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Abstract
We design an experiment to test the hypothesis that, in violation of Bayes’ rule, some peo-
ple respond more forcefully to the strength of information than to its weight. We provide
incentives to motivate effort, use naturally occurring information, and control for risk at-
titude. We find that the strength–weight bias affects expectations but that its magnitude is
significantly lower than originally reported. Controls for nonlinear utility further reduce
the bias. Our results suggest that incentive compatibility and controls for risk attitude con-
siderably affect inferences on errors in expectations.

I. Introduction
Behavioral finance explains market anomalies by drawing on evidence from

psychology that some people respond to information in a systematically biased
manner. However, several studies show that behavioral biases are not always ro-
bust when tested in tasks that reward subjects for being accurate. We design an
experiment to test a psychological hypothesis, first proposed by Griffin and Tver-
sky (GT) (1992), related to errors in expectations that is widely cited in finance.

According to the GT (1992) hypothesis, information can be broadly charac-
terized along two dimensions: strength and weight. Strength is how saliently the
information supports a specific outcome, and weight refers to its predictive valid-
ity. GT suggest that, in violation of Bayes’ rule, some decision makers pay too
much attention to strength and too little attention to weight, and thus overreact
to high-strength, low-weight signals and underreact to low-strength, high-weight
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ones. The magnitude of the bias reported by GT is significant; in some cases,
probabilities that should be equal under Bayes’ rule diverged by 28%.1

Because the reported strength–weight hypothesis can parsimoniously explain
both underreaction and overreaction, it has several applications in finance. Bar-
beris, Shleifer, and Vishny (BSV) (1998) use the GT (1992) findings as the basis
of a theory that explains several asset pricing anomalies. Liang (2003) and Sorescu
and Subrahmanyam (2006) similarly use the GT findings to explain the pricing of
earnings surprises and analyst recommendations, respectively. Other finance stud-
ies that cite GT to behaviorally explain their findings include Daniel and Titman
(2006), Hackbarth (2009), de Dreu and Bikker (2012), Puetz and Ruenzi (2011),
and Gupta-Mukherjee (2013).

However, there is tension in the literature about whether such behavioral bi-
ases are as significant as initially reported in tasks with an incentive-compatible
reward system. For example, Grether (1980) and Charness, Karni, and Levin
(2010) report that violations of Bayes’ rule reduce substantially among financially
motivated subjects.2

We test the strength–weight hypothesis using an incentive-compatible design
to encourage effort in the experimental tasks.3 In addition, to avoid confusion that
may arise from subjects being asked to imagine signals from a hypothetical pro-
cess, as GT (1992) asked their subjects to, we generate all the relevant informa-
tion in front of our subjects during the experiment using physical urns and dice.4

Finally, in our experiment we elicit subjective beliefs using revealed preference,
as opposed to the stated-preference methods used by GT, and revealed preference
avoids the need for introspection.5

Our elicitation methods are based on the principles of subjective probability
elicitation initially outlined by Ramsey (1931) and Savage (1954), (1971). Our
respondents observed information signals generated by random draws from urns
and chose between bets that varied the payoffs they offered if different states
of the world were true. From these bets, we inferred the underlying subjective
probabilities for the different states of nature and examined whether they were
influenced by the strength–weight heuristic.

1GT ((1992), p. 415, Table 1) report that the elicited probability after a high-strength, low-weight
signal with Bayesian posterior equal to 88% is 92.5% (5th row), whereas the elicited probability after
a low-strength, high-weight signal with the same posterior is 64.5% (11th row), for a difference of
28%.

2Several other authors have reported smaller biases in experimental economics conditions, such
as Conlisk (1989), Plott and Zeiler (2005), Laury, McInnes, and Swarthout (2009), Cason and Plott
(2014), and Andersen, Harrison, Lau, and Rutström (2013).

3GT (1992) paid $20 to the respondent whose judgments “most closely” matched the correct val-
ues; this is not an incentive-compatible elicitation method.

4An important advantage of this physical procedure is that it allows subjects to truly experience
random draws from the latent process they are asked to estimate. In contrast, the hypothetical methods
used by GT (1992) require that the experimenter artificially selects the outcomes, and as shown by
Asparouhova, Hertzel, and Lemmon (2009), such selective sampling can significantly affect inferences
about behavioral biases.

5Methods of introspection have been treated with skepticism by economists (Ramsey (1931),
Smith (1982), and Gilboa, Postlewaite, and Schmeidler (2008)), perhaps because it is common for
subjects to state a particular belief but act in a way that contradicts this statement (Costa-Gomes and
Weizsäcker (2008), Rutström and Wilcox (2009)).
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Because subjects’ choices depend on both subjective beliefs and prefer-
ences, in our estimations, we use data from a separate experimental task to
control for the distorting effect of the utility function on inferences about sub-
jective beliefs, estimating the relevant parameters using a structural model. We
start our analysis assuming risk neutrality (RN), moving on to a subjective ex-
pected utility (SEU) specification that allows for nonlinear utility. This approach
allows us to examine whether inferences on decision heuristics are affected when
one relaxes the assumption of RN that is commonly employed in experiments
(e.g., Grether (1980)).

We find that, in violation of Bayes’ rule, the magnitude of the probability
update is higher after high-strength, low-weight signals than after lower-strength,
higher-weight signals, with an average strength–weight bias of 6.05%. This re-
sult confirms the findings of GT (1992) and suggests that the strength–weight
bias is a plausible theory of errors in expectations. However, in our analysis, the
strength–weight bias is less than a third of the bias reported by GT, which suggests
that its effect on economic behavior is weaker than that suggested by the original
estimates.

We also examine whether the strength–weight bias differs among subjects
with different demographic characteristics. We find that female subjects deviate
more strongly from the Bayesian benchmark, consistent with the findings of Char-
ness and Levin (2005). We also find that the behavior of subjects who study in a
quantitative field is more in line with Bayes’ rule, consistent with the findings re-
ported by Halevy (2007). However, knowledge of statistics does not completely
offset the strength–weight bias.

Contrary to the findings of GT (1992), we do not find any evidence of
overreaction to information. Rather, our results reveal a general tendency of un-
derreaction or “conservatism” in the spirit of Edwards (1968). The degree of un-
derreaction is higher when signal weight is higher. For example, for signals that
imply a posterior of 0.88, underreaction is 25% when the signal is of high weight
and 17% when it is of low weight. This finding can explain underreaction-type
phenomena in stock markets, whereby prices respond slowly to high-weight in-
formation, such as earnings surprises (Bernard and Thomas (1989)) or changes in
dividend policy (Michaely, Thaler, and Womack (1995)).

We find that assumptions about attitude toward risk significantly affect in-
ferences about the strength–weight bias. Specifically, when we assume RN, we
find that the average bias is 11.1%, whereas when we allow for nonlinear utility,
the bias almost halves to 6.05%. This implies that studies that investigate decision
heuristics assuming RN could substantially mischaracterize any bias. Moreover,
controls for risk attitude highlight behavioral patterns that would be difficult to
identify otherwise. For example, we find that females are more risk averse and
less Bayesian than males. Without controls for risk attitudes, it would be impos-
sible to understand such differences. Overall, these results highlight the method-
ological point that risk attitude exerts a nontrivial effect on subjects’ behavior in
the laboratory and should be accounted for to describe behavior accurately.6

6Antoniou, Harrison, Lau, and Read (2015) also document that inferences regarding Bayesian up-
dating change considerably when one controls for the utility function. However, they do not investigate
the strength–weight bias.
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Because of the complexities of real-world markets, experimental methods
are well placed to make contributions to the debate on systematic errors in ex-
pectations. Bondarenko and Bossaerts (2000) examine whether expectations in
experimental markets are formed in accordance with Bayes’ rule. Bloomfield and
Hales (2002) and Asparouhova et al. (2009) test whether people make forecasts
using historical information in a biased manner. Kuhnen and Knutson (2011) and
Kuhnen (2015) analyze whether biases in beliefs are affected by emotions and
whether they depend on whether the decision is taken in the domain of losses or
gains, respectively. Our study contributes to this literature by testing whether the
strength–weight effect is a plausible theory of errors in expectations in financial
decisions.

The remainder of this article is organized as follows: Section II describes
the experimental methods, Section III presents and discusses the results, and
Section IV concludes the paper.

II. Experimental Methods
We recruited 111 respondents from the University of Durham, U.K. All re-

ceived a £5 show-up fee. Payments for the experiment totaled £2,692, for an av-
erage payment of £24.26 per subject. Internet Appendix A (available at www
.jfqa.org) shows demographic information about the subjects.

Our experiment included two tasks: the belief task, in which choices were
made that allowed us to infer subjective probabilities, and the risk task, where
subjects made choices over lotteries with known probabilities that allowed us to
estimate their utility function. The full instructions used for these tasks are repro-
duced in Internet Appendices B and C.

In the belief task, there were two equally likely mutually exclusive states
of the world. Respondents were provided with relevant sample information using
urns and dice, after which they chose between pairs of acts (or “bets”) that offered
different payoffs, depending on which state of the world was actually obtained.
Subjective probabilities were inferred from the pattern of acts chosen. Specifi-
cally, in the belief task, we first made a random choice between a blue and a white
cup, which was concealed from the subjects. Both of these cups contained N 10-
sided dice, where N varied from trial to trial (3, 5, 9, and 17). The N dice in the
white cup had 6 white and 4 blue sides, and the N dice in the blue cup had 6 blue
and 4 white sides. We then rolled all the dice in the chosen cup and announced
the outcome.7 Thus, the prior of each cup without information is 50%, and af-
ter subjects observe the sample information, they must revise their expectations
accordingly.

In each session, respondents saw 30 samples: 4 samples of 3 dice (i.e.,
N=3), 14 samples of 5 dice, 6 samples of 9 dice, and 6 samples of 17 dice.
The distribution of sample sizes was chosen to roughly equalize the frequency of
the least likely sample distributions. Signal weight is the size of each sample of
dice rolls (N ), and signal strength is the difference between the number of dice

7To keep experimenters honest in the minds of the respondents, a subject from each session was
randomly chosen to act as a “monitor” who supervised the rolling and counting of dice and announced
the outcomes. The monitor received a flat payment of £10 for the belief task.
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showing a white face (w) and those showing a blue face (b) as a proportion of
N , abs(b−w)/N . A sample of 3 w and 0 b, for example, has weight = 3 and
strength = 1, whereas a sample of 10 w and 7 b has weight = 17 and strength
= 3/17. Both samples, however, have equal diagnosticity, with Bayes’ rule giv-
ing a posterior of 0.77. Nonetheless, GT (1992) report that stated probabilities for
the high-strength, low-weight samples were higher than those for the Bayesian-
equivalent low-strength, high-weight samples.

After the sample information was announced, respondents placed “bets” on
white and blue, using a decision sheet adapted from Fiore, Harrison, Hughes, and
Rutström (2009), shown in Figure 1. Respondents were asked to conceptualize the
task as one of making 19 separate bets with a different “bookies,” each offering
different odds. Effectively, the subject must use his or her subjective probability
to compute how much a bet on white or blue for each bookie is worth and then
choose the most favorable option. For example, assume that the subject believes
that the probability of blue is 73%. Assuming RN, for the first bookie, this proba-
bility implies that the value of a bet on white is 0.27× 60= 16.2, which is greater
than the value of a bet on blue (0.73 × 3.15 = 2.3). This subject would therefore
prefer to bet on white for bookies 1–5 and then to bet on blue for remaining book-
ies 6–19.8 From observing the subject’s betting choices, we can back out his or
her latent subjective probability.9

If subjects are not risk neutral, however, the valuation of each bet will not use
expected value, which can significantly affect inferences on inferred subjective
probabilities (Kadane and Winkler (1988)). Returning to our previous example,
assume now that the agent who placed a bet on blue for bookies 1–5 is risk averse,
with preferences described by expected utility theory (EUT) and constant relative
risk aversion (CRRA) as follows:

u(x) = y1−r/(1− r ).(1)

Assuming r=0.5, this betting behavior would imply that the subject’s sub-
jective probability of blue ranges between 60% and 65%. Thus, the specification
of the utility function will affect inferences about subjective probabilities and can
therefore alter conclusions about the magnitude of the strength–weight effect.

Following Andersen, Fountain, Harrison, and Rutström (2014), we control
for the distorting effect of the utility function on subjective probabilities using
data from the risk task, which implemented the classic experimental design of
Hey and Orme (1994). In this task, all respondents made a series of 20 choices
between two lotteries with known probabilities.10

To incentivize subjects to exert effort in the experiment, we use the random
lottery procedure, whereby one choice made by the subjects in both the risk and
the belief tasks is selected randomly and played out for real money.

8Some subjects switched more than once, which of course violates SEU. Such multiple switching
could reflect confusion and was relatively infrequent in our data (less than 5% of the responses).

9In our design, we can only identify the interval in which the probability lies, which has a width of
5%. One could make this more precise by including more bookies, thus allowing for more granularity.

10Internet Appendix C displays a typical lottery pair.
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FIGURE 1
The Betting Sheet Used by the Subjects

Figure 1 shows the betting sheet that subjects used to place their bets (a nontransferable stake of £3 for each bookie)
after each signal. The sheet lists 19 hypothetical bookies who offer different odds on the white or blue box being chosen.

Make a bet with all bookies.

Bookie

1

Stake

White Blue White Blue

Odds offered
Earnings, including

the stake of £3 I will bet on
(circle)

£3 £60.00 £3.15 W B20.00 1.05

2 £3 £30.00 W B10.00 1.11

3 £3 £20.00 W B6.67 1.18

4 £3 £15.00 W B5.00 1.25

5 £3 £12.00 W B4.00 1.33

6 £3 £10.00 W B3.33 1.43

7 £3 £8.58 W B2.86 1.54

8 £3 £7.50 W B2.50 1.67

9 £3 £6.66 W B2.22 1.82

10 £3 £6.00 W B2.00 2.00

11 £3 £5.46 W B1.82 2.22

12 £3 £5.00 W B1.67 2.50

13 £3 £4.62 W B1.54 2.86

14 £3 £4.29 W B1.43 3.33

15 £3 £4.00 W B1.33 4.00

16 £3 £3.75 W B1.25 5.00

17 £3 £3.54 W B1.18 6.67

18 £3 £3.33 W B1.11 10.00

19 £3 £3.15 £60.00

£30.00

£20.00

£15.00

£12.00

£10.00

£8.58

£7.50

£6.66

£6.00

£5.46

£5.00

£4.62

£4.29

£4.00

£3.75

£3.54

£3.33

W B1.05 20.00

To control for order effects, which are common in experiments (Harrison,
Johnson, McInnes, and Rutström (2005)), the risk task preceded the belief task in
half of the sessions; in the remaining half, the order was reversed. In addition, in
the belief task, in half of the sessions, the samples were presented in ascending
sequence (i.e., N=3, then N=5, etc.); in the other half, they were presented in
descending order (N=17, then N=9, etc.). Overall, we thus have a 2×2 experi-
mental design.

In Figure 2, we plot the distribution of midpoints for the intervals that contain
our subjects’ risk-neutral subjective probabilities. Each panel plots the distribution
of average midpoints after signals that differ in weight (N ) and that are associated
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FIGURE 2
The Distribution of Switch Points for Different Signals with the Same Posterior

Figure 2 presents the distribution of risk-neutral probabilities, grouped according to Bayesian posterior (6 cases) and
signal weight (number of dice rolled, N ). The solid vertical line in each graph depicts the Bayesian probability.

N = 5
N = 9
N = 17

Graph A. Posterior = 0.88

N = 3
N = 5
N = 9
N = 17

Graph B. Posterior = 0.77

N = 3
N = 5
N = 9
N = 17

Graph C. Posterior = 0.60

0 0.25 0.5 0.75 1

Probability

N = 5
N = 9
N = 17

Graph D. Posterior = 0.12

0 0.25 0.5 0.75 1

Probability

N = 3
N = 5
N = 9
N = 17

Graph E. Posterior = 0.23

0 0.25 0.5 0.75 1

Probability

0 0.25 0.5 0.75 1

Probability

0 0.25 0.5 0.75 1

Probability

0 0.25 0.5 0.75 1

Probability

N = 3
N = 5
N = 9
N = 17

Graph F. Posterior = 0.40

with a specific posterior. We have 6 posterior groups in total, 0.88, 0.77, and 0.6
when w>b, and by symmetry, 0.12, 0.23, and 0.4 when b>w. The vertical line
in each panel shows the correct Bayesian probability. The distributions shown in
Figure 2 appear to be systematically related to the strength–weight characteristics
of the signals observed. In each posterior group, the distributions related to larger
dice samples appear to have a lower mean, which implies that, holding the pos-
terior constant, higher-weight signals elicit weaker responses, as predicted by GT
(1992).

In the next section, we formally test the strength–weight hypothesis using
a structural EUT model that assumes that the bets with the different bookies are
evaluated according to equation (1). We use the maximum likelihood method to
estimate the subjective probabilities and risk attitudes that best describe subjects’
choices in both the risk and the belief task, and we test whether the strength–
weight hypothesis is supported. To examine how assumptions about risk prefer-
ences affect inferences on the bias, we first estimate subjective probabilities by
assuming RN and then by controlling for nonlinear utility (SEU). The economet-
ric details of the model are provided in Internet Appendix D.
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III. Results

A. Experimental Results
Panel A of Table 1 contains estimates for the coefficient of risk attitude, r ,

and the behavioral error term, µ.11 In columns 5–10, we have elicited subjective
probabilities for different models of choice (RN vs. SEU), along with their asso-
ciated standard errors. Subjective probabilities are grouped according to Bayesian
posterior: 0.88, 0.77, and 0.6. To ease exposition, we pool subjective probabilities
for symmetric patterns (i.e., (5,0) and (0,5)).12 Column 2 in Panel B of Table 1
shows the composition of the signal, and columns 3 and 4 show its strength and
weight characteristics. In both panels, the signals are arranged so that as one goes
farther down the table, weight increases while strength decreases.13

We start the discussion with the RN model. For the high-strength, low-
weight signal (5,0), we find overreaction, with elicited probability higher than
the Bayesian posterior probability by approximately 5%. The elicited probability
then drops for the (7,2) signal to 90.6%, and it drops even further for the (11,6)
signal to 79.7%. The hypothesis that these subjective probabilities are equal is
safely rejected (p-value < 0.001). This pattern supports the original GT (1992)
findings, because subjective probabilities increase with signal strength, in viola-
tion of Bayes’ rule. To get a sense of the magnitude of the bias, we can subtract
subjective probabilities associated with the (5,0) and (11,6) signals, which yields
92.5%−79.5%=13%. We find similar patterns of the remaining groups of 0.77
and 0.6, with biases of 13.3% and 6.9%, respectively, which are all statistically
significant.14 Columns 6 and 8 (“Relative Bias”) show the corresponding bias as-
sociated with each probability as a proportion of the required update from the
prior of 0.5, along with the overreaction for low-weight signals and underreaction
for high-weight signals.

In the second model (SEU), the coefficient of risk attitude is equal to 0.562
and is highly statistically significant, indicating risk aversion. The magnitude of
risk aversion obtained is similar to that in other experiments with similar stakes,
as reviewed by Harrison and Rutström (2008). As in the RN case, subjective prob-
abilities in all the Bayesian posterior groups increase with signal strength, and the
differences between the high-strength, low-weight and low-strength, high-weight
probabilities are statistically significant. However, the striking result from this
analysis is that once we allow for risk aversion, the magnitude of the bias halves.

11The behavioral parameter µ is a structural “noise parameter” and is used to allow for some
errors from the perspective of the deterministic EUT model. Specifically, µ>0 captures cases where
the option with the lower expected utility might be chosen by accident.

12For example, if the subjective probability for white estimated after a pattern of 5 white and 0 blue
is π1 with standard error σ (π1), and the probability for white elicited after a pattern of 0 white and 5
blue is π2 with standard error σ (π2), we report the average of π1 and 1−π2, using the delta method to
derive its standard error.

13We did not include in Table 1 dice combinations that emerged that did not have equivalents in
the original GT (1992) design.

14Kraemer and Weber (2004) also tested the GT (1992) effect, using stated-preference methods
of elicitation and hypothetical information signals. Their results were in line with the original GT
findings but did not allow a comparison of the general magnitude of the bias, because Kraemer and
Weber (2004) restricted their analysis to hypothetical signals that always yielded a posterior of 0.6.
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TABLE 1
Estimated Subjective Probabilities

Table 1 reports subjective probabilities and preference parameters estimated with maximum likelihood. Subjective proba-
bilities are constrained to lie in the unit interval, using the transform π=1/(1+exp(κ)), where κ is the parameter estimated,
and π is the inferred probability. We report the average probability elicited after symmetric signals (e.g., (5,0) and (0,5)),
using the delta method to estimate the standard error for pooled π from estimates of κ. We employ ‘‘frequency weights’’
of 50 for every observed choice from the risk task to ensure that the estimated risk parameters are based primarily
on the choices from the risk tasks. In the RN column, we estimate the model by assuming risk neutrality (constraining
r =0.0001). In the SEU column, we remove this constraint and allow risk aversion, assuming a CRRA utility function of
the type y 1−r /(1− r ). µ is a structural error parameter, and π is the subjective probability. RELATIVE_BIAS is calculated
as π/BAYESIAN_POSTERIOR. Columns 9 and 10 indicate the standard errors of estimated parameters (r , µ, and π),
using the delta method. Standard errors are also clustered at the subject level. The econometric procedure employed is
explained in detail in Internet Appendix D.

Panel A. Preference Parameters

RN SEU Standard Errors

RN SEU

r 0.562 0.031
µ 0.106 0.204 0.011 0.028

Panel B. Probabilities

BAYESIAN_POSTERIOR Signal Weight Strength π RELATIVE_BIAS π RELATIVE_BIAS Standard Errors

0.88 (5,0) 5 1 0.927 1.05 0.706 0.80 0.025 0.019
0.88 (7,2) 9 0.56 0.906 1.03 0.693 0.79 0.018 0.015
0.88 (11,6) 17 0.29 0.797 0.91 0.631 0.72 0.029 0.014

Bias (High – Low) 13.00% 7.05%
p-value <0.001 <0.001

0.77 (3,0) 3 1 0.879 1.14 0.677 0.88 0.019 0.014
0.77 (4,1) 5 0.6 0.813 1.05 0.643 0.84 0.017 0.011
0.77 (6,3) 9 0.33 0.767 1.00 0.620 0.81 0.032 0.013
0.77 (10,7) 17 0.18 0.746 0.97 0.601 0.78 0.018 0.009

Bias (High – Low) 13.30% 7.60%
p-value <0.001 <0.001

0.60 (2,1) 3 0.33 0.714 1.19 0.584 0.97 0.022 0.009
0.60 (3,2) 5 0.2 0.651 1.09 0.563 0.94 0.013 0.006
0.60 (5,4) 9 0.11 0.590 0.98 0.541 0.90 0.017 0.007
0.60 (9,8) 17 0.06 0.645 1.08 0.549 0.92 0.021 0.008

Bias (High – Low) 6.90% 3.50%
p-value 0.023 <0.001

Specifically, for the 0.88 group, the bias is 7% instead of 13.0%; for the 0.77
group, it is 7.6% instead of 13.3%; and for the 0.6 group, it is 3.5% instead of
6.9%. This highlights the fact that inferences about the strength–weight effect
under the assumption of RN are likely to overstate the bias.15

How do our results compare with the original findings of GT (1992)? Across
all 3 patterns, the average bias reported by GT is 20.6%.16 The corresponding aver-
age bias in our analysis is only 6% (p-value< 0.001) when we allow for nonlinear
utility. The hypothesis that the average bias in the two studies is equal is safely
rejected (p-value< 0.001). This comparison suggests that the bias is significantly
reduced when tested under experimental designs that incentivize responses, which

15In unreported results, we derive results using a rank-dependent utility model that accounts for
both nonlinear utility and probability weighting via nonadditive decision weights. The results show
that our subjects do not engage in probability weighting; therefore, inferences regarding the strength–
weight bias from this model are identical to those drawn from the SEU model. These results are
available from the authors.

16For the 0.88 case, GT ((1992), p. 415, Table 1) report a bias of 28% (92.5−64.5%), for the 0.77
group a bias of 25.5% (85%−59.5), and for the 0.6 group a bias of 8.5% (63%−54.5%).
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has important implications for inferences about the relevance of the strength–
weight bias to stock market anomalies.

GT (1992) report that their subjects overreact to high-strength, low-weight
information, stating probabilities that are higher than those implied by Bayes’
rule. In our estimations, we find evidence of overreaction toward high-strength,
low-weight signals only when we constrain r to RN. When we allow for non-
linear utility, we find a general tendency of underreaction, or conservatism (Ed-
wards (1968)) toward sample information, as subjective probabilities are lower
than Bayesian posterior probabilities (RELATIVE BIAS is less than 1 in all
cases). Moreover, in each posterior group, underreaction is higher when the sig-
nal is of high weight. For example, in the SEU model, for signals that imply
a posterior of 0.88, underreaction is 25% when the signal is of high weight
(RELATIVE BIAS= 0.72) and 18% when it is of low weight (RELATIVE BIAS
= 0.8). This finding can provide an explanation for prices adjusting slowly to im-
portant, high-weight information, such as earnings surprises (Bernard and Thomas
(1989)) or changes in dividend policy (Michaely et al. (1995)).

We continue to more formally test the strength–weight hypothesis by esti-
mating the following model:17

ln{ln(π/(1−π ))/ ln(0.6/0.4)} = α ln N +β ln S.(2)

Bayes’ rule predicts that the coefficients on strength (β) and weight (α)
should both be equal to 1, whereas β>α under the strength–weight hypothe-
sis. The results, which are shown in Panel A of Table 2, show that the coeffi-
cient on weight, α, is 0.442 and on strength, β, is 0.736, which shows that signal
strength affects probabilities more than signal weight, in line with our previous
results in Table 1. The hypotheses that α=β is safely rejected (p-value < 0.001).
We can define the total bias as 1−α/β, equal to 40% in our data, again
significantly smaller than the corresponding bias of 62% reported by GT (1992)
(p-value < 0.001).18

We also use this model to test whether the strength–weight bias differs
among subjects with different demographic characteristics. Previous research
found that female subjects are less likely to behave as Bayesians in similar ex-
perimental tasks (Charness and Levin (2005)). We therefore condition estimates
of α and β on the dummy FEMALE. Moreover, subjects who have knowledge
of statistics have been found to behave more rationally in such quantitative tasks
(Halevy (2007)). To test for this effect, we condition estimates of α and β on the
dummy MATH, which takes a value of 1 if the subject is studying in a quantita-
tive field, and 0 otherwise. Subjects with higher cognitive abilities have also been
shown to act more rationally (Grinblatt, Keloharju, and Linnainmaa (2012)). As
a proxy for quantitative ability, we define the proxy FIRST CLASS, which takes
a value of 1 if the subject’s self-reported average marks to date are in the high-
est class, and 0 otherwise.19 Finally, experienced subjects have been shown to act

17This entails expressing the subjective probabilities within the structural model in terms of
strength and weight and then estimating α and β using maximum likelihood. Internet Appendix D
explains this procedure, and Internet Appendix E derives equation (2) from Bayes’ rule.

18GT ((1992), p. 416) report that in their experiment, α is 0.31, and β is 0.81.
19In the U.K., this is 70% and above and is achieved by roughly 15%–20% of students.
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TABLE 2
The Effect of Strength and Weight on Subjective Probabilities

Table 2 reports estimates for the model in equation (2) with maximum likelihood. In Panel A, we assume an SEU rep-
resentation with a CRRA utility function, as in Table 1. In Panels B and C, we use the same CRRA representation and
examine the role of demographics and experimental procedures, respectively. Specifically, we define the dummy variable
FEMALE, which takes a value of 1 if the subject is female, and 0 otherwise; MATH, which takes a value of 1 if the subject
is majoring in mathematics, economics, finance, engineering, or physical or computer sciences, and 0 otherwise; and
FIRST_CLASS, which takes a value of 1 if the subject’s marks to date are higher than 70% of the class, and 0 otherwise.
The dummy EXPERIENCE takes a value of 1 for the last 15 samples in the belief task. RA_THEN_B is equal to 1 if the risk
task is conducted first, and 0 otherwise, and B_DESCENDING is equal to 1 if the samples in the belief task are presented
in descending order, and 0 otherwise. In Panel B (C), we condition α and β on the demographic (experimental design)
dummies. µ is a structural error parameter. Standard errors are clustered at the subject level. The econometric procedure
employed is explained in detail in Internet Appendix D.

Panel B. SEU Panel C. SEU
Panel A. SEU and Demographics and Order Effects

Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error

α 0.442 0.040 0.554 0.078 0.420 0.068

FEMALE −0.167 0.080
MATH −0.106 0.080
FIRST_CLASS 0.068 0.091
EXPERIENCE −0.022 0.036
RA_THEN_B 0.058 0.076
B_DESCENDING −0.011 0.069

β 0.737 0.043 0.827 0.095 0.689 0.090

FEMALE −0.042 0.097
MATH −0.195 0.099
FIRST_CLASS 0.088 0.117
EXPERIENCE −0.014 0.064
RA_THEN_B 0.047 0.092
B_DESCENDING 0.048 0.089

r 0.567 0.030 0.518 0.051 0.609 0.032

FEMALE 0.122 0.047
MATH −0.029 0.045
FIRST_CLASS 0.011 0.041
RA_THEN_B −0.098 0.041

µ 0.208 0.029 0.207 0.028 0.202 0.026

more rationally, both in experiments (Loomes, Starmer, and Sugden (2003)) and
in the field (Seru, Shumway, and Stoffman (2010)). Although our experiment did
not provide any feedback, it is possible that subjects learn about the latent process
by observing which samples are more or less frequent. To test for such learning,
we define the dummy EXPERIENCE, which takes a value of 1 for the last 15
rounds of the belief task, and 0 otherwise. We estimate model 10 by condition-
ing α and β on these dummies. We also condition r on FEMALE, MATH, and
FIRST CLASS, because these variables may also affect risk attitudes.

The results are shown in Panel B of Table 2. The entry next to each variable
shows its marginal contribution and its associated standard error. We find that fe-
males are significantly more risk averse, consistent with prior studies. Females are
found to be less sensitive to signal weight (coefficient of−0.167 with standard er-
ror 0.08), which suggests that their beliefs are more biased. Subjects who study in
quantitative fields respond less strongly to signal strength (coefficient of −0.195
with standard error 0.098), which suggests that their beliefs are less biased. These
effects are statistically significant at the 5% level. Overall, the analysis in Panel B
suggests that the strength–weight bias is likely to be stronger among females and
subjects with no quantitative skills but also that no group of subjects is completely
immune to the strength–weight effect.
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Finally, we examine whether order effects influence our results by allowing
estimates of α and β to differ depending on whether the risk task is conducted
first (RA THEN B = 1) and depending on whether the samples are presented
in descending order in the belief task (B DESCENDING = 1). We find that our
estimates of α and β are not affected by order effects. However, we find that
subjects become more risk averse if the risk task is conducted first.

B. Asset Pricing Simulations
Our findings suggest that the strength–weight bias is weaker than that re-

ported by GT (1992) and that subjects are more likely to underreact rather than
overreact. To examine the effect of these findings on asset pricing, we recali-
brate the model proposed by Barberis et al. (1998) to parameters that imply such
changes.

BSV (1998) note that earnings are generated by a random-walk process, but
the investor falsely believes in either a mean-reverting regime (underreaction) or a
trending-regime (overreaction). There are some probabilities that govern the tran-
sition from one model to the other, which can be thought to relate to the strength–
weight effect (i.e., the switch from underreaction to overreaction). The investor
observes past earnings realizations to determine which model is generating earn-
ings; after a short string of surprises of the same sign, which appear relatively
“unconvincing,” the investor underreacts. As this string increases and becomes
more salient, the investor overreacts. BSV use this model to simulate the returns
of portfolios of firms with n consecutive positive or negative shocks (where n
ranges from 1 to 4) and show that the return differential between these portfolios,
r n
+
−r n
−

, decreases in n. Moreover, for short strings (n=1, 2), it is positive, indi-
cating underreaction, and it turns negative for longer strings (n=3, 4), indicating
overreaction.

Following this procedure, we examine how changes in the transition proba-
bilities, such that the investor always relies more on model 1, affect r n

+
−r n
−

.20 We
find that r n

+
−r n
−

decreases with n but at a generally smaller rate. Moreover, r n
+
−r n
−

is larger for all n, and it requires a longer string of news to actually turn it neg-
ative. Overall, our experimental findings, as calibrated through the BSV (1998)
model, imply more widespread underreaction in asset prices.

IV. Conclusion
Griffin and Tversky (1992) propose the strength–weight hypothesis, which

is that decision makers are more responsive to the extremity (strength) of the
information than to its predictive validity (weight), even when both strength and
weight are equally diagnostic. This hypothesis is used in many applications in
finance.

We test whether the hypothesis holds by means of an experiment that allows
us to infer subjective probabilities through betting decisions with real monetary in-
centives. We provide respondents with imperfect information about the true state
of the world and ask them to reveal their subjective beliefs about the likelihood of

20This analysis is available in Internet Appendix F.
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the true state by making a series of bets, according to the logic of Savage (1954),
(1971) and Ramsey (1931).

Our results broadly support the original findings of GT (1992); decision mak-
ers generally perceive events as more likely when the available evidence has high
strength and low weight. However, the magnitude of the bias we find is less than a
third of that reported by GT, which suggests that the impact of the strength–weight
bias on stock market anomalies is likely to be smaller than what the original esti-
mates suggest.
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