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Abstract

An exact algebraic representation for the 2D elastodynamic Green's tensor is
derived. A new displacement potential decomposition is employed which
yields, in conjunction with the Pekeris-Cagniard-de Hoop method, the exact
representation. The first motions of the major arrivals are evaluated in terms
of their polarizations, radiation patterns, geometrical spreading and wave-front
singularities. The tensorial components of the Rayleigh wave on the free
surface are found and solutions for dipolar line source discussed. We also
investigate diffracted phases first noticed by Lapwood in his 1949 paper [13].

Introduction

Ever since the publication of Horace Lamb's epic 1904 paper [12], elastodynamic
half-space problems under varying source conditions have been referred to as
Lamb's problem. Lamb, himself, considered only the surface displacement generated
by vertical and horizontal periodic line sources situated on the free surface of the
elastic half-space. He was able to demonstrate the arrival of the familiar sequence
of P, S and Rayleigh waves. The solution for a pulse-type source was then synthe-
sized from the periodic one.

Nankano [14] first considered the problem of a buried source and Lapwood
[13] obtained detailed asymptotic representations for all the principal phases
associated with this case. Lapwood's solution predicted various diffracted phases
largely ignored in later treatments. We shall discuss the reality of these non-least
time phases in this paper (Section 11).

A new technique developed independently by Cagniard [4] in 1939 and Pekeris
in 1940 allowed for direct evaluation of the solution for the pulse-type sources.
The method, in addition, provided a closed form exact representation for the
solution of the Lamb's problem. Pekeris, initially considered the surface pulse
and only later [15, 16] extended it to include the buried pulse-type source. Two
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elegant demonstrations of the Pekeris-Cagniard method should be noted. Garnir
[7] applied the method successfully to a corresponding acoustic problem and
Garvin [8] to the elastic buried line source problem.

The method was much improved and simplified by de Hoop [5] and most
subsequent contributions have employed de Hoop's modification. A compre-
hensive treatment of the 3D Green's tensor has recently been published by Johnson
[10]. However, the 3D case does not lend itself to the methods employed here,
which exploits to the hilt the assumed two-dimensionality. Furthermore, the 2D
case allows for a neat closed form exact representation.

In Part A of this paper we derive an expression for this exact algebraic representa-
tion. We employ a new potential decomposition for the displacements and arrive
at the solution via the Pekeris-Cagniard-de Hoop method. We believe this study
to be worth while for the following reasons. Firstly, there is no obvious way to
relate previously published solutions of the Lamb's problem to that of the Green's
tensor, which requires a very specific source function. Secondly, once the precise
Green's tensor has been found, the solution for any other source can be found
by convolution. Thirdly, a knowledge of the Green's tensor is needed in certain
Born-type scattering problems, which are beginning to find importance in seis-
mology (for example, King et al. [11]).

In Part B we investigate the principal arrivals and derive their first motions.
In this, we follow the approach of Gilbert and Knopoff [9]. Expressions in terms
of polarization vectors, source directivity (radiation pattern), geometrical spreading
and wave-front singularities are derived. The tensorial components of the Rayleigh
wave on the free-surface are evaluated and we discuss Lapwood's diffracted
phases and finally comment on the nature of the solutions for dipolar sources.
This last section has been investigated in more detail by Burridge et al. [3] and
Ben-Menahem et al. [1].

PART A

1. The equations of motion

In a uniform, isotropic elastic solid of density p and elastic constants K, fi the
elastic displacement vector n(x, t) satisfies

•u)-/zVx(Vxu)+/?F, (1.1)r dt2

where F(x, t) defines the distribution of internal body forces.

By definition, the Green's tensor Gik(x|y; t) is the elastic displacement corres-
ponding to the body force

-y) , (1.2)
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[3] 2D elastodynamic Green's tensor 387

where (y, k) refer to the source and (x, /) to the field point respectively.
Much simplification can be made by exploiting the assumed two-dimensionality

of the problem. Let us define the 2D gradient and rotation operators

3 / 3 3 \ , d ( 3 3
dx, \dxi dx2j dxj \dx2 dx

Then the Green's tensor formally satisfies the equation

,-.-<l2VV-.pid'd'\GJk = Flk, (1.4)

where a, /? are the usual P and S wave speeds. We choose coordinates so that (1.4)
holds in the half-space x2 > 0. The source is assumed internal so that y2 > 0 also.
For boundary conditions we shall take the usual conditions of zero surface traction
on x2 = 0 (that is, a free surface) and vanishing of all quantities as x2->oo. Since
the stress components can be written in the form

ru = {K — $fi) (3* uk)d,j+/i(d' Uj + & ut),

the surface boundary condition ri2 =0 on x2 = 0 becomes

GJk = 0. (1.5)

2. The potential decomposition

Motivated by the realization that Gik can be treated as a vector for fixed source
direction k, we write

Glk = d<®k+d>Vk. (2.1)

Similarly, we may regard Ok, *Pk as components of a vector field over source
coordinates y, so that

<S>k = dU + dk
0Q; ^ = 3*2+4V, (2.2)

where the subscripts denote the operations (1.3) taken with respect to source
coordinates.

We thus have a representation for Gik in terms of four scalar potentials

Gik = d' d*t+s< dk
0 n+dldk

oX+d< dk
0 v. (2.3)

This representation for the Green's tensor is new and makes for much simplification
since it is always easier to deal with scalar equations. The four potentials in fact
correspond to the four possible combinations of P and S waves leaving the source
and arriving at the field point.

The reciprocity of the Green's tensor (Burridge and Knopoff [2])

<7»(x|y; 0 - <?«(y|x; 0

https://doi.org/10.1017/S1446181100001772 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100001772


388 Peter W. Buchen

imposes the following source-receiver symmetries on the potentials:

14]

n(x\y,t)=X(y\x;t); (2.4)

y/(x\y; t) = tf/(y\\; t).

Thus only three of the potentials are in fact independent. We might have expected
that the SP and PS phases are reciprocal.

We can decompose the source function Fik in exactly the same way as

F« = (C/2*) < K 0 M + <*'<#] In r, (2.5)

where we have used the well-known 2D result:

<5(x_y) = -(l/270V2lnr; r = | x - y | .

Substitution of (2.3) and (2.5) into the equation of motion (1.4) now leads to
the equivalent set of scalar equations for x2 > 0, t > 0:

2na

"0-3 W-t
(2.6)

f 3/"

The potentials are coupled in pairs through the boundary conditions

^ii&X) = @i(Q, V) — 0 onx2 = 0, (2.7)

where we have defined HS^^x) = @u(

3. Transformation of the equations and their particular solutions

Let us introduce a Laplace transform in the time domain defined by
("0

=

Jo
with c; real and positive.

The system (2.6) then transforms to equations of the form:

etc-

(3.1)

(3.2)
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This has the particular solution (with correct behaviour at r = 0)

Q
(S0(x|y; a) = -—-z

2nai

389

(3.3)

where Ko is the modified Bessel function of the second kind, of order zero. There
will also be a particular solution $o{x\y; t) with a simply replaced by /?. The
equations for H and x a r e homogeneous, so they will not involve particular
solutions.

However, it is clear that the terms in In r give a contribution to Glk equal to

2na a

which vanishes for all points such that r ^ 0. Thus for r # 0, we may take particular
solutions

(3.4)

These correspond, of course, to the direct or radiated P and S waves respectively.

4. Plane wave representation of the solution

A suitable integral representation of (3.4) for our purpose is

(4.1)

where va = (a2/a2 - £2)*; Rev a ^0 and the path of integration may lie within the
strip |Red;| <<r/« of the complex ^-plane.

We construct homogeneous solutions for the transformed potentials in the
following manner:

2no2

Q Im
fix.

Jo

-4lm I a^expt-av.-j^-v^-v^]^;
2naz ]o

(4.2)
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The constants A, B, C, D are determined through the transformed boundary

conditions on x2 = 0

These are four linear algebraic equations with solution

where

R = R(i,a) = (v 2 -£ 2 ) 2 + 4£2 va v,;'

(4.3)

(4.4)

(4.5)

5. The Pekeris-Cagniard-de Hoop representation

We seek to further modify the plane wave representation (4.1) and (4.2) with
the ultimate goal of obtaining exact expressions for the potentials and hence the
Green's tensor.

Firstly, with the similarity transformation

£=/>cr, (5.1)

we get some simplification because of the homogeneity of the integrands. The
parameter p may be called the complex surface slowness. In an obvious notation
we find

(5.2)
l,e) = o*R{py, S{Z,a) = G<S(p); T&o) = o3T(p).\

Let us define complex slowness vectors with components

where [TE*| = I/a and |s±] = Iff*! = 1//?. Note that o 1 is the orthogonal comple-
ment of s*.

Now we define complex travel times for each phase as follows:

Tp = n ± - ( x - y ) ; TS = s* - (x -y ) ;

TPP = 7t+ -x-Tt"-y; TSP = 7 r + -x - s " -y ;

TPS = s + - x - n " - y ; TSS = s + - x - s " - y .

(5.4)
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The chosen notation is of some significance. For instance, in the expression
s+ -x-7t" • y for zps we indicate that the phase leaves the source y in the negative
direction (towards the free surface) as a P wave and arrives at the field point x
in the positive direction (away from the free surface) as an S wave. The direct P
and S waves may leave the source in either direction depending on whether x2 ^y2-

Typically, we obtain representations of the type

( 5-5 )

The corresponding time-transformed component of the Green's tensor is then
given by

Gtk(SP) = d'dk
0U = -^lm f V c~k expi-ar^l^. (5.6)

2n Jo R

In a like manner we may obtain the other components

Gik(PP) = d> dk 0 , ; Gik(SS) = d'dk $x; Gik(PS) - d' dk
ol

Secondly, we introduce into each of the integrands of type (5.6) a conformal
transformation from the complex p-p\ane to the complex f-plane defined by

T(x|y;/>) = /, (5.7)

where r successively represents rp, rs, xpp, etc. The path in the complex. />-plane
which conformally corresponds to the positive real f-axis of the complex /-plane
is called the Pekeris-Cagniard-de Hoop path, which we shall denote here by T.

If the original path in the/?-plane from \p\ < I/a on real axis to ioo can be con-
tinuously distorted into F we will have a direct way of determining the time-
dependent components of the Green's tensor. For example, in the case of the SP-
phase of equation (5.6) we will have

Gik(SP) = I J - l l m L + f f 4 - | & l }exp(-(rt)*- (5-8)
J { 2n 1 R(p) J )Jo { 2n 1_ R(p)

Whence by the definition (3.1) of the Laplace transform we can write down, by
inspection, the time-dependent Green's tensor Gik(SP). It is just the expression
in{}.

For completeness, we give the final result. The Green's tensor Gik(x\y; t) is the
sum of the following components:
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e T , ±.Gik(P) = x-Im[nf n
In

Gik(S) = —
In

In

Gik{SS) = -^-\m\a!ok-

\n>'n'kTT^^A ;
L R(P) Jr'"'=(

at ak -^PMf, ;
[_ R(p) Jrss=(

Gik(SP) = + -T(P)].

(5.9)

271

Each square bracket in (5.9) is a function of the complex surface slowness
p =/»(x|y; t) defined by the transformation (5.7). The term p can then be found
by evaluating dp/dt. Since the function R(p), S(p) and T(p) are algebraic, our
solution is an exact algebraic representation for the 2D Green's tensor.

The following Sections are concerned with specific details of this basic solution.

PART B

6. The direct P and S waves

Let r, 6 be plane polar coordinates of the field point x relative to the source y
as origin. Then the equation xp = t can be solved for p as a complex function of
r, 9 and /. We find

t „ //„
p = -cosflH—?|sin#|,

where

Then it follows that

t

r

\i(r2l<x2-t2f, t<r[<x.

(6.1)

(6.2)

p = itjjt,; -[t

The complex /j-plane has branch points &tp = ± I/a with branch cuts, defined by

Re?/a = 0, running along the real axis for \p\ > I/a. Details are shown in Fig. 1.
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[9] 2D elastodynamic Green's tensor 393

i m p

p - plane

Fig. 1. The complex p-plane with branch cuts defined by Rej/a = 0 and the Pekeris-Cagniard-de
Hoop path F defined by r^xly; />) = ' ; ' real and positive.

Now all quantities in the expression for Gik(P) in equation (5.9) are real when
O<t<r/oc, so that in this range Gik{P) = 0 as expected. We thus obtain the exact
representation

Gik{P) = 7 n h -t. k~\ H{t - r/«).

Similarly, for the direct S wave we find

Gik(S) = ^ f ^ i &k -1, rt >J H(t - r/fi)

(6.3)

(6.4)

with tp defined as in (6.2). These expressions are a succinct form of the line-source
radiated fields calculated by Eason et al. [6].

First motions are easily derived by expanding about t>r/a and t^,r/f] respec-
tively. We find, in this way,

2a)* n
(6.5)

We identify fh 0t as unit P and 51 wave polarization vectors, indicating longitudinal
and transverse particle motions respectively. The radiation patterns (source
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directivities) are (for fixed A:) rk and §k. The term r~* is due to geometrical spreading
of the wave-fronts and the terms (t-r/a)'*, etc. are the usual 2D wave-front
singularities.

Since the 5 to P amplitude ratio is (a//?)*, the simple line source generates 5
more efficiently than P.

Finally we observe that for t appreciably larger than /•//? (and hence also r/u),
there is a finite transverse component in the P wave and similarly a finite longi-
tudinal component in the 5 wave. However, as f-> oo, our solution indicates that
their sum Gik(P)+Gtk(S) tends to zero.

7. The reflected PP and SS waves

Here we shall be principally concerned with the first motions of the reflected
PP and 5 5 phases. For this purpose, we now define polar coordinates r, 9 relative
to the image source y* = Q>i, — y2)-

We leave out the details of the calculations, which in any case are very similar
to that of Gilbert and Knopoff [9]. It is found that

for t>r/ix where

_ 4 sin 9 cos2 6>(«2/j82 - cos2 9f -{a2 IP2- cos2 9f

^ p p ( ) ~ 4 sin 9 cos2 0(«2/j82 - cos2 9f + (a2/^2 - cos2 9f

is the usual PP-reflection coefficient for angle of incidence 6. These expressions
are seen to be associated with the surface slowness p~(\/a)cos9. For the SS

wave, the first motion occurs at a surface slowness p ~ (l//?)cos0 and immediately
a difficulty arises.

Terms in the expression for Gik(SS) of equation (5.9) contain the factor
^ _ (j/a2_£2)±. This factor is real if 9>9C where 0C = cos~'(/?/a) is the critical
angle. The first motions will be different in the two regions. We find, near

where

and

cos219 - 4 sin 9 cos2 9(P2/a2 - cos2 9? Q>Q

cos419 +16 sin2 9 cos4 0(cos2 9 -£2/oc2)'
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[11] 2D elastodynamic Green's tensor 395

Note that at critical incidence 0 = 9C, these reduce to
wave is totally internally reflected.

= 0lss = 1 and the

8. The SPS-head wave

All terms in the expression for Gik(SS) of equation (5.9) are real when t<rjp
and 6>0c implying Gik(SS) = 0 in this domain. However, for t>r/(l, 6<9C the
factor rjx becomes pure imaginary in the interval of the real /?-axis l/a< \p\ < 1//?.
Thus it would appear that an additional disturbance sets in at t = tc corresponding
to p = I/a. (See Fig. 2.) That is

(8.1)

This is consistent with a ray-path which leaves the source y as an 5 wave at critical
incidence, runs along the surface as a P wave and arrives at the field point x as an
S wave, again at the critical angle. This is a diffracted wave called the SPS-head
wave.

imp

p - plane

t = 0.
*&?<*•

V

vp Vv

• re p

-1/Y-vp
-1'/a "VpsinQ Vn

Fig. 2. The complex p-plane for Gik(SS) with branch cuts defined by Re/?a = 0 and Re t/p = 0.
The Pekeris-Cagniard-de Hoop path P defined by rss = t indicates the arrival of the Head Wave

at p = I/a (/ = tc). The Rayleigh poles at p = ± \/y are also indicated.

Its first motion can be obtained in the usual manner by expanding about t>tc,
corresponding to a surface slowness p~ I/a. On simplification, we find

(8-2)
n cos 2UC
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with the polarization vector 0( and source directivity O'k being evaluated at the
critical angle. Note the r"* dependence and lack of singularity at the wave-front

= tr.

9. The reflected SP and PS waves

In the Pekeris-Cagniard-de Hoop representation for the SP phase we shall set

b

which of course implies

cos 5 cos <b sin 9 sin <
• <» =tR—r-

a b a

This immediately gives rjx and rjf as

1 • n U* n

tja = -s\n» cos9; Ti» =
a a

If we now define ra, r^ through

-
b

ltt>
b

we identically satisfy TSP = t when

r-l + rJ
a b

(9.1)

(9.2)

(9.3)

(9.4)

(9.5)

In essence, equations (9.2), (9.4) and (9.5) determine the six quantities 9, </>, a, b,
ra, rp as functions of x, y and t. They have the geometrical interpretation shown in
Fig. 3. In Fig. 3, we may think of y* and x^ as image points for the SP phase. The

Fig. 3. The ray-paths and image systems for the reflected SP-phase, with angle of incidence ^ and
angle of reflection S.
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[13] 2D elastodynamic Green's tensor 397

path y* to x corresponds to an equivalent P wave; the path y to x^ to an equivalent
S wave. The term p is found to be

The SP first motion corresponds to

a b rp rx cos^ cosS

a P p a ' P /? a '

The last of these is the usual Snell's law of reflection.
Expanding about tk.(rplP) + (rx/a) = tSP we find

Gik(SP) ^— r i(9)dl(0)0lSp((t>)rSP(t - tSP)"
(2a)* n

where the SP-reflection coefficient

SP (tan2 <j>-1)2 + 4 tan 9 tan <f

for incident angle ^ and reflection angle 9. The geometrical
given by

r rpx2[(<x/fi)i'p + rx]
* SP 2 i 2 '

The unit polarization vector f ,(3) = (cos S, sin 9) relative to
source directivity &'k{<j>) = — (sin^, cos^) relative to the image x

(9.7)

*, (9.8)

(9.9)

spreading factor is

(9.10)

the image y*. The
*

The analysis for the PS phase is much the same, as would be expected by
reciprocity. In place of equation (9.4) we set

x^-r.cos^cos*!

y2 = ra sin S ; x2 = rfi sin <f>. J

The first motion is found to be

/""" / D C\ /) (As\ d i 0\ /Tfr (0\T~" (4 4 \~
\J i\\rLJ J '^ [/JIUJI I t,\\T list pel \J IX pel * • P*» /

near

~ a P

The corresponding reflection coefficient (angle of incidence 3
(j>) and geometrical spreading factor are given respectively by

(9.11)

-*, (9.12)

, angle of reflection

(9.13)
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(9.14)

10. The Rayleigh wave on the free surface

We observe that the expressions for PP, SP, PS and SS in the Pekeris-Cagniard-
de Hoop representation (5.9) each contains the common factor -/?-'(/>)• The
equation R(p) = 0 is the classical Rayleigh equation with root p = \/y where
y(<P<a) is the Rayleigh wave speed. Dominant contributions to the Green's
tensor will arise when R(p) is near zero. This condition eventuates for x2 = 0;
y2<\xi-yi\ = r, say. On x2 = 0, xpp = TPS and rSP = TSS. Expanding about the
surface slowness p~ 1/y we find, after much simplification,

Gtk(K)

where

-Q [
2nR'(\/y)l (t-

•T °
0 -yC.Bl

'-vCfB 0

(10.1)

Pik =
0 ±,

(10.2)

and

A =

(10.3)

There is no sharp onset for the Rayleigh wave and the surface particle motion

will be a very complicated elliptic type of motion.

11. Other diffracted arrivals

Lapwood [13] theoretically discovered a set of asymptotic diffracted phases
neither mentioned nor found in many of the subsequent analyses of the Lamb's
problem. Our exact solution predicts the existence of these phases. They can occur
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only in the case x1+y2<\xl —}>i\ = r when T lies close to the positive realp-axis,
and correspond to surface slownesses coincident with theP and S wave slownesses
I/a and 1//?. Their amplitudes are found to vary like r~*{t — r/<x,/?)* near / = r/oc,p
and are therefore of minor significance compared to the other principal arrivals
considered.

In Table 1 we show the correspondence between Lapwood's phases and the
potentials and surface slownesses from which they derive.

TABLE 1

Lapwood's 1949
phases

pSp
sP
PS

Sp
Ps

Associated
potential

il(SP)
X(PS)

Cl(SP)
X(PS)

Surface
slowness

P

I/a
Ufi
Ufi
I/a

The last two, which were not considered by Lapwood, should also exist according
to our solution. These are the reciprocal phases to sP and pS respectively.

12. Dipolar sources

The elastic displacements generated by dipolar (or multipolar) line sources may
be obtained by appropriate differentiation with respect to source coordinates y.

Thus the displacement field given by w*' = 9<J Gik is that for a dipole with k de-
fining the force direction and / the dipole axis.

The Pekeris-Cagniard-de Hoop representation then gives the following
expressions for the radiated waves:

tfi(S) =——lm [of o? s?,

The first motions corresponding to these are

-Q _^

(2a)* n

(12.1)

t>r/oc;

t>rlp.

(12.2)
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Comparison with the simple line source (equation (6.5)) is instructive. First, the

wave-front singularities for the dipole source are more severe and the radiation

patterns tkft and 0kft will be more structured. The 5 to P amplitude ratio is

(a//?)* so that dipolar sources enhance S wave generation. Polarization vectors

and geometrical spreading will be the same for all multipole sources. Other

possibilities also come to mind. The displacement field z^' = 30' Gtk + d0 Gn corres-

ponds to the double-couple line source (Burridge and Knopoff [2]). The summed

dipoles (over the index k) u^ = 3Q Gik and ŵ  = 3Q Git generate pure P and S

waves respectively. They have the first motions given by (12.2) with unit radiation

pattern; that is uniform source directivity.
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