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A general procedure for understanding plasma behaviour when resonant wave–particle
interactions are the sole destabilizing and transport mechanism or only heating
and/or current drive source is highlighted without recourse to involved numerical or
analytical treatments. These phenomena are characterized by transport that appears to be
collisionless even though collisions play a central role in narrow collisional boundary
layers. The order of magnitude estimates, which include nonlinear effects, are shown
to provide expressions in agreement with the principal results of recent toroidal Alfvén
eigenmode (TAE), toroidal magnetic field ripple, and heating and current drive treatments.
More importantly, the retention of nonlinearities leads to new estimates of the alpha
particle energy diffusivity at saturation for TAE modes, and the ripple threshold at which
superbanana plateau evaluations of alpha particle transport are modified by nonlinear
radial drift effects. In addition, the estimates indicate when quasilinear descriptions
for heating and current drive will begin to fail. The phenomenological procedure
demonstrates that in magnetic fusion relevant plasmas, narrow collisional boundary layers
must be retained for resonant wave–particle interactions as they enhance the role of
collisions, and make stochastic particle motion unlikely to be more important than other
nonlinear processes.

1. Introduction

Resonant interactions of charged particles with waves in plasmas are a concern when
they drive deleterious instabilities, and are a tool when they are used for heating, and to
drive currents. For example, alpha particles (or energetic particles produced by heating)
act as a destabilizing drive for toroidal Alfvén eigenmodes (TAEs) (Cheng & Chance
1986; Fu & Van Dam 1989) that are a concern in fusion relevant plasmas, and ripple
(Goldston & Towner 1981; White 2013; Catto 2019a) due to the toroidal field coils causes
alpha particle loss, while radio frequency (rf) heating and current drive (Fisch 1987;
Brambilla 1999; Jaeger et al. 2003; Wright et al. 2004; Bonoli 2014) schemes impart
energy and/or momentum by resonant particle interactions using applied waves to achieve
high performance plasmas. While these processes are often difficult to evaluate in detail,
some of the general features of these complex behaviours can be obtained by rather
simple estimates, leading to new insights and improved understanding of the crucial role

† Email address for correspondence: catto@psfc.mit.edu

https://doi.org/10.1017/S0022377821001069 Published online by Cambridge University Press

https://orcid.org/0000-0002-0349-1736
https://orcid.org/0000-0002-2642-064X
mailto:catto@psfc.mit.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0022377821001069&domain=pdf
https://doi.org/10.1017/S0022377821001069


2 P.J. Catto and E.A. Tolman

collisional boundary layers play in establishing nonlinear TAE saturation or altering rf
heating and current drive. These estimates are possible when the resonant particles are the
only drive for instability and transport or the only source of heating and/or current drive,
because the plasmas of interest are weakly collisional with long mean free paths. The
existence of the velocity dependence of the wave–particle interactions and the diffusive
nature of collisions means there are resonant paths in velocity space enclosed by very
narrow collisional boundary layers (Su & Oberman 1968; Johnston 1971; Auerbach 1977)
that are sensitive to nonlinearities.

Recent investigations (Zhou & White 2016; Duarte et al. 2019, 2020; Duarte &
Gorelenkov 2019; White et al. 2019; Catto 2020; Catto & Tolman 2021; Tolman &
Catto 2021) suggest that collisions in these narrow boundary layers cannot be ignored
when stochastic particle trajectories are retained (for clarity, stochasticity always refers
herein only to collisionless particle motion and not diffusive collisions). These studies
find that collisional boundary layer effects must be retained even when nonlinearities
enter to saturate mode growth driven by resonant wave–particle interactions, or when
nonlinear behaviour limits the validity of a quasilinear (QL) treatment of rf heating
and current drive. Moreover, they imply that nonlinear behaviour enters at perturbation
amplitudes well below the collisionless threshold for full stochasticity (Chirikov 1979).
In what follows, rather general forms of the kinetic equation are used to demonstrate
the important role of the narrow collisional boundary layers and how they ensure that
the nonlinear terms enter at quite small perturbation amplitudes. Very little algebra is
required to recover and understand these straightforward estimates and obtain new results
and insights.

For these demonstrations both low frequency (ω � Ω) drift kinetic and gyrokinetic
and high frequency (ω ∼ Ω) gyrokinetic equations for the non-adiabatic resonant particle
response are considered. Here, ω is the wave frequency and Ω = ZeB/Mc the species
cyclotron frequency with B the magnetic field, e the charge on a proton, Z and M
the relevant species charge number and mass, and c the speed of light. To obtain
the equation for the non-adiabatic response, the portion of the response that leads to
adiabatic behaviour (such as the adiabatic Maxwell–Boltzmann response) is removed
until only TAE and ripple drives due to departures from axisymmetry and time variation
remain (Tolman & Catto 2021), or until only the irreversible resonant response is left
to evaluate for rf (Catto, Lee & Ram 2017; Catto 2020; Catto & Tolman 2021). To
focus on the key physics elements only the essential terms in the kinetic equations
are retained and simplifications (such as approximate pitch angle scattering collision
operators) are used whenever possible. In all cases it is necessary that the wave–particle
resonance contain velocity dependence and the collision operator be diffusive so that
a narrow collisional boundary layer is formed. The use of simplified pitch angle
scattering collision operators is not a limitation if only the linearized kinetic equation
is considered as the estimates are then made in what is referred to as the resonant
plateau regime whereby the key results do not depend on collision frequency even
though collisions are crucial to the physics (recall that the plateau regime of neoclassical
theory is independent of collision frequency even though it is between the weakly
collisional banana regime and the collisional Pfirsch–Schlüter regime – see for example
Helander & Sigmar 2005). Of course, the details of the collision operator will matter
once the perturbation amplitude is large enough for the nonlinear terms in the kinetic
equation to enter. However, as only nonlinear estimates are made here these details are
unimportant.
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Collisional broadening of nonlinear resonance interactions 3

To understand resonant plateau regime behaviour in the low frequency cases of TAE
modes and field ripple, the spatial diffusivity D is estimated from

D = Υ Δ2/τ. (1.1)

It is shown to be independent of the collision frequency because of cancelation in the
combination of the correlation time τ , the radial spatial decorrelation or step size Δ
squared, and the fraction Υ of the particles in resonance with the wave. In the high
frequency case of § 4 the velocity space diffusivity is estimated in a similar manner using
a velocity space step.

To verify most of the distinctive features of resonant plateau behaviour and to make
simple nonlinear estimates, the low frequency limit is considered next for TAEs and then
in § 3 for ripple.

2. TAE transport due to alphas

Alfvén eigenmodes (AEs) are spatially localized modes existing in the gaps of the
Alfvén wave continuum (Cheng & Chance 1986; Fu & Van Dam 1989; Heidbrink 2008)
with TAE modes residing in the lowest frequency gap. They are driven unstable by
energetic particles in general and in particular by the alpha particles generated in fusion
reactions. TAEs driven by alphas are a concern if they are able to transport energy to
the wall before it can be deposited in the electrons. The steady state level of the alpha
energy diffusivity, which is about to be estimated, is the key to determining whether
this is a serious concern. A TAE mode has an approximate wave frequency ω = |k|||vA
defined by a toroidal mode number n and two adjacent poloidal mode numbers m and
m + 1 according to (qn − m)/qR � ω/vA � (m + 1 − qn)/qR, where vA = B/

√
4πMini

is the Alfvén speed and k|| = (qn − m)/qR, with ni and Mi the background ion density
and mass, q the safety factor, and R the major radius. Consequently, qn − m = 1/2 and
ω � vA/2qR for a TAE mode.

TAE modes are particularly interesting and complex because the wave frequency must
be ordered as comparable to the bounce or transit frequency, v0/qR, for the alphas that
are born isotropically in velocity space with a speed of v0. Consequently, bounce or transit
average descriptions are not appropriate and the use of the longitudinal invariant is invalid.
Additionally, the trapped birth alphas resonate with the magnetic drift ωα tangential to
the flux surface, while the sign of the tangential drift for the passing birth alphas is in
the opposite direction so they instead experience a drift modified Landau resonance with
k||v|| ∼ v0/2qR (Tolman & Catto 2021). The TAEs considered here are driven unstable
solely by the radial gradient of the alpha density or, more precisely, the radial gradient
of the unperturbed alpha distribution function. Without the resonant alphas there is no
instability or transport. The unperturbed alpha distribution function f0 is referred to as
a slowing down tail distribution function as there are no alphas with speeds above the
velocity space step at the birth speed v0. As the alphas are born isotropically in velocity
space and there are no collisional boundary layers, the unperturbed distribution function is
completely determined by electron and ion drag. The perturbed radial motion off of a flux
surface due to a TAE mode is primarily due to its departure from axisymmetry caused by
its toroidal angle dependence ζ and is given by the radial velocity (Tolman & Catto 2021)

Vr ≡
(

c
∂φ

∂ζ
− v||

∂A||
∂ζ

+ μB
Ω

∂B||
∂ζ

)/
(RBp) ∼ in

(
cφ − v||A|| + μB

Ω
B||

)
/(RBp), (2.1)

with φ and A|| the perturbed electrostatic and parallel vector potentials, B|| the perturbed
parallel magnetic field, μ = v2

⊥/2B the magnetic moment, Ω the alpha cyclotron
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frequency, and Bp the poloidal magnetic field. The ζderivatives arise because the presence
of TAE modes means that the canonical angular momentum is no longer a constant of the
motion. The wave frequency terms (due to temporal variation) that multiply the radial drift
(due to energy no longer being a constant of the motion) are stabilizing and are ignored to
keep the argument as simple as possible.

To express Vr in terms of the perturbed magnetic field B1 for a TAE mode, B|| is
neglected, and the near vanishing of the perturbed parallel electric field, k||cφ � ωA||,
is employed along with v|| ∼ v0 and B1 � |∇A||| ∼ nA||B/RBp to obtain

Vr

v0
∼ vA + v0

v0

B1

B
∼ B1

B
. (2.2)

Upon removing the adiabatic alpha response by taking the perturbed alpha distribution
function f1 to be f1 = h + (Zeφ/Mv)∂f0/∂v, the alpha kinetic equation for the
non-adiabatic response h is of the form (Tolman & Catto 2021)

dh
dt

∣∣∣∣
res

+ Vr

(
∂f0

∂r
+ ∂h

∂r

)
� C{h}, (2.3)

where the nonlinear term ∂h/∂r is retained, C{h} denotes the collision operator for alphas,
and the resonance between the alphas and the TAE mode means there is a resonant path
with

dh
dt

∣∣∣∣
res

∼ (ω − nωα − σ |k||v|||)h � 0, (2.4)

where σ = 0 for the trapped alphas and σ = ±1 for the passing alphas. Collisional
boundary layers occur because of the resonances indicated in (2.4) and the diffusive nature
of pitch angle scattering by the ions. In the absence of radial drift, the resonant alphas
drift tangentially while de-trapping and re-trapping in the perturbed wells. Irreversible
behaviour and loss requires radial drift and collisions as well as wave–particle resonance.
In (2.3) the linear term Vr∂f0/∂r destabilizes the TAE mode and the nonlinear term
Vr∂h/∂r provides saturation. We assume there are many modes across the radial region
of interest and they possess a collisionally broadened overlap so that they are within a
collisional step size of one another with poloidally coupling allowed and many toroidal
mode numbers present. The collisional radial steps lead to the radial heat transport of the
alphas (Tolman & Catto 2021). The procedure used here to make estimates is not expected
to be completely appropriate for neoclassical tearing modes (NTMs) as a finite amplitude
seed perturbation is required for instability.

The alpha resonance can be broadened in two ways: velocity space collisions, and
spatially by nonlinear behaviour due de-trapping and re-trapping caused by the radial drift
departure from axisymmetry, mode coupling, any stochasticity of the particle trajectories
(as in a Poincaré puncture plot of three-dimensional configuration space), and/or by some
other microscale turbulent mechanism (Pace et al. 2013; Gorelenkov & Duarte 2021).
Moreover, the estimates to follow are not made near marginal stability as is sometimes
assumed (Duarte et al. 2019, 2020; Duarte & Gorelenkov 2019; Gorelenkov & Duarte
2021). Hence, expanding in pitch angle λ = 2μB0/v

2 and radius r about the resonance at
λ = λres and r − rres ∼ δ leads to

nωα � ω + n
∂ωα

∂λ
(λ− λres) + n

∂ωα

∂r
(r − rres) + · · · , (2.5)

with ωα slowly varying in pitch angle and radius and v2
|| = v2(1 − λB/B0). The details of

the nonlinear detuning are unimportant for the purpose of making estimates as long as they
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Collisional broadening of nonlinear resonance interactions 5

introduce small spatial scales that cause the resonance to smear radially, while collisions
result in a velocity space boundary layer. The new radial scales remain small, but increase
in extent and size with increasing wave amplitude until nonlinear saturation occurs. For
the moment only trapped alphas are considered so that ω � nωα, but the passing will be
considered shortly by very similar arguments. Estimating the velocity space collisional
boundary layer width by λ− λres = w and the radial decorrelation width or step size by
r − rres = δ, and taking ∂ωα/∂λ ∼ ωα and ∂ωα/∂r ∼ ωα/a with a the minor radius leads
to the additive form

dh
dt

∣∣∣∣
res

∼ nωα

(
w + δ

a

)
. (2.6)

For a pitch angle scattering collision operator in a narrow boundary layer

C{h} � ν∂2h/∂λ2 ∼ νh/w2, (2.7)

with ν the pitch angle scattering collision frequency of alphas with the background ions,
λ = 2μB0/v

2, and B0 the on axis magnetic field (electron drag does not enter because it is
not diffusive and cannot form a narrow collisional boundary layer). In addition,

∂f0/∂r ∼ f0/a, (2.8)

with a the minor radius, but for a narrow radial layer

∂h/∂r ∼ h/δ. (2.9)

The preceding leads to the conjecture that the kinetic equation contains five different terms
that must balance after a collisional correlation time and when the nonlinear term becomes
large enough to saturate the TAE mode

nωα

(
w + δ

a

)
h ∼ Vr

(
f0

a
+ h

δ

)
∼ ν

w2
h. (2.10)

At this resonant version of ‘critical balance’ (Barnes, Parra & Schekochihin 2011) all
five terms compete at saturation to give four conditions that follow. The first two set
the velocity space boundary layer width w ∼ (ν/nωα)

1/3 and its relation to the radial
decorrelation width or step size δ ∼ wa, while a third relates the radial step size δ to
the amplitude of the perturbed TAE mode amplitude Vr at saturation δ ∼ (aVr/nωα)

1/2.
The final condition must be satisfied to keep the ratio of the perturbed over unperturbed
distribution functions h/ f0 ∼ δ/a small, to give a weak non-adiabatic or irreversible
response once collisions suppress phase mixing. The four conditions lead to

w ∼ δ/a ∼ h/ f0 ∼ (Vr/anωα)
1/2 ∼ (ν/nωα)

1/3 � 1, (2.11)

and the observation that the weaker the collisions, the lower the saturation level, in
agreement with the results and saturation estimate in Tolman & Catto (2021).

As expected, the radial distance δ from an isolated linear resonance at which
stochasticity no longer acts is proportional to the square root of the TAE perturbation
amplitude. It is approximately the radial width observed in the presence of diffusive
collisions for the perturbed distribution function when blurred Poincaré plots are no
longer a useful diagnostic (see figure 8 of White et al. 2019). Importantly, and perhaps
unsurprisingly, it is small so the saturation amplitude is well below the Chirikov (1979)
threshold for fully stochastic particle trajectories of roughly δ/a ∼ (Vr/anωα)

1/2 ∼ 1.
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The condition for a narrow collisional boundary layer w � 1 about each resonance path
ω � |nq − m|vA/qR � nωα ensures consistency of all these estimates. A more rigorous
treatment of the boundary layer is possible in the linear limit by solving

in
∂ωα

∂λ
(λ− λres)h − ν

∂2h
∂λ2

= −Vr
∂f0

∂r
. (2.12)

Letting u = (n∂ωα/∂λ)
1/3(λ− λres)/ν

1/3 ≡ (λ− λres)/w, leads to the Su & Oberman
(1968) form

∂2h
∂u2

− iuh = Vr∂f0/∂r
ν1/3(n∂ωα/∂λ)

2/3 , (2.13)

with solution

h = −Vr

ν

∂f0

∂r
w2

∫ ∞

0
dx e−iux−x3/3 →

|u|
1

iVr∂f0/∂r
(λ− λres)n∂ωα/∂λ

. (2.14)

The real part of this solution contains the delta function behaviour via

P ≡ 1
πw

∫ ∞

0
dx e−x3/3 cos(ux), (2.15)

where upon integrating over pitch angle for ς 
 1 gives
∫ λres+ςw

λres−ςw
dλP = 1

π

∫ ∞

0
dx e−x3/3

∫ ς

−ς

du cos(ux) = 2
π

∫ ∞

0
dx e−x3/3 sin(ςx)

x
� 1. (2.16)

The function P(λ) vs. λ− λres is plotted in figure 1 and has a width w as shown, which
is the width of the delta function limit P → δ(λ− λres) ∼ 1/w. Functions proportional
to P are found when collisions are retained for Langmuir waves (Auerbach 1977), near
marginality for QL treatments of resonant particle effects (Duarte et al. 2019), and for
rf (Catto 2020). Once the steady state collisionally modified resonant response (2.15)
is integrated over velocity space, as in (2.16), the lowest order resonant contribution is
independent of collisions and thereby leads to the resonant plateau terminology employed
herein. While (2.12)–(2.16) provide important insight, they no longer hold in the fully
developed nonlinear state of the estimates of (2.10). Within a QL framework the QL step
Vr/νeff is assumed small compared with δ.

Collisions act to replenish the narrow boundary layers about all the resonant paths in
velocity space that are depleted by radial transport acting to flatten the total distribution
function on the radial scale δ. A schematic of the flattening associated with an isolated
resonance is shown in figure 2 with the height of the plateau of order h/ f0. TAE instability
growth persists until the nonlinear terms enter to provide a detuning saturation mechanism
that allows the estimates of (2.10) to be made without relying on a QL approach. In the
absence of collisions or dissipation there is nothing to limit the resonant alpha particle
driven TAE growth until nonlinearity enters to disrupt the wave–particle resonance
drive term. With collisions, the radial gradient drive is continuously being nonlinearly
restored since h/δ ∼ f0/a and Vr/δ ∼ νeff. As the TAE mode growth continues it becomes
nonlinear, and saturation becomes possible by one or more turbulent processes such as
mode coupling, trapping, the stochasticity of the particle trajectories, and/or the nonlinear
frequency shift bifurcating the initial mode and then generating further nonlinear sideband
splitting (Fasoli et al. 1998).
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Collisional broadening of nonlinear resonance interactions 7

FIGURE 1. The approximate delta function P(λ) vs. (λ− λres) with the width w = 0.05
indicated.

FIGURE 2. Schematic showing the radial scale δ of flattening associated with an isolated
resonance.

The narrow collisional boundary layer means the effective collision frequency is νeff ∼
ν/w2 with an associated correlation time τ given by

τ ≡ ν−1
eff ∼ ν−1/3(nωα)

−2/3 ∼ (a/nωαVr)
1/2. (2.17)

The estimates of (2.10) are made for times longer than τ = ν−1
eff .

The resonant plateau amplitude scaling with collisionality of Vr ∼ aν2/3(nωα)
1/3 ∝ ν2/3

is observed by Zhou & White (2016) and White et al. (2019), and is approximately
consistent with the larger TAE amplitude scaling found numerically by Slaby et al.
(2018). Moreover, following Meng et al. (2018), White et al. (2019), and Duarte et al.
(2019) by defining a nonlinear trapping frequency ωtrapping ≡ −Vrh−1∂h/∂r ∼ Vr/δ, leads
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to rewriting the critical balance estimate as ωtrapping ∼ νeff, consistent with their numerical
findings from the ORBIT code with a pitch angle scattering collision operator for a single
mode at saturation. In addition, defining a linear drive rate γdrive by γdriveh ≡ −Vr∂f0/∂r,
gives γdrive ∼ Vr/δ ∼ ωtrapping.

The νeff in (2.17) is the same order as νscatt in Duarte et al. (2019). Consequently,
using ωtrapping ∼ νeff and replacing their Ω by nωα and ωb by ωtrapping in their QL result
(13), leads to h/ f0 ∼ (ν/nωα)

1/3 in agreement with (2.11), as shown schematically in
figure 2. Interestingly, the Duarte et al. (2019) results employ the kinetic equation of Berk,
Breizman & Petviashvili (1997) that does not allow a radial spatial drive as their Ω is the
velocity space variable of their model Fokker–Planck operator. In spite of this difference
their result is in broad agreement with estimates (2.11) as δ ∼ wa (although collisions
refresh radial spatial gradients but do not restore velocity space inversions).

The trapped portion of the alpha particle diffusivity is estimated next, where the trapped
fraction is ε1/2 with ε the inverse aspect ratio. Only the resonant fraction w of the trapped
alphas contributes to the transport, giving the fraction of the trapped particles in resonance
with the wave to be Υ ∼ ε1/2w. Using Δ ∼ δ the trapped diffusivity Dt can be written in
different ways

Dt ∼ ε1/2w
δ2

τ
∼ ε1/2V2

r

nωα

∼ ε1/2a2ν4/3

(nωα)
1/3 . (2.18)

Notice that the form proportional to V2
r ∝ (B1/B0)

2 is in agreement with Nagaoka
et al. (2008). The detailed behaviour of the penultimate form is consistent with the
QL evaluation by Tolman & Catto (2021), and the final form (D ∝ ν4/3) is particularly
interesting and consistent with their estimate of the diffusivity when the TAEs reach a
nonlinear saturated state.

To keep the birth alphas well confined, the number diffusing across the minor radius in
a slowing down time τs must be small,

Dtτs/a2 ∼ ε1/2ν4/3τs/(nωα)
1/3 � 1, (2.19)

where for birth alphas ωα ∼ v2
0/ΩpR2 with Ωp = ZeBp/Mc the poloidal alpha

gyrofrequency. As ντs, (ν/nωα)
1/3, and ε1/2 are each small, the trapped alphas are expected

to be well confined in the presence of saturated TAE modes.
Tolman & Catto (2021) find that the passing transport due to an unstable mode is

typically larger than that for the trapped alphas. The preceding estimates can be repeated
for the passing alphas by letting nωα → k||v|| ∼ v0/qR and ε1/2 → 1, with a related Su &
Oberman (1968) form in the linear regime of

P ≡ 1
πw

Re
∫ ∞

0
dx e−iux−x3/3 = k||v⊥

π
Re

∫ ∞

0
dt e−i(k||v||−ω)t−νk2

||v
2
⊥t3/3, (2.20)

with u = (k||/v2
⊥ν)1/3(v|| − ω/k||) and w = (ν/k||v⊥)1/3. Collisions will cause any transient

passing alpha behaviour to become unimportant within a few τ = ν−1
eff = (ν k2

||v
2
⊥)−1/3 ∼

(q2R2/νv2
0)

1/3, while collisionless linear growth at the rate γL at earlier times requires γL 

νeff. Recall that time scales longer than τ = ν−1

eff are of interest here, with full nonlinearity
attained once the amplitude grows to ωtrapping ∼ νeff.
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Collisional broadening of nonlinear resonance interactions 9

As (νqR/v0)
1/3 � 1, a narrow collisional boundary layer is assured for the passing

alphas, and the dimensionless diffusivity becomes

Dpτs/a2 ∼ (νqR/v0)
1/3ντs ∼ 10−4, (2.21)

while
B1/B ∼ (νqR/v0)

2/3(a/qR) ∼ 10−5, (2.22)

in agreement with the Tolman & Catto (2021) results and again too small to be a concern.
Therefore, in the presence of saturated TAE modes, the passing alphas are also expected to
be well confined. For these estimates R = 10 m, B = 5 T, n = 20, and ν−1 � 30 s are used,
with v0 = 1.3 × 109 cm s−1 at birth.

The preceding estimates imply that when the nonlinear terms in the alpha kinetic
equation enter to provide saturation of the TAE mode, the saturated amplitude will be
so small that the associated radial transport will be negligible as suggested by the careful
evaluations of Tolman & Catto (2021). Moreover, the amplitude at saturation is well below
any level at which stochastic particle motion dominates so it can only enter at the same
order as any other nonlinear mechanisms and can never be more important than collisions.

If Dp and/or Dt were to approach a2/τs, QL losses would modify f0 for the birth alphas.
However, doing so violates the narrow boundary layer treatment by requiring such strong
collisions that (νqR/v0)

1/3 
 1 and/or (ν/nωα)
1/3 
 1. Consequently, QL modifications

to f0 may be of limited utility (Gorelenkov et al. 2019).
The estimates for alpha particles may need to be refined substantially to address

the more complex problem of neutral beam injected energetic particles driving TAEs,
and perhaps for reverse shear AEs, as strong velocity space anisotropy can provide an
additional destabilization mechanism. To date two different explanations have been put
forth (Ghantous et al. 2012; Heidbrink et al. 2013; Collins et al. 2016, 2017). However,
none of these treatments retain collisional boundary layer effects, which should be playing
a role (Zhou & White 2016; White et al. 2019). In addition, the more recent interpretation
(Collins et al. 2016, 2017) invokes stochastic particle orbits (at B1/B ∼ 10−4) based on
using measurements to fit the neutral beam source and the fast ion thermalization sink
in the continuity equation. The remaining radial flux term (which is found to diverge
near the magnetic axis) is inferred using ideal magnetohyrodynamics (MHD) fields in
a collisionless version of ORBIT to find radial transport losses that increase with neutral
beam power and AE amplitude rather than the catastrophic loss expected at the onset of
stochasticity (when there should be little or no thermalization sink).

3. Ripple transport of alphas

Very similar arguments to those in the preceding section are next used to make estimates
for ripple transport in the superbanana plateau regime (Galeev et al. 1969; Shaing 2015;
Catto 2019b). They allow a bound on the ripple amplitude to be estimated. Ripple transport
of alphas is driven by the B|| term in the radial drift (2.1) of the bounce or transit averaged
kinetic equation (2.3) with ω = 0. It is only an issue for trapped particles, as for them
there is a zero when the tangential drift ωα reverses. Expanding about the pitch angle λ0
and radius r0 for which ωα(λ0, r0) = 0 and assuming weak ripple, leads to

ωα � (λ− λ0)∂ωα/∂λ0 + (r − r0)∂ωα/∂r0 ∼ w∂ωα/∂λ0 + δ∂ωα/∂r0, (3.1)

and the earlier Su & Oberman form (2.13) with the substitution λres → λ0 implying P →
δ(λ− λ0) ∼ 1/w. Then the replacement nωα → n∂ωα/∂λ0 ∼ nv2

0/ΩpR2 can be made in
the trapped estimates of section 2. In this case only B|| is retained as φ and A|| vanish,
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leading to Vr ∼ (nv2
0/ΩpR)B||/B. As a result, the saturation estimate Vr ∼ aν2/3(nωα)

1/3

must be modified and reinterpreted as the ripple amplitude at which a superbanana plateau
treatment fails. Making these changes yields the new result that

B||/B ∼ (a/R)(νR/v0)
2/3(RΩp/nv0)

2/3 ∼ 10−4, (3.2)

as the ripple threshold at which superbanana plateau evaluations will begin to fail because
nonlinear radial drift departures from the flux surface will begin to enter, possibly causing
the transport to enter a regime linear in collisionality similar to what was considered in
Hazeltine & Catto (1981). The numerical estimate is again based on R = 10 m, B = 5 T,
n = 20, and ν−1 � 30 s, where the alpha birth speed is v0 = 1.3 × 109 cm s−1. For ripple
the diffusivity is

Drip ∼ ε1/2wV2
r /νeff ∼ ε1/2V2

r /(n∂ωα/∂λ0) ∼ ε1/2(nv2
0/Ωp)(B||/B)2, (3.3)

in agreement with the tokamak limit of scaling evaluated by Catto (2019b). However, for
finite magnetic shear s = rq−1∂q/∂r ∼ 1, Tolman & Catto (2021) have shown that the
sign reversal of the drift occurs very close to the trapped–passing boundary so that the
resonant plateau and

√
ν (Calvo et al. 2017) transport regimes merge and this estimate

becomes sensitive to shear.
Once again using ∂ωα/∂λ0 ∼ v2

0/ΩpR2 and then inserting (B|| /B)2 suggests that
superbanana plateau evaluations of ripple transport will fail only when the alpha
diffusivity reaches very high levels

Dripτs/a2 ∼ ε1/2ντs(νR/v0)
1/3(ΩpR/nv0)

1/3 ∼ 1. (3.4)

Such high levels of ripple transport of alphas will not occur in the core of any sensibly
designed tokamak as B||/B <∼ 10−4, but may be possible in the lower collisionality regimes
of optimized stellarators where larger departures from quasi-symmetry remain a challenge
to completely remove (Landreman & Sengupta 2019).

4. Radio frequency heating and current drive

All rf heating and current drive is due to resonant wave-particle interactions which
nonlinear affects may alter for strong applied fields. However, the estimates for rf are
somewhat different as any spatial broadening of the resonance is negligible because QL
spatial diffusion is weak (Catto & Tolman 2021). In this case, keeping the nonlinear term
leads to considering a high frequency kinetic equation of the form

df1

dt
+ a · ∇v(f0 + f1) = νv2

th
∂2f1

∂v2
||
, (4.1)

where vth is the species thermal speed, a = (Ze/M)(e + c−1v × b) is the acceleration due
to the applied rf electric and magnetic fields e and b, and df1/dt = ∂f1/∂t + v · ∇f1.

Ignoring drifts and removing the adiabatic response using f1 = h + (Ze e||/
iωMB)∂f0/∂μ, with e|| the parallel component of e, leads to the kinetic equation for the
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non-adiabatic irreversible response h (Catto et al. 2017; Catto 2020; Catto & Tolman 2021),

dh
dt

∣∣∣∣
res

+ a · v

[
1
v

∂f0

∂v
+ (ω − k||v||)

ωB
∂f0

∂μ

]
+ a · ∇vh � νv2

th
∂2h
∂v2

||
. (4.2)

In this case
dh
dt

∣∣∣∣
res

∼ (ω − pΩ − k||v||)h ∼ k||vthwh, (4.3)

with w the collisional boundary layer width, as the resonance is only broadened in velocity
space by collisions. In addition,

νv2
th∂

2h/∂v2
|| ∼ νh/w2, (4.4)

∂f0

∂v
+ v(ω − k||v||)

ωB
∂f0

∂μ
∼ f0

vth
, (4.5)

and

∇vh ∼ h/wvth. (4.6)

The nonlinear term a · ∇vh causes a breakdown of QL theory for rf waves once the
amplitude of the rf waves is large enough affect the balance in (4.2).

The preceding discussion implies the kinetic equation has four different terms when the
applied rf amplitude is large enough for the nonlinear terms to enter. Therefore, a ‘resonant
critical balance’ estimate yields

k||vthwh ∼ |a|(f0 + w−1h)/vth ∼ νh/w2. (4.7)

As usual, critical balance means that all terms compete and this time gives three
conditions. One condition sets the boundary layer width w in velocity space and another
sets the requirement for the non-adiabatic response h to remain small, leading to

w ∼ h/ f0 ∼ (ν/k||vth)
1/3 � 1. (4.8)

When the perturbed distribution function h is of the order indicated by (4.8) the
nonlinear effects ignored by standard QL treatments may no longer be negligible.

The final condition is the rf acceleration amplitude |a| at which the applied rf becomes
strong enough that nonlinear effects must be retained and a QL treatment starts to fail

|a|/k||v2
th ∼ (ν/k||vth)

2/3 � 1. (4.9)

Applied rf field amplitudes approaching or exceeding (4.9) may lead to substantial
nonlinear modifications to the linear kinetic equation used to derive the QL operator.

To estimate the QL diffusivity observe that |a| ∝ ν2/3 and w ∼ (|a|/k||v2
th)

1/2 ∝ √|a|.
Using νeff ∼ ν/w2 the velocity space QL diffusivity is

Dql ∼ |a|2/νeff ∼ |a|2/ν1/3(k||vth)
2/3 ∼ νv2

th. (4.10)

When integrated over the boundary layer width w, the penultimate form of (4.10) is
independent of ν. The last estimate in (4.10) is obtained using (4.9).
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To better understand the role of collisions in the linear response, notice that in the
familiar constant magnetic field linear limit the kinetic equation

i(ω − pΩ − k||v||)h + νv2
th

∂2h
∂v2

||
= a · v

[
1
v

∂f0

∂v
+ (ω − k||v||)

ωB
∂f0

∂μ

]
≡ W, (4.11)

is a Su & Oberman (1968) form with u = (k||/v2
thν)1/3[v|| − (ω − pΩ)/k||] ≡ [v|| − (ω −

pΩ)/k||]/vthw. Therefore, the solution is

h = −Ww2

ν

∫ ∞

0
dx e−iux−x3/3, (4.12)

and delta function behaviour vthδ[v|| − (ω − pΩ)/k||] ∼ 1/w again arises upon
integration over velocity space, leading to a resonant plateau behaviour, where
w = (ν/k||vth)

1/3. The detailed spatial variation of the linear fields for the resonant particles
is modified by the collisional dependence of (4.12) even though the velocity space
moments of h and QL diffusivity appear unchanged to lowest order.

All these estimates are consistent with the results in Catto (2020, 2021) and Catto &
Tolman (2021). Moreover, the critical balance nature of the estimates here is consistent
with the findings there that QL treatments will start to fail once the distribution function
departs significantly from Maxwellian. This assertion is verified by allowing the QL
operator Q{f0} ∼ Dqlf0/v

2
th to compete with the collision operator,

Dqlf0/v
2
th ∼ νf0, (4.13)

where C{f0} ∼ νf0 as no resonance occurs for the unperturbed distribution function.
Condition (4.13) is the same as (4.10), which is when stochasticity and other nonlinear
effects enter because the rf amplitude is large enough to satisfy (4.9). Consequently, (4.9)
is an estimate of the applied rf field amplitude at which QL treatments of rf are expected
to begin failing, as evidenced by a significant departure from Maxwellian.

5. Discussion

The preceding sections outline a simple resonant critical balance procedure for
nonlinear kinetic equations that reproduces recent results within numerical coefficients
and unimportant logarithmic factors for TAE and ripple transport, and rf heating and
current drive. The procedure requires that the resonant particles be essential to the physical
process of interest, that is, no instability or transport or heating and/or current drive occurs
without them. In particular, the nonlinear bound on the saturated level of TAE transport
leads to estimates of the passing and trapped alpha particle energy diffusivity at saturation
that are consistent with and slightly extend the results of Tolman & Catto (2021). The need
to retain collisions in narrow boundary layers about the resonant paths in velocity space
enhances the role of collisions. There is no need to appeal to phenomenological velocity
space diffusion caused by rf waves as in Fasoli et al. (1998), which, of course, will play no
role in alpha particle driven TAE modes. Moreover, for the first time estimates are made
of the ripple threshold at which superbanana plateau evaluations fail and the associated
transport descriptions are unreliable due nonlinear radial drift effects. And finally, even
though QL descriptions justifiably enjoy great success in modelling rf heating and current
drive, the critical balance estimates here add to recent concerns (Catto 2020, 2021; Catto
& Tolman 2021) as to possible limitations of QL treatments.

The procedure outlined here for making estimates is expected to be widely applicable
when resonant wave–particle interactions are of essential importance. However, its
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usefulness is limited to situations in which the nonlinear terms enter to provide saturation
rather than further destabilization. For example, NTMs are linearly stable, but driven
unstable by nonlinear effects (La Haye 2006). Consequently, resonant plateau behaviour
will play a different role for NTMs as the nonlinear estimation procedure here is only an
indication of the onset of when nonlinear alpha effects enter and not when mode saturation
occurs, as it does not include a mechanism to generate a finite amplitude seed field. In
addition, the procedure does not hold when a separate external energy source maintains or
creates a destabilizing phase space profile at saturation.

The wide applicability of resonant plateau behaviour outlined in the preceding sections
implies that narrow collisional boundary layers act to allow the interplay of various
nonlinear mechanisms to provide saturation and prevent stochastic particle motion from
dominating. Simply stated, magnetic field line stochasticity is unlikely to dominate
resonant wave-particle interactions in the weakly collisional plasmas of interest to
magnetic fusion.
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