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A formula for accelerating the
convergence of a general series

J.E. Drummond

A weighted average of the partial sums of a series provides a

quick and moderately powerful sum for any series in which the

ratio of successive terms varies slowly along the series and

this ratio is not close to +1 . Some properties of the sum are

examined.

Let u be the n-th term of a series and S given by

be a partial sum of n terms of an infinite series, S . Aitken's [7] two

term formula for the sum may be written

and Lubkin's [Z] three term formula may be written

1 = is lu -2S lu +S lu l / f l ' "
I* 2^+2 2**̂ 2 2°^2 2**̂ 1 i^^l T* 1? '

We now consider a generalization of these formulae,

(1) T = I W.S . I I W. where W. = (-fif.^/u .

and C7 is the binomial coefficient kl/i\{k-i)\ .

T is a weighted average of the partial sums of the series and may
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be compared with the Euler sum of a slowly convergent alternating series,

Sr +hr+l
 + t(Vl-"J + •.. +(to k terms) =

This is a good approximation when the terms alternate and vary slowly in

size.

An approximation to the residual fs-T } : Let T = 5 - E • . If
rr \. rsJ rs rs

S. is a convergent sequence, then the truncation error (S-S.} tends to

zero as {.-*•<*> and T is a weighted mean of the 5. , so E also
TS z rs

tends to zero as r and s •+ m provided that the sum of the weights has

a non-zero limit.

Let un+1/un = Rn ; then

s-r
[ii ••ii • _ • • • i t _ J } r / i r i _ . . . r i T J _ * J

1r—U

For a rapidly convergent series (that is all the |i? | < 1 )

r >s r rs r , s £_Q % s x s

on picking out the largest term in the difference. We may conclude from

this formula that if the ratio of terms, R , varies slowly with n then

the (s-r)-th order finite difference of R will be small compared with

R . Hence the first finite difference of E will be small compared
n rs

with u . . If, furthermore, u decreases rapidly as s increases, so
o+x S

also will E decrease as s increases with {s-r) constant, so we can

neglect E +. in our approximation and equation (2) gives an estimate

of E . Similarly for a rapidly divergent series (that is all the

\R I > 1 ) on picking out the largest term in the difference,
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W Ers " Er+l,s+l * " A X ^^'^H '
. i—u

In both cases we compare the residual in the formula with the smallest term

of the original series used in the weighting. If the divergent series has

a meaningful sum, then the residual in the formula will be small if the

(e-r)-th finite difference of the reciprocal of the Ft is small compared

with the reciprocal of J . If the transformation makes the series less

divergent, E +. will be larger than E while E will be the

larger if the divergent series is converted to a convergent series, but in

either case E will be comparable with the expression (k).

In operating on a slowly convergent or divergent series the expression

for the residual is more complicated than (3) or (it) but for a slowly

convergent alternating series, formula (l) approximates to the Euler sum

which is known to be a good approximation for such a series. However, if

u is the reciprocal of a polynomial in n , then in equation (l), J I/.

is the finite difference of a polynomial, so will be zero when (s-r) is

sufficiently large. In this case T may be unbounded. Lubkin's formula

which is T _ fails when u is the reciprocal of a linear function of
2? J ? T ^ YI

r -1
n , but this is no loss because £ n is itself a divergent - series. For

a slowly convergent series of positive terms formula (l) is found to be

unsatisfactory because the sum of the weights is small, but it works well

on many other series.

As an example we sum the series £ (-) n! to show the simplicity and

power of the sum. We tabulate (lO)!/w and (1O)!5 /u ; then we may

introduce the binomial coefficients and calculate any T as desired.

The set T. is listed in the third column of the table. Any one of these
On

may be computed as desired and provides a relatively simple and moderately

powerful method for summing a series. If greater accuracy is desired, it

may be observed that the T column appears to be a convergent sequence,

so formula (l) may be applied again to this sequence. In this case the
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labour involved becomes more comparable with that of the other more

powerful methods such as repeated use of Aitken's transform [71, Shanks'

e processes [4], Wynn's E and p algorithms [5, 6] and Rutishauser's

Q-D algorithm [3].- Euler's transform is useless on this series.

TABLE. ESTIMATES OF £ {-)nn\

10)!/n!

3628800

3628800

I81UUOO

601+800

151200

3O2ltO

50U0

720

90

10

1

(10 )!SM/n!

3628800

0

3628800

-21+19200

3021+000

-3021+000

3121+800

-31821+00

3231000

-3269800

331820

On

.50000

.58821*

.59330

•59508

•59578

.59608

.59621

.59628

.59631

As a second example we sum the series

•n = k - k/3 + U/5 + ... .

In this example R = (2n-l)/(2n+l) . R changes rapidly with n when n

is small, so any finite difference of R or R~ which includes terms

with n near zero is not small. In this case we can do better by taking a

lower order finite difference further along the series. If we use 16

terms it is best to calculate 2V ,^ ; then we get an error of 1 in the

D,1D

10-th digit. This series is also particularly good for Euler's formula

since R is close to 1 . However we lose strength if we include the
first terms where R is not close to 1 . On applying Euler's formula to

the latter 10 or 11 of 16 terms, we get an error of 2 in the 9-th

digit. Aitken's formula develops the same weakness when R is changing

https://doi.org/10.1017/S0004972700044270 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700044270


Accelerating convergence 73

rapidly. With somewhat more labour and six repetitions of Aitken's

transform we use up 12 terms of the series before Aitken's transform

becomes unstable at the start of the series. At this stage the error is

in the llt-th digit. Aitken's transform may be repeated but each

repetition after the sixth uses up three terms because of the initial

instability so the convergence is less rapid. Aitken's method however

remains the best of these three methods per number of terms used if the

amount of effort used is not an important restriction.

If we tabulate T., as s runs from 2 to 16 we obtain a
Is

convergent sequence of estimates of IT using equation 1 and if desired we

may repeat equation 1 on T to get a better estimate of the sum.
xs

Alternatively, we may tabulate T _,- as r runs from 1 to 15 and

this time we obtain an asymptotic sequence with a minimum at r = 6

mentioned above. Equation 1 may be repeated on this sequence to get a

better estimate.

In conclusion, equation (l) is a weighted Euler sum which may be used

when a suitable Euler weight is unknown.
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