are

$$
\begin{aligned}
\lambda_{a} & \equiv x_{1}^{(i)}-x_{1}^{(j)}, \\
\lambda_{b} & \equiv x_{1}^{(i)} f x_{2}^{(i)}-x_{1}^{(j)}-x_{2}^{(j)}, \\
& \vdots \\
\lambda_{d} & \equiv \sum_{k=1}^{r_{j}}\left(x_{k}^{(i)}-x_{k}^{(j)}\right) .
\end{aligned}
$$

Equating coefficients of $2 x_{1}^{(i)} x_{1}^{(j)}$ in (3.17), we obtain

$$
-\rho_{a}-\rho_{b}-\cdots-\rho_{d}=0,
$$

and so R_{m} cannot be eutactic.
There appears to be no completely general result for the remaining forms R_{m}. However, the calculations required for any particular form are greatly simplified by the use of Theorem 2.1.

For completeness, we note the following elements of the group G of automorphs of $F(x)$:

$$
\begin{aligned}
& U_{i}=\left(x_{j}^{(i)} \rightarrow x_{r_{i}^{(i+1-j}}^{(i)},\left(j=1, \cdots, r_{i}\right)\right) ;(i=1, \cdots, k) ; \\
& V_{i j}=\left(x_{k}^{(i)} \rightarrow x_{k}^{(j)},\left(k=1, \cdots, r_{i}\right)\right) ; \text { provided } r_{i}=r_{3} ; \\
& W=\left(x_{i}^{(1)} \rightarrow x_{i+1}^{(1)},\left(i=1, \cdots, r_{1}-1\right) ; x_{r_{1}}^{(1)} \rightarrow-\sum_{i=1}^{r_{1}} x_{i}^{(1)}\right) .
\end{aligned}
$$

Finally, in view of the equivalence $R_{8}(3,3,1,1) \sim Q_{8}$ we note that the form Q_{8} is not extreme, contrary to the statement made in [3, I], p. 79.

In Table 1 are listed the new forms $R_{m}\left(r_{1}, \cdots, r_{k}\right)$ for $m=7,8,9$. The columns give respectively the value of m; the values of the parameters r_{1}, \cdots, r_{k} as a partition of m; the quantity $\Delta=(2 / M)^{m} D$; the number s of pairs of opposite minimal vectors; and whether the form is extreme (E), or perfect and not extreme (P).

Table 1
The forms $R_{m}\left(r_{1}, r_{2}, \ldots, r_{k}\right)$ for $m=7,8,0$.

m	Partition of m	Δ	s	P or E
7	$6+1$	$7^{2} / 2^{6}$	28	E
	$5+2$	$3^{4 / 24}$	30	E
	$3+2+2$	$3^{3} / 2$	32	E
8	$7+1$	4	44	\boldsymbol{P}
	$6+2$	3. $7^{3} / 2^{8}$	42	E
	$5+3$	$3^{2} / 2^{8}$	49	P
	$6+1+1$	$7^{3} / 2^{4}$	36	P
	$5+2+1$	$3^{4} / 2^{4}$	38	\boldsymbol{P}
	$4+2+2$	$3^{3} .5^{3} / 2^{\text {a }}$	40	P
	$3+3+2$	3	52	E
	$3+2+2+1$	$3^{2} / 2$	40	\boldsymbol{P}
9	$8+1$	$3{ }^{4} / 2^{3}$	63	E
	$7+2$	3	60	E
	$6+3$	$7^{3} / 2^{7}$	64	E
	$5+4$	$3^{3} \cdot 5 / 2^{4}$	76	E
	$7+1+1$	4	53	P
	$6+2+1$	3. $7^{3} / 2^{\text {a }}$	51	P
	$5+3+1$	$3^{3} / 2^{\text {a }}$	58	P
	$5+2+2$	$3^{5} / 2^{6}$	53	P
	$4+4+1$	$5^{4} / 2^{\text {s }}$	70	E
	$4+3+2$	3. $5^{3} / 2^{7}$	60	E
	$3+3+3$	2	78	E
	$6+1+1+1$	$7{ }^{3} / 2^{4}$	45	\boldsymbol{P}
	$5+2+1+1$	$3^{4} / 2^{4}$	47	P
	$4+2+2+1$	$3^{2} .5^{3} / 2^{3}$	49	\boldsymbol{P}
	$3+3+2+1$	3	62	\boldsymbol{P}
	$3+2+2+2$	$3^{3} / 2^{\text {a }}$	56	E
	$3+3+1+1+1$	4	55	P
	$3+2+2+1+1$	$3{ }^{2} / 2$	49	\boldsymbol{P}

4. Theorems on sections of positive quadratic forms

4.1. The Perfection of a Section. Let $g\left(x_{1}, \cdots, x_{n+1}\right)$ be an arbitrary positive definite form with minimum M for integral $\boldsymbol{x} \neq 0$, and let $f\left(x_{1}, \cdots, x_{n}\right)$ be the section obtained by setting

$$
\begin{equation*}
\sum_{1}^{n+1} \alpha_{i} x_{i}=0 \quad\left(\alpha_{n+1} \neq 0, \alpha_{i} \text { integral }\right) \tag{4.1}
\end{equation*}
$$

Theorem 4.1. The section f is perfect if and only if any quadratic relation

$$
\begin{equation*}
\sum_{1}^{n+1} \sum_{1}^{n+1} p_{i j} x_{i} x_{j}=0 \quad\left(p_{i j}=p_{j i}\right) \tag{4.2}
\end{equation*}
$$

satisfied by all the minimal vectors common to f and g, is necessarily of the form

$$
\begin{equation*}
\left(\sum_{1}^{n+1} p_{i} x_{i}\right)\left(\sum_{1}^{n+1} \alpha_{i} x_{i}\right)=0 . \tag{4.3}
\end{equation*}
$$

Proof. After applying a suitable integral unimodular transformation, we may take (4.1) to be

$$
x_{n+1}=0
$$

in which case

$$
f\left(x_{1}, \cdots, x_{n}\right)=g\left(x_{1}, \cdots ; x_{n}, 0\right)
$$

and (4.3) becomes

$$
\begin{equation*}
\left(\sum_{1}^{n+1} p_{i} x_{i}\right) x_{n+1}=0 . \tag{4.4}
\end{equation*}
$$

(i) If any quadratic relation satisfied by the minimal vectors common to f and g is of the form (4.4), then f is perfect, since for all such vectors, x_{n+1} is identically zero.
(ii) Assume f is perfect. Now in (4.2) we have

$$
p_{i j} \equiv 0 \quad(1 \leqq i \leqq j \leqq n)
$$

and the relation becomes

$$
\left(2 \sum_{i=1}^{n} p_{i, n+1} x_{i}+p_{n+1, n+1} x_{n+1}\right) x_{n+1}=0
$$

which is essentially the same as (4.4).
4.2. The Adjoint of a Section. Let $f\left(x_{1}, \cdots, x_{n}, x_{n+1}\right)=\sum_{i=1}^{n+1} \sum_{j=1}^{n+1} a_{i j} x_{i} x_{j}$ be a positive quadratic form with inverse $F\left(y_{1}, \cdots, y_{n}, y_{n+1}\right)=$ $\sum_{i=1}^{n+1} \sum_{j=1}^{n+1} A_{i s} y_{i} y_{j}$. We define $g\left(x_{1}, \cdots, x_{n}\right)$ to be the n-dimensional section of f obtained by the elimination of x_{n+1} using the relation

$$
\begin{equation*}
\sum_{1}^{n+1} p_{i} x_{i}=0 . \tag{4.5}
\end{equation*}
$$

Theorem 4.2. The adjoint of $g\left(x_{1}, \cdots, x_{n}\right)$ is a multiple of

$$
\begin{equation*}
\omega\left(y_{1}, \cdots, y_{n}\right)=\kappa F\left(y_{1}, \cdots, y_{n}, y_{n+1}\right)-\left(\sum_{1}^{n+1} q_{i} y_{i}\right)^{2} \tag{4.6}
\end{equation*}
$$

where $y_{n+1}=0$, and

$$
\begin{align*}
\kappa & =F\left(p_{1}, \cdots, p_{n}, p_{n+1}\right) \tag{4.7}\\
q_{i} & =\sum_{j} A_{i s} p_{j}
\end{align*} \quad(1 \leqq i \leqq n+1) .
$$

Proof. In this proof and in § 4.3 it is convenient to obtain the section of $f\left(x_{1}, \cdots, x_{n}, x_{n+1}\right)$ by eliminating the first variable. We therefore cyclically permute the variables to bring x_{n+1} into the first position and rename it x_{0}.

Since f is a positive definite form, there now exists a transformation $\left(x_{0}, \cdots, x_{n}\right)=T\left(z_{0}, \cdots, z_{n}\right)$, where T is a regular $(n+1) \times(n+1)$ triangular matrix with elements $t_{i j}(0 \leqq i \leqq j \leqq n)$, such that

$$
\begin{equation*}
f\left(x_{0}, \cdots, x_{n}\right)=\sum_{0}^{n} z_{i}^{2} \tag{4.9}
\end{equation*}
$$

Under this transformation (4.5) becomes

$$
\begin{equation*}
\sum_{0}^{n} \alpha_{i} z_{i}=0 \tag{4.10}
\end{equation*}
$$

for some coefficients α_{i}.
We now need the following result:
Lemma 4.1. In the variables $z_{i}, g\left(x_{1}, \cdots, x_{n}\right)$ is given by

$$
\begin{equation*}
g\left(x_{1}, \cdots, x_{n}\right)=\sum_{1}^{n} z_{i}^{2}+\left(\sum_{i}^{n} \frac{\alpha_{i}}{\alpha_{0}} z_{i}\right)^{2}, \tag{4.11}
\end{equation*}
$$

obtained by eliminating z_{0} between (4.9) and (4.10).
Proof. Under the transformation T we have

$$
\begin{equation*}
f\left(x_{0}, x_{1}, \cdots, x_{n}\right)=\sum_{0}^{n} z_{i}^{2} \tag{4.12}
\end{equation*}
$$

Let $U=\left(u_{i j}\right)(0 \leqq i \leqq j \leqq n)$ be the inverse of T. Now if A is the matrix of the form f,

$$
\begin{equation*}
U^{\prime} U=A \tag{4.13}
\end{equation*}
$$

and z_{0}, \cdots, z_{n}, and x_{0}, \cdots, x_{n} are related by

$$
\begin{array}{lc}
z_{0}=u_{00} x_{0}+u_{01} x_{1}+\cdots+u_{0 n} x_{n} \tag{4.14}\\
z_{1}= & u_{11} x_{1}+\cdots+u_{1 n} x_{n} \\
\vdots & \\
z_{n}= & \vdots \\
u_{n n} x_{n} .
\end{array}
$$

Eliminating x_{0} from both sides of (4.12), using (4.14) and the relation

$$
\sum_{0}^{n} p_{i} x_{i}=0
$$

we obtain

$$
g\left(x_{1}, \cdots, x_{n}\right)=\left\{\frac{u_{00}}{p_{0}}\left(\sum_{1}^{n} p_{i} x_{i}\right)-\left(u_{01} x_{1}+\cdots+u_{0 n} x_{n}\right)\right\}^{2}+\sum_{1}^{n} z_{i}^{2}
$$

Eliminating z_{0} between (4.9) and (4.10) we obtain a form h say, where

$$
h\left(z_{1}, \cdots, z_{n}\right)=\left(\sum_{i}^{n} \frac{\alpha_{i}}{\alpha_{0}} z_{i}\right)^{2}+\sum_{1}^{n} z_{i}^{2}
$$

We shall now prove that the forms $g\left(x_{1}, \cdots, x_{n}\right), h\left(z_{1}, \cdots, z_{n}\right)$ are identical. Clearly it will suffice to show that

$$
\begin{equation*}
\left\{\frac{u_{00}}{p_{0}}\left(\sum_{1}^{n} p_{i} x_{i}\right)-\left(u_{01} x_{1}+\cdots+u_{0 n} x_{n}\right)\right\}=\sum_{i}^{n} \frac{\alpha_{i}}{\alpha_{0}} z_{i} . \tag{4.15}
\end{equation*}
$$

From (4.5) and (4.10) we have

$$
\begin{aligned}
p_{0} x_{0}+\left(\sum_{1}^{n} p_{i} x_{i}\right) & =\alpha_{0} z_{0}+\left(\sum_{1}^{n} \alpha_{i} z_{i}\right) \\
& =\alpha_{0}\left(u_{00} x_{0}+u_{01} x_{1}+\cdots+u_{0 n} x_{n}\right)+\sum_{1}^{n} \alpha_{i} z_{i}
\end{aligned}
$$

Since z_{1}, \cdots, z_{n} do not involve x_{0}, we have

$$
\begin{align*}
p_{0} & =\alpha_{0} u_{00} \tag{4.16}\\
\sum_{1}^{n} p_{i} x_{i} & =a_{0}\left(u_{01} x_{1}+\cdots+u_{0 n} x_{n}\right)+\sum_{1}^{n} \alpha_{i} z_{i} \tag{4.17}
\end{align*}
$$

Equation (4.15) now follows immediately from (4.16) and (4.17), and this completes the proof of the lemma.

The adjoint of the form (4.11), in variables contragredient to those in (4.11), is easily found to be

$$
\begin{align*}
G\left(y_{1}, \cdots, y_{n}\right) & =\sum_{i=1}^{n}\left\{1+\sum_{k=1}^{n}\left(\frac{\alpha_{k}}{\alpha_{0}}\right)^{2} w_{i}^{2}\right\}-2 \sum_{1 \leq i<j \leq n}\left(\frac{\alpha_{i}}{\alpha_{0}}\right)\left(\frac{\alpha_{j}}{\alpha_{0}}\right) w_{i} w_{j} \tag{4.18}\\
& =\left(1+\frac{1}{\alpha_{0}^{2}} \sum_{1}^{n} \alpha_{k}^{2}\right) \sum_{1}^{n} w_{i}^{2}-\frac{1}{\alpha_{0}^{2}}\left(\sum_{1}^{n} \alpha_{i} w_{i}\right)^{2} .
\end{align*}
$$

Clearly $\sum_{0}^{n} w_{i}^{2}$ is the inverse of the form (4.9), and (4.18) can be written

$$
\begin{equation*}
\alpha_{0}^{2} G\left(y_{1}, \cdots, y_{n}\right)=\left(\sum_{0}^{n} \alpha_{2}^{2}\right) \sum_{0}^{n} w_{i}^{2}-\left(\sum_{0}^{n} \alpha_{i} w_{i}\right)^{2}, \tag{4.19}
\end{equation*}
$$

subject to the condition

$$
\begin{equation*}
w_{0}=0 . \tag{4.20}
\end{equation*}
$$

Finally, applying the transformation $\left(w_{0}, \cdots, w_{n}\right)=T^{\prime}\left(y_{0}, \cdots, y_{n}\right)$ to (4.19) and (4.20), and writing $\omega\left(y_{1}, \cdots, y_{n}\right)=\alpha_{0}^{2} G\left(y_{1}, \cdots, y_{n}\right)$, we obtain

$$
\begin{equation*}
\omega\left(y_{1}, \cdots, y_{n}\right)=\kappa F\left(y_{0}, y_{1}, \cdots, y_{n}\right)-\left(\sum_{0}^{n} q_{i} y_{i}\right)^{2} \tag{4.21}
\end{equation*}
$$

where

$$
\begin{aligned}
y_{0} & =0 \\
\kappa & =\sum_{0}^{n} \alpha_{k}^{2}
\end{aligned}
$$

and q_{1}, \cdots, q_{n} are coefficients to be determined.
It now only remains to prove (4.7) and (4.8).
From (4.5) and (4.10), using (4.14) we now obtain

$$
\begin{equation*}
p_{i}=\sum_{j=0}^{n} \alpha_{j} u_{j i} . \tag{4.22}
\end{equation*}
$$

Similarly, $\left(y_{0}, \cdots, y_{n}\right)=U^{\prime}\left(w_{0}, \cdots, w_{n}\right)$, and from (4.19) and (4.21) we have

$$
\begin{equation*}
\alpha_{i}=\sum_{j=0}^{n} q_{j} u_{i j} \tag{4.23}
\end{equation*}
$$

Substituting (4.23) in (4.22) now gives

$$
\begin{aligned}
p_{i} & =\sum_{j} \sum_{k} q_{k} u_{j k} u_{j i} \\
& =\sum_{k}\left(\sum_{j} u_{j i} u_{j k}\right) q_{k} \\
& =\sum_{k} a_{i k} q_{k}
\end{aligned}
$$

using (4.13).
Hence

$$
\begin{equation*}
q_{i}=\sum_{j} A_{i j} p_{j} \tag{4.24}
\end{equation*}
$$

as required.

Now

$$
\begin{aligned}
\kappa & =\sum_{i=0}^{n} \alpha_{i}^{2} \\
& =\sum_{i}\left(\sum_{j} \sum_{k} q_{j} q_{k} u_{i j} u_{i k}\right)
\end{aligned}
$$

from (4.23). Changing the order of summation,

$$
\begin{aligned}
\kappa & =\sum_{j} \sum_{k} q_{j} q_{k}\left(\sum_{i} u_{i j} u_{j k}\right) \\
& =\sum_{j} \sum_{k} a_{j k} q_{j} q_{k} \quad(\text { by (4.13)) } \\
& =\sum_{i} \sum_{k} A_{j} p_{j} p
\end{aligned}
$$

using the e ilt (4.24).
4.3. The Determinant of a Section. In the terminology of §4.2, the form

$$
\begin{equation*}
\sum_{i}^{n} z_{i}^{2}+\left(\sum_{i}^{n} \frac{\alpha_{i}}{\alpha_{0}} z_{i}\right)^{2} \tag{4.25}
\end{equation*}
$$

is easily found to have determinant κ / x_{0}^{2}. The form $g\left(x_{1}, \cdots, x_{n}\right)$ is transformed into (4.25) under the transformation $\left(x_{0}, x_{1}, \cdots, x_{n}\right)=$ $T\left(z_{0}, z_{1}, \cdots, z_{n}\right)$. Since the transforming matrix consists of only the last n rows and columns of T, we have

$$
D(g)=\frac{t_{00}^{2}}{|T|^{2}} \cdot \frac{\kappa}{\alpha_{0}^{2}}
$$

Substituting $D(f)=1 /|T|^{2}, \kappa=F(p)$ and

$$
p_{00}=\frac{\alpha_{0}}{t_{00}}
$$

we obtain

$$
D(g)=\frac{1}{p_{0}^{2}} D(f) \cdot F(\boldsymbol{p})
$$

5. The form $S_{n}\left(r_{1}, r_{2}, \cdots, r_{k}\right)$

5.1. Definition, Minimum and Conditions for Perfection. For convenience, in this section we write $m=n+1$.

We define $S_{n}=S_{n}\left(r_{1}, r_{2}, \cdots, r_{k}\right)$ to be the section of $R_{m}\left(r_{1}, r_{2}, \cdots, r_{k}\right)$ given by

$$
\begin{equation*}
f(x)=\sum_{t=1}^{k} A_{r_{t}}\left(x^{(t)}\right), \quad\left(r_{1} \geqq r_{2} \geqq \cdots \geqq r_{k} \geqq 1, \sum_{1}^{k} r_{t}=m\right) \tag{5.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\sum_{1}^{m} x_{i}=0 \tag{5.2}
\end{equation*}
$$

We shall show that

$$
M\left(S_{n}\right)=2, D\left(S_{n}\right)=\Delta\left(S_{n}\right)=\frac{1}{2^{n+1}}\left(\prod_{i=1}^{k}\left(r_{i}+1\right)\right)\left\{\frac{1}{6} \sum_{j=1}^{k} r_{j}\left(r_{j}+1\right)\left(r_{j}+2\right)\right\}
$$

Since the values taken by S_{n} form a subset of the values taken by the corresponding R_{m}, it follows that $M\left(S_{n}\right)=2$, and the minimal vectors of S_{n} are just those minimal vectors of R_{m} which satisfy (5.2).

We have an immediate analogue of Lemma 3.1 which we merely state.
Lemma 5.1. If the form S_{n} defined by (5.1) and (5.2) is perfect, then so is the form $S_{n+r_{0}}\left(r_{0} \leqq r_{1}\right)$:

$$
f_{0}\left(x, x^{(0)}\right)=f(x)+A_{r_{0}}\left(x^{(0)}\right)
$$

where

$$
\sum_{i}^{m i+r_{i}} x_{i}=0
$$

Now we need only consider those forms which cannot be obtained in this way.

By applying Theorem 4.1 to the forms R_{m}, we find that the corresponding section S_{n} is perfect if and only if either
(i) S_{n} contains a single term A_{m}, and $m \geqq 8$; or
(ii) S_{n} contains just two terms $A_{r_{1}}, A_{r_{2}}\left(r_{1} \geqq r_{2} \geqq 2\right.$,

$$
\left.r_{1}+r_{2}=m\right) \text { and } r_{1} \geqq 5 ; \text { or }
$$

(iii) S_{n} contains three terms $A_{r_{1}}, A_{r_{3}}, A_{r_{3}},\left(r_{1} \geqq r_{2} \geqq r_{3} \geqq 2, \sum_{1}^{3} r_{i}=m\right)$, (or S_{n} can be obtained from one of these using Lemma 5.1).
5.2. Calculation of the Determinant of S_{n}. From § 4.3 we see that the determinant D of S_{n} is given by

$$
D=\frac{1}{p_{m}^{2}} D(f) \cdot F(p)
$$

where here

$$
p=\left(p_{1}, p_{2}, \cdots, p_{m}\right)=(1,1, \cdots, 1)
$$

f is the form of the corresponding R_{m}, and F its adjoint.
Now

$$
F(x)=\sum_{t=1}^{k} A_{r_{i}}^{*}\left(x^{(t)}\right)
$$

where

$$
\frac{1}{2}(r+1) A_{r}^{*}(x)=\sum_{1}^{r} x_{i}^{2}+\sum_{1}^{r-1}\left(x_{i}+x_{i+1}\right)^{2}+\cdots+\left(\sum_{1}^{r} x_{i}\right)^{2}
$$

Hence

$$
\begin{aligned}
\frac{1}{2}(r+1) A_{r}^{*}(1,1, \cdots, 1) & =\sum_{i=1}^{r} i^{2}(r-i+1) \\
& =(r+1)\left\{\frac{r(r+1)(2 r+1)}{6}\right\}-\left\{\frac{r(r+1)}{2}\right\}^{2} \\
& =\frac{1}{12} r(r+1)^{2}(r+2)
\end{aligned}
$$

Therefore

$$
A_{r}^{*}(1,1, \cdots, 1)=\frac{1}{6} r(r+1)(r+2),
$$

and

$$
F(p)=\frac{1}{6} \sum_{j=1}^{k} r_{j}\left(r_{j}+1\right)\left(r_{j}+2\right)
$$

Also, it is easily verified that

$$
D(f)=\prod_{t=1}^{k}\left(\frac{r_{t}+1}{2^{r_{t}}}\right)=\frac{1}{2^{m}} \prod_{t=1}^{k}\left(r_{t}+1\right) .
$$

Hence

$$
D=\frac{1}{2^{m}} \prod_{t=1}^{k}\left(r_{t}+1\right)\left\{\frac{1}{6} \sum_{j=1}^{k} r_{j}\left(r_{j}+1\right)\left(r_{j}+2\right)\right\}
$$

5.3. Equivalences amongst the Forms S_{n}. We have the following equivalences:
(i) $S_{7}(4,2,2) \sim S_{7}(6,2)$, under the transformation

$$
x \rightarrow\left(\begin{array}{rrrrrrr}
\cdot & \cdot & 1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & -1 & \cdot \\
1 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & -1 & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & 1 & \cdot & 1 & 1 \\
-1 & \cdot & -1 & \cdot & -1 & \cdot & -1 \\
\cdot & \cdot & \cdot & \cdot & 1 & \cdot & \cdot
\end{array}\right) x
$$

(ii) $S_{7}(8) \sim S_{7}(5,3)$ under the transformation

$$
x \rightarrow\left(\begin{array}{rrrrrrr}
\cdot & -1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
-1 & -1 & -1 & \cdot & -1 & -1 & -1 \\
-1 & -1 & \cdot & -1 & -1 & -1 & -1 \\
\cdot & \cdot & \cdot & \cdot & -1 & \cdot & \cdot \\
1 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\cdot & 1 & \cdot & \cdot & 1 & 1 & \cdot
\end{array}\right) x
$$

(iii) $S_{8}(9) \sim S_{8}(5,4)$ under the transformation

$$
\boldsymbol{x} \rightarrow\left(\begin{array}{rrrrrrrr}
\cdot & 1 & \cdot & 1 & \cdot & 1 & \cdot & 1 \\
\cdot & 1 & \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot & 1 & \cdot & \cdot \\
1 & \cdot & 1 & \cdot & 1 & 1 & \cdot & 1 \\
\cdot & \cdot & \cdot & \cdot & 1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & -1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & -1 & 1 & \cdot \\
\cdot & -1 & -1 & \cdot & -1 & -1 & \cdot & -1
\end{array}\right) \boldsymbol{x}
$$

5.4 The Adjoint and Eutaxy of S_{n}. We generally take S_{n} to be the form obtained by eliminating x_{m} between (5.1) and (5.2). Then from § 4.2, we find that the adjoint of S_{n} is given by a multiple of

$$
\omega(y)=\kappa F\left(y, y_{m}\right)-\left(\sum_{1}^{m} q_{i} y_{i}\right)^{2}
$$

where $y_{m}=0, F\left(y, y_{m}\right)$ is the inverse of $R_{m}\left(r_{1}, \cdots, r_{k}\right)$, and

$$
\kappa=F(p)=\frac{1}{6} \sum_{j=1}^{k} r_{j}\left(r_{j}+1\right)\left(r_{j}+2\right)
$$

Also

$$
\begin{align*}
q_{i} & =\sum_{j=1}^{m} A_{i j} p_{j} \\
& =\sum_{j=1}^{m} A_{i j} .
\end{align*}
$$

Now the (i, j) th component of an arbitrary $A_{\dot{*}}^{*}$ from the adjoint of R_{m}, is found to be for $j \geqq i$

$$
A_{i j}=\frac{2}{r+1} i(r-j+1)
$$

Hence

$$
\begin{aligned}
\sum_{j=1}^{r} A_{i j} & =\sum_{j=1}^{i-1} A_{i i}+\sum_{j=i}^{r} A_{i j} \\
& =\frac{2}{r+1}\left\{\sum_{j=1}^{i-1}(r-i+1) j+\sum_{j=i}^{r} i(r-j+1)\right\} \\
& =\frac{2}{r+1}\left[\frac{1}{2} i(i-1)(r-i+1)+i\left\{(r+1)(r-i+1)-\left(\frac{1}{2} r(r+1)-\frac{1}{2} i(i-1)\right)\right\}\right] \\
& =i(r-i+1) .
\end{aligned}
$$

Thus the q_{i} corresponding to the i th variable of an arbitrary A_{r} is given by

$$
q_{i}=i(r-i+1)
$$

Having identified the adjoint ω_{n} of S_{n}, we now apply Voronoi's criterion for eutactic forms, and test whether or not ω_{n} can be expressed as

$$
\begin{equation*}
\omega_{n}=\sum_{1}^{8} \rho_{k} \lambda_{k}^{2}, \quad\left(\rho_{k}>0, k=1, \cdots, s\right) \tag{5.3}
\end{equation*}
$$

This is in general difficult; we have however the following simple case. Suppose

$$
\begin{equation*}
r_{1}>r_{2}>\left[\frac{r_{1}}{2}\right]-1 \tag{5.4}
\end{equation*}
$$

Now, subject to (5.4), the only terms λ_{k}^{2} in (5.3) which give rise to the product $y_{1} y_{r_{2}+1}$, contain the square of the difference $y_{1}-y_{r_{2}+1}$. Thus if S_{n} is eutactic, the coefficient of $y_{1} y_{r_{2}+1}$ in ω_{n} must be negative.

Hence we must have

$$
\kappa \frac{2}{r_{1}+1}\left(r_{1}-r_{2}\right)-r_{1}\left(r_{2}+1\right) \cdot\left(r_{1}-r_{2}\right)<0 ;
$$

that is

$$
\begin{equation*}
2 \kappa<\gamma_{1}\left(r_{1}+1\right)\left(r_{2}+1\right) \tag{5.5}
\end{equation*}
$$

We find that the following forms S_{n} do not satisfy (5.5):

$$
\begin{array}{llll}
S_{7}(3,2,2,1), & S_{8}(3,2,2,2), & S_{8}(3,2,2,1,1), & S_{9}(4,3,3) \\
S_{9}(4,2,2,2), & S_{9}(4,2,2,1,1), & S_{9}(3,2,2,2,1), & S_{9}(3,2,2,1,1,1)
\end{array}
$$

It follows that these forms are not eutactic, and so not extreme.
In Table 2 are listed the new forms $S_{n}\left(r_{1}, \cdots, r_{k}\right)$ for $n=7,8,9$. The columns give respectively the value of n; the values of the parameters r_{1}, \cdots, r_{k} as a partition of $n+1$; the quantity $\Delta=(2 / M)^{n} D$; and the number s of pairs of opposite minimal vectors. All these forms have been shown to be perfect; those known to be non-extreme are denoted by a (P).

Table 2
The forms $S_{n}\left(r_{1}, \ldots, r_{k}\right)$ for $n=7,8,9$.

n	Partition of m	Δ	s
7	$6+2$	3^{3}. $5.7 / 2^{4}$	30
	$5+3$	3^{3}. 5/2 ${ }^{5}$	34
	$5+2+1$	3^{3}. $5 / 2^{2}$	28
	$3+2+2+1$	$3^{\mathbf{2}}$. 19/2 ${ }^{\text {a }}$	29(P)
8	$8+1$	$3^{\mathbf{2}} .11 / 2^{\text {a }}$	42
	$7+2$	3. 11/2 ${ }^{\text {a }}$	42
	$6+3$	3.7.11/2	46
	$5+4$	3.53.11/24	50
	$6+2+1$	3.7.61/2 ${ }^{\text {3 }}$	38
	$5+3+1$	3.23/2 ${ }^{6}$	42
	$5+2+2$	$3^{3} .43 / 2^{4}$	40
	$4+3+2$	3.5.17/2 ${ }^{\circ}$	43
	3+3+3	3. $5 / 2^{2}$	45
	$5+2+1+1$	$3^{3} .41 / 2^{\text {b }}$	36
	$4+2+2+1$	$3^{3} .5 .29 / 2^{8}$	38
	$3+2+2+2$	$3^{3} .11 / 2^{2}$	40(P)
	$3+2+2+1+1$	$3^{3} .5 / 2^{7}$	$37(P)$
9	10	5. $11^{1 / 2} 2^{8}$	60
	$9+1$	5.83/2 ${ }^{7}$	59
	$8+2$	$3^{3} .31 / 2^{8}$	57
	$7+3$	47/24	61
	$6+4$	$5.7 .19 / 2^{8}$	66
	$5+5$	$3{ }^{2} .5 .7 / 2^{7}$	69
	$8+1+1$	$3^{3} .61 / 2^{7}$	61
	$7+2+1$	3. $88 / 2^{\circ}$	51
	$6+3+1$	7.67/2 ${ }^{7}$	55
	$6+2+2$	3^{2}. 7/2 ${ }^{4}$	52
	$5+4+1$	3.5.7/2 ${ }^{\text {b }}$	59
	$5+3+2$	$3^{3} .7^{2} / 2^{7}$	56
	$4+4+2$	3.5 $5^{2} .11 / 2^{3}$	58
	$4+3+3$	$5^{2} / 2^{\text {a }}$	69(P)
	$6+2+1+1$	3.7.31/27	47
	$5+3+1+1$	3. 47/2 ${ }^{5}$	51
	$5+2+2+1$	$3^{3} .11 / 2^{8}$	49
	$4+3+2+1$	3. $5^{2} .7 / 2^{7}$	52
	$4+2+2+2$	$5.33 / 2^{4}$	$51(P)$
	$3+3+3+1$	31/2	54
	$3+3+2+2$	3^{3}. 7/2 ${ }^{4}$	45
	$4+2+2+1+1$	$3^{3} .5^{1 / 2}{ }^{7}$	47(P)
	$3+3+2+1+1$	3, 13/2 ${ }^{\text {a }}$	49
	$3+2+2+2+1$	$3^{1.23 / 2^{2}}$	49(P)
	$3+2+2+1+1+1$	$3^{3} \cdot 7 / 2^{6}$	46(P)

References

[1] Barnes, E. S., Criteria for extreme forms, This Journal 1 (1959), 17-20.
[2] Barnes, E. S., The complete enumeration of extreme senary forms, Phil. Trans. Roy. Soc. London (A) 249 (1957), 461-506.
[3] Barnes, E. S., The construction of perfect and extreme forms I and II, Acta Arith. 5 (1958), 57-79; 5 (1959), 205-222.
[4] Barnes, E. S. and Wall, G. E., Some extreme forms defined in terms of abelian groups, This Journal 1 (1959), 47-63.
[6] Chaundy, T. W., The arithmetic minima of positive quadratic forms, Quart. J. Math. (Oxford) 17 (1946), 166-192.
[8] Coxeter, H. S. M., Extreme forms, Canad. J. Math. 3 (1951), 391-441.
[7] Coxeter, H. S. M. and Todd, J. A., An extreme duodenary form, Canad. J. Math. 5 (1951), 384-392.
[8] Korkine, A. and Zolotareff, G., Sur les formes quadratiques positives, Math. Ann. 11 (1877), 242-392.
[9] Voronoi, G., Sur quelques propriétés des formes quadratiques positives parfaites, J. reine angew. Math. 133 (1908), 97-178.
[10] Wall, G. E., On the Clifford collineation, transform and similarity groups (IV), Nagoya Math. J. 21 (1962), 199-222.

University of Adelaide, South Australia.

