TWO RESULTS CONCERNING THE ZEROS OF FUNCTIONS WITH FINITE DIRICHLET INTEGRAL

JAMES G. CAUGHRAN*

A function f, analytic in the unit disk, is said to have *finite Dirichlet integral* if

(1)
$$||f||_{D^{2}} = \frac{1}{\pi} \int_{|z| < 1} |f'(z)|^{2} r \, dr d\theta < \infty.$$

Geometrically, this is equivalent to f mapping the disk onto a Riemann surface of finite area. The class of Dirichlet integrable functions will be denoted by \mathscr{D} . The condition above can be restated in terms of Taylor coefficients; if $f(z) = \sum a_n z^n$, then $f \in \mathscr{D}$ if and only if $\sum n |a_n|^2 < \infty$. Thus, \mathscr{D} is contained in the Hardy class H^2 .

In particular, every such function has boundary values

$$f(e^{i\theta}) = \lim_{r \to 1} f(re^{i\theta})$$

almost everywhere and $\log |f(e^{i\theta})| \in L^1(d\theta)$.

The zeros z_n of a function $f \in \mathscr{D}$ must satisfy the Blaschke condition

$$\sum (1 - |z_n|) < \infty$$

and f(z) = B(z)F(z), where F(z) has no zeros and

$$B(z) = z^m \prod \frac{\bar{z}_n}{|z_n|} \frac{z_n - z}{1 - \bar{z}_n z}$$

is the Blaschke product with zeros z_n ; see (5).

In earlier studies by Carleson (3) and by Shapiro and Shields (6), several results concerning the possible sets of zeros of functions of \mathcal{D} were established. In particular, it was proved that if a sequence converges to the boundary fast enough, i.e., if

$$\sum \left(\frac{1}{\log\left(1-|z_n|\right)}\right) > -\infty,$$

then there is a function of \mathscr{D} which vanishes at those points. On the other hand, sequences were constructed which satisfy the Blaschke condition, and in fact $\sum (1 - |z_n|)^{\epsilon} < \infty$ for every $\epsilon > 0$, but on which no non-zero function of \mathscr{D} can vanish.

Received September 8, 1967.

^{*}I would like to thank Professor Lennart Carleson for his kind permission to include Theorem 1. The contents of this paper form a portion of my doctoral dissertation, written at the University of Michigan under the direction of Professor P. L. Duren.

ZEROS OF FUNCTIONS

In these counterexamples, however, every point of the circumference is a limit point of the sequence, and it is natural to ask how "thin" the set of limit points of zeros may be. In Theorem 1, a sequence is constructed which converges to 1 and which satisfies the Blaschke condition, but on which no non-zero function of \mathscr{D} may vanish. This example is due to Professor Lennart Carleson and appears with his permission. His construction is presented in a modified form due to A. L. Shields, P. L. Duren, and the author.

On the positive side, Theorem 2 shows that if a sequence satisfies the Blaschke condition and all its points lie within a curve making a finite degree of contact with the unit circle at 1, then the points of that sequence are the zeros of a function of \mathcal{D} . Thus, one can infer that a Blaschke sequence is the set of zeros of a function of \mathcal{D} solely from its geometric configuration.

THEOREM 1. There exists a sequence $\{z_n\}, |z_n| < 1$, which satisfies the Blaschke condition and which converges to 1, but on which no non-zero function with a finite Dirichlet integral can vanish.

Proof. The expression in (1) has been shown (4) to satisfy

$$||f||_{D}^{2} \geq \frac{1}{2\pi} \int_{0}^{2\pi} \left(|f(e^{it})|^{2} \sum \frac{1 - |z_{n}|^{2}}{|e^{it} - z_{n}|^{2}} \right) dt,$$

where the points z_n are the zeros of f. Applying the geometric-arithmetic mean inequality, we see that

$$||f||_{D}^{2} \ge \exp\left[\frac{1}{2\pi} \int \log\left(|f(e^{it})|^{2} \sum \frac{1-|z_{n}|^{2}}{|e^{it}-z_{n}|^{2}}\right) dt\right].$$

Since any such function has log-integrable boundary values,

(2)
$$\int \log \left(\sum \frac{1 - |z_n|^2}{|e^{tt} - z_n|^2} \right) dt < \infty,$$

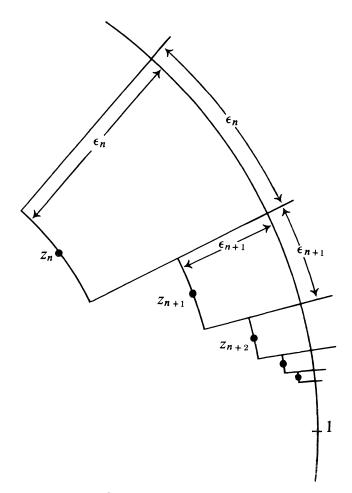
if the points z_n are the zeros of a function satisfying (1).

The construction begins with the choice of a sequence $\{\epsilon_n\}, 0 < \epsilon_n < 1$, for which $\sum \epsilon_n \leq 2\pi$, but such that $\sum \epsilon_n \log \epsilon_n = -\infty$. For example, $\{(n(\log n)^2)^{-1}\}$, suitably normalized, is such a sequence. Choose open, disjoint arcs I_n on the circumference, of lengths ϵ_n , converging to 1 (see the figure). Let $r_n = 1 - \epsilon_n$. On each circle of radius r_n , place a point z_n whose signum lies at the centre of I_n . Then the condition for the convergence of the Blaschke product with zeros z_n , $\sum (1 - r_n) = \sum \epsilon_n < \infty$ is satisfied. Notice that $|e^{it} - z_n| < 2\epsilon_n$ for $e^{it} \in I_n$. Thus,

$$\frac{1 - |z_n|^2}{|e^{tt} - z_n|^2} > \frac{(1 + r_n)\epsilon_n}{4\epsilon_n^2} > \frac{1}{4\epsilon_n}$$

in this interval. Hence, if

$$F_n(t) = \frac{1 - |z_n|^2}{|e^{it} - z_n|^2},$$



Construction of Theorem 1

we see that

$$\int \log \left(\sum_{n=1}^{\infty} F_n(t) \right) dt \ge \sum_{k=1}^{\infty} \int_{I_k} \log \left(\sum_{n=1}^{\infty} F_n(t) \right) dt$$
$$> \sum_{k=1}^{\infty} \int_{I_k} \log F_k(t) dt$$
$$> - \sum_{k=1}^{\infty} \int_{I_k} \log 4\epsilon_k dt$$
$$= - \sum_{k=1}^{\infty} \epsilon_k \log 4\epsilon_{k*}$$

However, this series diverges by hypothesis, contradicting (2).

The following special case of a theorem of Beurling (1, p. 13) and Carleson (2) will be required for Theorem 2. A *Carleson set* is a closed set of measure zero with complementary arcs of lengths ϵ_n , which satisfies

$$\sum \epsilon_n \log \epsilon_n > -\infty$$
.

THEOREM. If f is an analytic function with a bounded derivative, then $\{e^{i\theta}: f(e^{i\theta}) = 0\}$ is a Carleson set. Conversely, given a Carleson set E and a positive integer m, there is a function g, which vanishes on E, which is outer in the sense of Beurling, and for which $g^{(m)}(z)$ is bounded in the disk.

In the example of Theorem 1, the points z_n tend to 1 "very tangentially". Theorem 2 implies that if the Blaschke condition is satisfied and the z_n tend to 1 not "too tangentially", then there is a non-zero function f which is analytic in the disk, whose derivative is continuous in the closed disk, and which vanishes at the points z_n . A subset S of the disk is said to have *finite degree of contact* k at a subset E of the circle if there is a constant M > 0 such that

$$\operatorname{dist}(w, E)^k \leq M(1 - |w|)$$

for all $w \in S$.

THEOREM 2. Let $\{z_n\}$ be a sequence of points of the unit disk whose limit points lie in a Carleson set E and which satisfies the Blaschke condition. Then, if the set of points z_n has a finite degree of contact at E, there is an analytic function f whose derivative is continuous in the closed disk and whose zeros are the points z_n .

Proof. By the Carleson theorem, there is an outer function g with continuous derivative, which vanishes on *E*. By integration,

$$|g(z)| \leq N \operatorname{dist}(z, E)$$

for some constant N > 0. By dividing g by N, we may assume that N = 1.

Assume that $dist(z_n, E)^k \leq M(1 - |z_n|)$ for all *n*, where we may assume that *k* is greater than 1. Let *B* be the Blaschke product

$$B(z) = \prod \frac{\bar{z}_n}{|z_n|} \frac{z_n - z}{1 - \bar{z}_n z}$$

and let

$$f(z) = g(z)^{2k+1}B(z).$$

Then

$$\begin{aligned} f'(z) &= (2k+1)g'(z)g(z)^{2k}B(z) + g(z)^{2k+1}B'(z) \\ &= (2k+1)g'(z)g(z)^{2k}B(z) + g(z)^{2k+1}\sum B_n(z)\frac{\bar{z}_n}{|z_n|}\frac{1-|z_n|^2}{(1-\bar{z}_nz)^2}, \end{aligned}$$

where

$$B_n(z) = \frac{z_n}{|z_n|} \frac{1-\bar{z}_n z}{z_n-z} B(z).$$

Since B and B_n are analytic on the closed disk except at points of E (5, p. 68), if $g(z)^{2k}/(1 - \bar{z}_n z)^2$ is bounded for z in the unit disk independently of n, then

f' is continuous in the closed disk. By the maximum modulus principle, this will be the case if there is a constant C such that

(3)
$$|g(e^{i\theta})|^k \leq C|e^{i\theta} - z_n|$$

for all *n*. Let $C = 2^k (M + 1)$. Then

$$g(e^{i\theta})|^{k} \leq \operatorname{dist}(e^{i\theta}, E)^{k}$$
$$\leq 2^{k-1}[|e^{i\theta} - z_{n}|^{k} + \operatorname{dist}(z_{n}, E)^{k}]$$
$$\leq 2^{k-1}[|e^{i\theta} - z_{n}|^{k} + M(1 - |z_{n}|)]$$

If $|e^{i\theta} - z_n| \leq 1$, then $|e^{i\theta} - z_n|^k \leq |e^{i\theta} - z_n|$, and using $1 - |z_n| \leq |e^{i\theta} - z_n|$, we see that

$$|g(e^{i\theta})|^k \leq 2^{k-1}(M+1)|e^{i\theta} - z_n|$$

If $|e^{i\theta} - z_n| > 1$, then

$$|g(e^{i\theta})|^k \leq 2^k < 2^k(M+1)|e^{i\theta} - z_n|.$$

Thus, in any case, (3) holds, and f is the desired function.

A generalization of this construction yields a function with any given number of continuous derivatives, with the same hypotheses on the points z_n . Since a function $f(z) = \sum a_n z^n$ with bounded derivative satisfies $\sum n^2 |a_n|^2 < \infty$, such a function has finite Dirichlet integral.

References

- 1. Arne Beurling, Ensembles exceptionnels, Acta Math. 70 (1940), 1-13.
- 2. Lennart Carleson, Sets of uniqueness for functions regular in the unit circle, Acta Math. 87 (1952), 325-345.
- 3. ——— On the zeros of functions with bounded Dirichlet integrals, Math. Z. 56 (1952), 289-295.
- 4. A representation theorem for the Dirichlet integral, Math. Z. 73 (1960), 190-196.
- 5. Kenneth Hoffman, Banach spaces of analytic functions (Prentice-Hall, Englewood Cliffs, N.J., 1962).
- 6. H. S. Shapiro and A. L. Shields, On the zeros of functions with finite Dirichlet integral and some related function spaces, Math. Z. 80 (1962), 217-229.

University of Kentucky, Lexington, Kentucky