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Abstract. Let K be a discrete valuation field with ring of integersOK . Let f :X → Y be a finite
morphism of curves overK . In this article, we study some possible relationships between the models
overOK of X and ofY . Three such relationships are listed below.

Consider a Galois coverf :X→ Y of degree prime to the characteristic of the residue field, with
branch locusB. We show that ifY has semi-stable reduction overK , thenX achieves semi-stable
reduction over some explicit tame extension ofK(B). WhenK is strictly henselian, we determine
the minimal extensionL/K with the property thatXL has semi-stable reduction.

Let f :X → Y be a finite morphism, withg(Y ) > 2. We show that ifX has a stable model
X over OK , thenY has a stable modelY over OK , and the morphismf extends to a morphism
X→ Y.

Finally, given any finite morphismf :X → Y , is it possible to choose suitable regular models
X andY of X andY overOK such thatf extends to a finite morphismX → Y ? As was shown
by Abhyankar, the answer is negative in general. We present counterexamples in rather general situ-
ations, withf a cyclic cover of any order> 4. On the other hand, we prove, without any hypotheses
on the residual characteristic, that this extension problem has a positive solution whenf is cyclic of
order 2 or 3.

Mathematics Subject Classifications (1991):14G20, 11G20, 14H30, 14H25.

Key words: branch locus, covers, curves, discrete valuation ring, models, semi-stable, simultaneous
resolution.

Let OK be a Dedekind domain with field of fractionsK. Let f :X → Y be a
finite morphism of projective, smooth, and geometrically connected curves over
Spec(K). In this paper, we study some possible relationships between the models
of X and ofY . In the first part of the paper, we look at semi-stable and stable
models, while in the second part we investigate regular models.

Let us describe the content of this paper. Definitions and standard facts about
models are reviewed in the first section. LetB ⊂ Y denote the branch locus of
f , and letK(B) be the compositum, in an algebraic closure ofK, of the residue
fields of points ofB. In the second section, we consider a Galois coverX → Y

of degree prime top and show that, ifY has semi-stable reduction overK, thenX
achieves semi-stable reduction over an explicit tame extension of the fieldK(B)

(Theorem 2.3). WhenK is strictly Henselian, there exist extensionsLX/K and
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62 QING LIU AND DINO LORENZINI

LY/K minimal with the property thatXLX andYLY have semi-stable reduction. In
the third section, we assume thatK is strictly Henselian and strengthen the result
obtained in the second section to show that for a Galois cover of degree prime to
p, thep-part ofLX/K is equal to the compositum of thep-part ofLY/K and the
p-part ofK(B)/K (Corollary 3.2). We later completely describeLX in terms of
LYK(B) and some vertical ramification data (Theorem 3.9).

Let f :X → Y be a finite morphism, withg(Y ) > 2. In the fourth section, we
show that ifX has a stable modelX/OK , thenY has a stable modelY/OK , andf
extends to a (not necessarily finite) morphismϕ: X → Y (Proposition 4.4). As a
corollary, we give a new proof a theorem of Lange which states that ifX has good
reduction, thenY has good reduction.

Given any finite morphismf :X → Y as above, it is interesting in some situ-
ations to be able to compare the regular models ofX andY overOK . In particular, it
is natural to wonder whether it is possible to choose suitable regular modelsX/OK

andY/OK of X andY such that the morphismf extends to a finite morphism
ϕ: X→ Y. Unfortunately, this is not always possible, as was shown by Abhyankar
in [Ab2]. In the sixth section of this paper, we give a local obstruction to this
extension problem, and then present counterexamples in rather general situations,
with f a cyclic cover of any order> 4. On the other hand, we prove in the last
section that whenf is cyclic of order 2 or 3, then suitable regular models ofX and
Y can be chosen such thatf extends to a finite morphism between these regular
models. The difficulties in the proof of this statement are due to the fact that we do
not make any assumption on the residue characteristics. Three preparatory lemmas
for Sections 6 and 7 are stated for the convenience of the reader in a separate
section, Section 5. The reader may refer to these lemmas on models that dominate
regular models as needed while reading the results of Sections 6 and 7.

The properties of models we are concerned with in this article are most often
local on Spec(OK). Thus, most of time and unless stated otherwise,OK will be
a discrete valuation ring. Thenv denotes the normalized valuation ofK, t a uni-
formizing element,k = OK/(t) the residue field, andp = char(k) > 0. The
special fiberY ×Spec(OK) Spec(k) of a modelY/OK will be denoted byYs. The
generic fiberY×Spec(OK) Spec(K) will be denoted byYK . For any finite extension
L/K, we denote byOL the integral closure ofOK in L. It is a Dedekind domain
with finitely many maximal ideals ([Z-S], V.9, Theorem 21). With the exception of
section 4, all coversX → Y considered are Galois. In the last three sections, the
residue fieldk will be assumed to be perfect or algebraically closed.

1. Basic Facts on Models

Let us begin with a short review of facts and notation pertaining to models. In this
paper we call acurve overK a projective, smooth, and geometrically connected
curve overK. A modelX of X is an integral normal schemeX, projective and flat
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over Spec(OK), such that the generic fiberXK is isomorphic over Spec(K) with
the given curveX/K.

LEMMA 1.1. LetX/K be a curve, and letX/OK be an integral scheme such that
XK ' X. If Xs is reduced, thenX is normal.

Proof.The statement is local and we are reduced to the case of an open Spec(A),
with A/(t) reduced andA[1/t] integrally closed. Letα ∈ Frac(A) be an element
integral overA. Thenα ∈ A[1/t], and thus it can be written asa/ti , with a ∈ A
anda /∈ (t) if i > 0. Let (a/ti)n + · · · + a0 = 0 be an integral relation forα
overA. If i > 0, thenan is congruent to zero modulo(t) and, hence,a ∈ (t).
Contradiction. Thusi 6 0 andα ∈ A.

A finite surjective morphism of schemes is called acover. A coverS → T of
integral normal schemes is called aGalois cover with groupG if the extension of
function fieldsK(T ) → K(S) is Galois with groupG, and ifT is isomorphic to
the quotientS/G. Letf :X→ Y be a cover of curves over Spec(K) and letY be a
model ofY overOK . Denote byN(Y,K(X)) the normalization of the schemeY in
K(X), and byϕ:N(Y,K(X))→ Y the canonical morphism. By construction,ϕ is
a finite morphism (thusN(Y,K(X)) is of finite type over Spec(OK)) if eitherf is
a separable morphism, orOK is an excellent ring. When we considerN(Y,K(X)),
we shall always assume that either of these hypotheses hold. When no confusion
may result, we may denote the modelN(Y,K(X)) of X/K simply byX.

Recall that the morphismϕ: X → Y is unramified atx ∈ X if and only if
(�X/Y)x = 0 ([A-K], 3.3). Hence the setR of ramified points ofϕ is a closed
set ofX, called theramification locus. The mapϕ being a finite morphism, the
image ofR in Y is a closed setB (endowed with the reduced induced structure)
called thebranch locusof X overY. If f :X→ Y is separable, then the morphism
ϕ: X→ Y is generically unramified and, thus,B 6= Y. Hence,B is either empty,
or is the union of finitely many components of codimension 1 and of finitely many
isolated points. As we shall recall in this paper, the singularities of the normal
modelN(Y,K(X)) are intimately linked with the branch locus of the given map
f :X→ Y .

LetD be any irreducible divisor ofY. We say thatD is ahorizontaldivisor ifD
dominates Spec(OK). OtherwiseD is contained in the special fiberYs and we say
thatD is avertical divisor. An irreducible divisorD of Y is a horizontal divisor in
B if and only if D is the closure inY of a point ofY that belongs to the branch
locus of the mapf :X → Y . An irreducible vertical divisorD is an irreducible
component ofYs and, as such, has a multiplicityrD > 1: Letξ be the generic point
of D. ThenOY,ξ is a regular local ring of dimension 1. Thus it has a (normalized)
valuationν, and we definerD to beν(t), wheret is an uniformizing parameter of
OK . The irreducible vertical divisorD is contained inB if and only if either the
mapϕ−1(D)→ D is not separable, or an irreducible componentE of ϕ−1(D) has
multiplicity in Xs equal torE = rD ·eE/D, with eE/D > 1. Letη denote the generic
point ofE in Xs. TheneE/D is the ramification index ofη overξ . An irreducible
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divisorD is regular if it is a regular scheme. An irreducible horizontal divisorD is
said to besmoothif the mapD→ Spec(OK) is unramified.

1.2. REGULAR MODELS

We call a modelY/OK a regular model if the schemeY is regular. WhenY is
a regular model, the finite morphismϕ: X → Y is flat [Mat], 18.H. In this case,
the Theorem of the Purity of the Branch Locus [A-K], 6.8, shows thatB is either
empty, or equal toY, or pure of codimension 1 (i.e., is the union of finitely many
divisors ofY).

Let y ∈ Y be a closed point. LetD1, . . . ,Dr be irreducible divisors ofY
containingy. Denote byui a local equation ofDi at y. We say that the divisors
D1, . . . ,Dr havenormal crossingsat y (or meet transversally aty) if u1, . . . , ur
can be completed to a system of parameters ofOY,y. This definition implies that
y is a regular point ofDi. Note however that the residue field ofy may not be
separable overk.

The following lemmas are well known. We recall them here for the convenience
of the reader.

LEMMA 1.3. Let Y/OK be a model of a curveY/K. LetQ ∈ Y be a point
rational over an extensionL/K unramified overK. If y ∈ {Q} ∩ Ys is regular in
Y, theny is regular inYs.

Proof.The valuative criterion for properness shows that for each maximal ideal
p of OL, there exists a map Spec(OL,p)→ Y that extends the map Spec(L)→ Y
corresponding toQ. These maps glue together to give a map Spec(OL) → Y.
SinceOL is unramified overOK , the extensionL/K is separable. ThusOL is a
finite OK-module, and the image of Spec(OL) in Y is closed. Hence, the horizontal
divisor {Q} is the image of the map Spec(OL) → Y over Spec(OK). Let y ∈
{Q} ∩ Ys , image of a pointp ∈ Spec(OL). The kernelI of the associated ring
homomorphismOY,y → OL,p is a prime of height 1. SinceOY,y is regular and,
hence, locally factorial, the primeI is principal, sayI = (w). Note now that
OY,y/(w, t) is isomorphic toOL,p/(t). SincetOL,p is equal to the maximal ideal
of OL,p by hypothesis, we find that(w, t) is maximal. Thusw is a local parameter
onYs aty.

LEMMA 1.4. Let Y/OK be a regular model of a curveY/K. Let C andD be
irreducible components inYs, of multiplicitiesrC andrD, respectively. Lety ∈ Ys ,
and letY′ denote the model ofY obtained by blowing upY at y. LetE ⊂ Y′ denote
the exceptional divisor.

(a) If y is a regular point ofC that does not belong to any other component ofYs ,
then the multiplicity ofE in Y′s equalsrC .
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(b) If y ∈ C ∩ D and does not belong to any other components ofYs, and ifC
andD intersect transversally aty, then the multiplicity ofE in Y′s is rC + rD.

Proof.Omitted.

1.5. SEMI-STABLE MODLES

Let OK be any Dedekind domain. In this section we call acurve overOK a normal
(not necessarily connected) schemeY overOK , flat, of finite type and of relative
dimension 1, with smooth generic fiber. We say thatY is semi-stable(over OK)
if every geometric fiber ofY → Spec(OK) is reduced and has at most ordinary
double points as singularities ([BLR], 9.2/6). AnOK-scheme finite étale over a
semi-stable curve is semi-stable. LetOL be any Dedekind domain containingOK .
If Y is semi-stable overOK , thenYOL is semi-stable overOL. Indeed, we only need
to check thatYOL is normal, and this fact follows fromYL being normal and the
closed fibers ofYOL being reduced (1.1). Conversely, ifYOL is semi-stable and if
OL is finite overOK , thenY is obviously semi-stable overOK . Let us recall the
following proposition due to Raynaud.

PROPOSITION 1.6.LetOK be a Dedekind domain. Letϕ: X→ Y be a cover of
curves overOK . Assume thatX is semi-stable overOK . ThenY is also semi-stable
overOK . Moreover, ifX is smooth at a pointx, thenY is smooth atϕ(x).

Proof.The statement is local on Spec(OK), so we may assume thatOK is local.
Since the special fiber ofX is reduced, all irreducible components ofYs have
multiplicity 1. ThusYs is also reduced. Let̂OK be the completion ofOK . Then
the special fiber ofYÔK → Spec(ÔK) is also reduced (since it is isomorphic to
Ys). Since in addition the generic fiber ofYÔK is normal, thenYÔK is normal
(1.1.). SinceXÔK is semi-stable, we are reduced to the case whereOK is complete.
Under this additional hypothesis, the proposition is proven in [Ray], Appendice.
The last statement concerning smoothness can be found in Raynaud’s proof at the
top of page 195.

Remark 1.7.We will use Proposition 1.6 in the next section in the case where
ϕ: X → Y is a Galois cover of degree prime top. Proposition 1.6 can be proved
under this additional hypothesis in the following simpler manner. LetG denote the
Galois group ofϕ. For any idealI of OX on whichG acts, we have H1(G,I) = {1}
since|G| is invertible inOX ([Ser], VIII, Section 2, Corollary 1). Thus(OX/I)

G =
OG

X/I
G. TakingI = tOX, we find thatYs = Xs/G. Since the quotient commutes

with formal completion, it is easy to see thatYs has at most ordinary double points,
and that the image inYs of a smooth pointx ∈ Xs is smooth.

A model Y/OK of a curveY/K is said to besemi-stableif Y → Spec(OK)

is semi-stable. Note that sinceY is geometrically connected, so is each closed
fiber Ys, s ∈ Spec(OK). When such a model exists, we shall say thatY/K has
semi-stable reduction. Given a possibly singular semi-stable modelY/OK of Y/K,
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the minimal desingularizationZ of Y is a regular semi-stable model, and the
exceptional locus ofZ→ Y consists of chains of smooth rational curves with self-
intersection−2. Note that this definition of semi-stability implies that the residue
field of each singular point ofYs , s ∈ Spec(OK), is a separable extension ofk(s).

A modelY/OK of a curveY/K is said to besemi-stable in a neighborhood of
a pointy ∈ Ys if there exists a dense open setU of Y containingy and such that
U→ Spec(OK) is semi-stable.

The semi-stable reduction theorem for curves ([D-M], Corollary 2.7) states that,
given any curveY/K, there exists a finite separable extensionL/K with the prop-
erty thatYL has a semi-stable modelY′ overOL. More generally, given any model
Y/OK of Y/K, there exist such an extensionL/K and a semi-stable modelY′/OL

with Y′ dominatingYOL . This last statement can be proved using rigid analytic
methods (see for instance [B-L], Theorem 5.5, and step 3 in the proof of Lemma
7.3, page 377).

1.8. GOOD MODELS

We shall say that a regular modelY/OK of Y/K is good if the irreducible com-
ponents ofYs are smooth, if each singular point ofYs belongs to exactly two
irreducible components ofYs, and if these components intersect transversally.
Given any modelZ of Y , we may, using the embedded resolution of singularities,
obtain a good modelY of Y which dominatesZ. The blow-up of a good model at
a closed point is again a good model. Note that a regular semi-stable model is not
necessarily a good model.

LEMMA 1.9. Let Y/OK be any regular model ofY/K. LetB be any divisor on
Y with smooth horizontal components. Then it is possible to perform a sequence
of blow-ups along closed points, starting withY, to obtain a new regular model
Y′/OK of Y/K such that the preimageB ′ of B in Y′ is a divisor with normal
crossings, and such that the horizontal part ofB ′ is the disjoint union of irreducible
components. Moreover, ifY is semi-stable, then so isY′.

Proof.LetC andD be two irreducible divisors on the regular surfaceY. If C and
D intersect at a closed pointy of Y, then the intersection multiplicity(C ·D)y of
C andD is a nonnegative integer that decreases after a blow-up; that is, ifỸ is the
blow-up ofY at y with exceptional fiberE, andC̃ andD̃ are the strict transforms
of C andD, then

∑
z∈E(C̃ · D̃)z < (C · D)y (see [Sha], page 100). Moreover,

E intersectsC̃ and D̃ with normal crossings. Thus a sequence of blow-ups will
produce the desired modelY′.

Assume now thatY is a regular semi-stable model. Since a horizontal com-
ponentD of B is smooth (and thus étale) by hypothesis, each pointy of D ∩ Ys

is a regular point ofYs (Lemma 1.3) with residue fieldk(y) separable overk.
Hence,y belongs to a unique irreducible component of multiplicity 1 ofYs, and
the exceptional fiberE of the blow-upỸ → Y has multiplicity 1 (Lemma 1.4)
and is geometrically reduced. Thus̃Y is regular and semi-stable. Since the strict
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transformD̃ ofD is again smooth, the next blow-up will also be semi-stable. Hence
Y′ is regular and semi-stable.

2. Towards Semi-Stable Reduction

LetX/K be any curve. The semi-stable reduction theorem states the existence of
an extensionL/K such thatXL has semi-stable reduction, but this theorem does
not provide information on how to determine explicitly such an extensionL/K

and a semi-stable model forXL. Let X be a good model ofX overOK (see 1.8).
T. Saito [Sai] has given an effective method for determining, in terms of the graph
of Xs, whether there exists a tamely ramified extensionL/K such thatXL has
semi-stable reduction. When such is the case, the normalization ofXOL has only
Hirzebruch–Jung singularities, and such singularities can be explicitly resolved
given the special fiberXs of X/OK (see [Vie], pages 299–302, [Lip1], pages 206–
212, [Pin], pages 12–15, or [BPV], pages 80–85). Moreover, it is also known in
this case thatX will achieve semi-stable reduction over a totally ramified exten-
sionL/K of order equal to the least common multiple of the multiplicities of the
components ofXs. Thus in the tamely ramified case, much is known concerning
L/K and the semi-stable model ofXL overOL.

The situation is quite different whenX achieves semi-stable reduction only after
a wildly ramified extensionL/K. In this case, it is usually not possible, given the
combinatorial description ofXs, to make any guess regarding which extensions
L/K will lead to semi-stable reduction forX. The importance of Theorem 2.3
below lies in the fact that in many interesting cases, such as the case of a tame
Galois cover of the projective line (compare with [Bro], Section 4, and [Kau],
Section 4, for cyclic covers ofP1 and hyperelliptic curves, respectively), it gives an
explicit description of an extensionL/K that leads to semi-stable reduction and a
semi-stable model ofXL overOL.

Recall that if a groupG acts on a schemeX andx ∈ X, then theinertia group
Ix at x is the set of automorphismsσ ∈ G such thatσ (x) = x andσ induces the
identity on the residue field ofx. Assume that the quotientX/G exists. Letx′ be
the image ofx in X/Ix; thenX/Ix → X/G is étale atx′. Recall also that a model
X/OK is flat. Thus a closed pointx ∈ X is smooth if and only ifx is smooth on
Xs. Moreover, whenx is smooth, thenOX,x is regular sinceOK is regular.

LEMMA 2.1. Let X andY be models of curves, and letϕ: X → Y be a Galois
cover of degree prime top. Assume thatY is semi-stable andXs is reduced. Let
R andB be the ramification and branch loci ofϕ, respectively. Letx ∈ Xs. Then
the following properties hold.

(a) If x 6∈ R, thenϕ is étale atx.
(b) If x ∈ Rs , andϕ(x) is smooth in bothYs and B, thenx is smooth inXs .

Moreover, the inertia groupIx is cyclic.
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(c) If x is an isolated point ofR, thenx is an ordinary double point ofXs .

Proof. (a) SinceY is normal and, hence, geometrically unibranch ([EGA],
0.23.2.1), Part (a) follows from [EGA], IV.18.10.1.

To prove Parts (b) and (c), let us show first thatXs is geometrically reduced.
SinceX → Y has degree prime top and since the curveYs is geometrically
reduced, the residue fields of the components ofXs are separable extensions of
k. Thus, sinceXs is reduced, it is also geometrically reduced ([EGA], IV.4.6.1).
Therefore, for any extensionOL/OK , XOL has reduced special fibers and is normal
(1.1.). It is sufficient to prove the lemma after a base changeM/K. So we can
assume thatX has semi-stable reduction overOK with a regular semi-stable model
having smooth components, thatk is algebraically closed, and that the generic
points of the horizontal components ofR are all rational overK.

Let ψ : X̃ → X be the minimal desingularization ofX ([Lip2], 27.3). Since
Xs is reduced andX has semi-stable reduction,̃X is semi-stable. The groupIx
acts onX̃; let Z := X/Ix, and denote byz the image ofx in Z. ThenZ → Y
is étale in a neighborhood ofz. Denote byλ: X̃/Ix → Z the canonical birational
morphism. SinceZ is semi-stable in a neighborhood ofz andX̃/Ix is semi-stable,
the components ofλ−1(z) are smooth projective lines overk. Note thatX̃/Ix is
regular at any point ofλ−1(z) smooth in(X̃/Ix)s . Thus the map̃X→ X̃/Ix is flat
over these points.

(b) Assume thatx is not smooth inXs . Since the points ofR are rational over
K, ψ is not an isomorphism (see 1.3). Sinceϕ(x), and thusz, is smooth, there
is a component1 of λ−1(z) which meets the other components of(X̃/Ix)s in
one pointz′ only (5.2(a)). Let0 be a component ofψ−1(x) lying over1. Since
1 \ {z′} is contained in the regular locus of̃X/Ix, we can use the theorem of the
purity of the branch locus to argue that0 → 1 is ramified only overz′ and at
the specialization of a horizontal component ofR in X̃s. (Note that there may be
no such specialization on0.) Our hypothesis thatϕ(x) is a smooth point onB
shows that there is a unique (rational) point in the branch locus ofX → X/Ix
which specializes toz. Thus the morphism0 → 1 is ramified over at most two
points of1. The Riemann–Hurwitz formula shows that any tame coverC → P1

k,
étale outside of two points, is a cover totally ramified in both points, andC is a
projective line. Thus0 meets the other components of̃Xs in a single point only.
SinceX̃ is semi-stable,0 is an exceptional divisor. This contradicts the minimality
of X̃→ X, and thusx is smooth inXs .

Since|Ix| is invertible inOX,x, we have H1(〈σ 〉,OX,x) = {0} for all σ ∈ Ix
([Ser], VIII, Section 2, Corollary 1). The reader will check that the canonical
homomorphism AutOK (OX,x) → Autk(OXs ,x) is injective when restricted toIx.
SinceOXs ,x is a discrete valuation ring whose residue characteristic is prime to
|Ix|, Ix is cyclic.

(c) If x is regular onX, thenx is an ordinary double point sincẽX is semi-
stable. Ifx is not regular, then let0 be a component ofψ−1(x), and let1 be its
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image inX̃/Ix. As in (b), we find that0→ 1 is ramified only over the intersection
points of1 (sincex is isolated inR, no point of the ramification locus ofX →
X/Ix specializes to a point of0). Using the same argument as in (b), we conclude
that1 must intersect(X̃/Ix)s in at least two distinct points. We now claim that
1 can meet the components ofλ−1(z) in at most two points. Indeed, let̃Z →
X̃/Ix denote the minimal desingularization of̃X/Ix. Let η be the composition
Z̃ → X̃/Ix → Z. SinceZ is semi-stable in a neighborhood ofz, the pointz
is a rational singularity, and we may apply Lemma 5.2.(a) to show that the dual
graph ofη−1(z) is a tree. Since the singularities of̃X/Ix are resolved by chains of
projective lines, we conclude that the curveλ−1(z) is tree-like. Ifλ−1(z) contains a
curve that meets the rest ofλ−1(z) in three or more points, then there exists at least
three curves inλ−1(z) that each meet the rest of theλ−1(z) in exactly one point. We
obtain a contradiction as follows: each of these three curves must meet at least two
components of(X̃/Ix)s, but sinceZ is semi-stable in a neighborhood ofz, there
are at most two irreducible components of(X̃/Ix)s that intersectλ−1(z).

Since a component0 of ψ−1(x) is smooth by construction, we conclude as in
(b) that0 is a projective line with self-intersection−2. The only configurations of
n smooth projective lines of self-intersection−2 are a cycle ofn curves, or a chain
of n curves meeting the rest of the fiber at the first and last curves on the chain.
Since in our case the configuration is not equal to the whole special fiber, it cannot
be a cycle, and thusx is an ordinary double point.

Remark 2.2.Part (b) of the above lemma is also an easy consequence of facts
on tame fundamental groups of regular schemes ([G-M], Theorem 2.3.2). The
Galois hypothesis can sometimes be removed in the statement of the lemma. Part
(b) of Lemma 2.1. is true for tamely ramified covers (see [Ful], 3.3 and 3.4). Saïdi
([Said2], Théorème 3.2) proved Part (c) for coversX→ Y étale in a neighborhood
of x but possibly not atx. He uses a rather sophisticated ‘local Hurwitz formula’
due to Kato, and to Matignon–Youssefi.

Let X/K be a scheme of finite type overK. For any finite subset of closed
pointsT of X, let K(T ) denote the compositum in an algebraic closure ofK of
the residue fields of the points ofT . The fieldK(T ) is the smallest extension ofK
over which all points ofT are rational.

THEOREM 2.3. Let f :X → Y be a Galois cover of curves overK, of de-
gree prime top, with branch locusB. Let M := K(B) and fix a prime ideal
p of OM lying over (t). Assume thatYM has semi-stable reduction. LetY/OM,p

be a semi-stable model ofYM such that the points ofBM ⊂ YM(M) specialize
to distinct smooth points ofYs. Denote by11, . . . ,1d the components ofYs

which are in the vertical branch locus ofN(Y,K(XM)) → Y, with ramifica-
tion indicese1, . . . , ed . Let OL/OM,p be a totally ramified extension of degree
lcm(e1, . . . , ed). ThenN(YOL,K(XL)) is a semi-stable model ofXL over OL.
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Moreover, the preimage underN(YOL,K(XL))→ YOL of a smooth point consists
of smooth points.

Proof.The existence of the desired (even regular) modelY/OM is established in
Lemma 1.9. By Abhyankar’s Lemma ([SGA1], Exposé X, 3.6),N(YOL,K(XL))→
YOL has no vertical ramification. ThusN(YOL,K(XL))s is reduced. Moreover, the
hypothesis on the specialization ofBM implies that the branch locus ofN(YOL ,
K(XL))→ YOL consists of disjoint horizontal smooth components (overOL) and
isolated points. Thus we can apply Lemma 2.1 to conclude.

Remark 2.4.In Theorem 3.9 below, we study the smallest extension ofK(B)

needed to achieve semi-stable reduction. Under the hypothesis that the Galois cover
f :X→ Y is of degree prime top, Theorem 2.3 shows that only a tame extension
of K(B) is necessary. T. Saito pointed out to us that this fact can also be obtained
by computing vanishing cycles onX. The following example shows that when the
degree off is divisible byp, thenK(B) may equalK while any extensionL/K
such thatXL has semi-stable reduction is a wild extension.

Consider the Fermat quotientX/Q, given by the equationvp = u(1− u). Let
f :X→ P1

Q be the projection onto theu-axis. Then the branch locus off consists
in the three points 0, 1, and∞, all three rational overQ. It is shown in [McC] that if
2p−2 is not divisible byp2, then the curveX does not admit semi-stable reduction
over any extension ofQ which is tamely ramified atp.

Note that in this example, the special fiber of the natural modelY of P1
Qp over

Zp (associated to Spec(Zp[u])) is in the branch locus of the normalization map
ϕ:N(Y,K(XQp )) → Y. Note also that the regular pointy = (p,1/2) on Ys is a
smooth point of the branch locus ofϕ, but that its preimageϕ−1(y) is a singular
point on the special fiber ofN(Y,K(XQp )).

Remark 2.5.LetK be of characteristic 2, and consider the curveX/K given by
v2+ uv + u3+ t = 0. The projection to theu-axisX→ P1

K is an Artin–Schreier
cover. The branch locus of this cover is smooth at the point(t, u), but the special
fiber of the affine chart Spec(OK [u, v]/(v2+ uv + u3+ t)) is singular at the point
(t, u, v). As we have seen in Lemma 2.1(b), this phenomenon cannot happen when
the cover is of degree prime top. More information on Artin–Schreier covers with
smooth branch loci in characteristic 2 can be found in [Tak].

3. The Extension to Semi-Stability

Let us assume in this section thatOK is strictly Henselian. LetX/K be any curve.
We denote byLX/K any extension ofK minimal with the property thatX has
semi-stable reduction overLX. Let f : X → Y be a Galois cover over Spec(K)
of degree prime top, with branch locusB ⊂ Y . Recall thatK(B) denotes the
compositum, in an algebraic closure ofK, of the residue fields of the points ofB.
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Our aim in this section is to describe an extensionLX in terms of an extensionLY ,
the extensionK(B), and some vertical ramification data.

In general, such an extensionLX/K is not unique. However, when eitherg(X) >
2 or X(K) 6= ∅, then there is a unique Galois extensionLX/K minimal with
the property thatX has semi-stable reduction overLX (see [Des], 5.7–5.15). The
same is true for anyg > 0 if one knows thatX has semi-stable reduction over
a tamely ramified extension ofK. Note that whenk is algebraically closed and
g(X) = 0, thenX(K) 6= ∅ ([Ser], X.7), and thusLX = K. In any case, it
is always possible to find a separable extensionL/K such thatXL/L has semi-
stable reduction. Indeed, since the curveX/K is geometrically reduced, it has a
point defined over a separable extensionM/K. Thus the results recalled above
imply the existence of a Galois extensionL/M such thatXL/L has semi-stable
reduction. Note however Example 4.8 in [K-U], where a curve of genus 1 achieves
semi-stable reduction over a purely inseparable extension ofK. Recall (1.6) that
in general, givenf :X → Y and any extensionLX/K, we can find an extension
LY/K contained inLX.

THEOREM 3.1. LetK be strictly henselian. Letf :X → Y be a Galois cover of
curves overSpec(K), with Galois groupG of order prime top, and ramification
locusR ⊂ X. Then the following properties are true.

(a) The extensionK(R)/K is Galois.
(b) LetLX/K be any finite extension ofK such thatX has semi-stable reduction

overLX. Then[LXK(R) : LX] 6 gcd(2, |G|).
(c) If g(X) > 0 andX has potentially good reduction, thenK(R) ⊆ LX.

Theorem 3.1 has the following interesting application. Let us callp-part of a
Galois extensionL/K the following subextensionLH of L/K. Under our hypo-
theses onK, the inertia groupI of L/K is equal to the full Galois group ofL/K.
Thus thep-Sylow subgroupP of I is normal with cyclic quotient of orderm.
Hence,I contains a unique cyclic normal subgroupH of orderm, andLH is the
unique maximal extension ofK in L whose degree overK is a power ofp. When
M/K is any finite extension, we callp-part ofM the intersection ofM with thep-
part of the Galois closure ofM/K. This extension is the unique maximal extension
of K in M whose degree overK is a power ofp.

Let ` be any prime different fromp. We call`-part of a Galois extensionL/K
the unique subextension ofL of degreè ord̀ (m) overK. WhenM/K is any finite
extension, we call̀ -part ofM the intersection ofM with the`-part of the Galois
closure ofM/K.

COROLLARY 3.2. Let f :X → Y be a Galois cover overSpec(K), with Galois
groupG of order prime top. LetB ⊂ Y denote the branch locus off . Let q be
any prime that does not divide the degree off (q may be equal top). Then there
exist extensionsLX andLY such thatLY ⊆ LX and such that theq-part ofLX is
equal to theq-part ofLYK(B).
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Proof. Let LX denote the set of extensionsLX/K minimal with the property
thatX achieves semi-stable reduction overLX. LetLY denote the same set relative
to Y . For anyL1

Y ∈ LY , Theorem 2.3 shows that there is an extensionL/L1
YK(B)

of degree prime toq such thatXL has semi-stable reduction. Hence there exists
L1
X ∈ LX such thatL1

X ⊆ L. So theq-part ofL1
X is contained in theq-part of

L1
YK(B). Conversely, anyL1

X ∈ LX contains aL2
Y ∈ LY (1.6.). Theorem 3.1

implies thatL1
XK(B) andL1

X have the sameq-part (note thatK(B) ⊆ K(R)

and, by hypothesis,q 6= 2 if |G| is even). Thus theq-part ofL1
X contains that of

L2
YK(B). We have the inclusions:

q-part ofL2
YK(B) ⊆ q-part ofL1

X ⊆ q-part ofL1
YK(B).

This procedure can be continued in an obvious way to obtain a decreasing chain of
extensions ofK. Since this chain becomes stationary after finitely many steps, we
can findLX ⊇ LY such thatLX andLYK(B) have the sameq-part.

The following general lemma proves Part (a) of Theorem 3.1.

LEMMA 3.3. LetK be any field of characteristicp > 0. Let f :X → Y be a
finite separable morphism of smooth(but not necessarily proper) curves overK.
Assume thatf is tamely ramified(that is, for anyx ∈ X, the ramification index
ex/f (x) is prime top and the residue field extensionK(x)/K(f (x)) is separable).
LetR ⊂ X be the ramification locus off . ThenK(R)/K is a Galois extension.

Proof. Sincef is defined overK, Gal(Ksep/K) leavesK(R) stable. Thus it
remains only to prove thatK(R) is separable overK. To prove this fact, we may
assume thatK is separably closed, and show thatK(R) = K. Let x ∈ R and
y := f (x). LetL := K(y) = K(x), andd := [L : K]. We will prove thatd = 1.

The base changeYL→ Y is a homeomorphism. Denote again byy the preimage
in YL of y. ThenOYL,y = OY,y ⊗K L. SinceOY,y → OYL,y has trivial residue field
extension, its ramification index isd. Consider the extension̂OY,y → ÔX,x. It has
ramification indexex > 1 and the tameness assumption implies that the residue
extension is trivial. Thus there exists an Eisenstein polynomialP(T ) ∈ ÔY,y[T ] of
degreeex such that̂OX,x = ÔY,y[T ]/(P ). Tensoring byL, one gets

ÔXL,x = ÔX,x ⊗K L = ÔYL,y[T ]/(P ).
Let m be the maximal ideal of̂OYL,y. If d > 1, thenP(T ) ∈ (T ,m)2. This
contradicts the regularity of̂OXL,x. Sod = 1 andy ∈ Y (K).
EXAMPLE 3.4. The following example shows that the statement of Lemma 3.3
does not hold if the degree off is divisible byp. LetK = k(a, b) denote the field
of rational functions in two variables. Consider the plane projective curveX/K

defined by the affine equationvp + (up − b)v + au = 0. The reader will easily
check that this curve is smooth overK. Letf :X→ P1

K denote the projection onto
theu-axis. The pointy corresponding to the ideal(up−b) in K[u] is in the branch
locus off and its residue field is inseparable overK.
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To prove Parts (b) and (c) of Theorem 3.1, we may assume thatK = LX. To
check that Part (b) holds wheng(X) = 0, note that a Galois morphismf :X→ Y

of degreed prime top between curves of genus zero is ramified in at most three
points, with ramification indices(d, d), (2,2, d/2), (2,3,3), (2,3,4), or (2,3,5).
Except in the case whered = 4 and the ramification indices are(2,2,2), at most
two of the indices are equal, and thus a point in the branch locus is defined overK

or over a quadratic extension ofK. The same statement holds for the case(2,2,2)
since in this case the morphism can be factored into the composition of two cyclic
covers of degree 2, and the ramification of each cover can be analyzed separately.
The case(d, d) with d odd is the only case where|G| can be odd. SinceX → Y

is branched at two points, it is cyclic. Then it is easy to see that the extension
K(X)/K(Y ) can always be given by an equation of the formvd = u, and thus the
branch locus is always defined overK.

Wheng(X) > 1, Parts (b) and (c) are proved by applying the following propos-
ition to the minimal regular model (which is semi-stable sinceK = LX) of X over
OK .

PROPOSITION 3.5.LetK be strictly Henselian. Letf :X→ Y be a Galois cover
of curves overSpec(K), with Galois groupG of order prime top. Assume thatX
has a semi-stable modelX over OK such thatG acts onX. Let ϕ: X → Y :=
X/G be the quotient map. Let{R} be the Zariski closure inX of the ramification
locusR. Let x ∈ {R} ∩ Xs and letC be the connected component of{R} that
containsx.

(a) If Xs is smooth atx, thenC ' Spec(OK).
(b) If x is a double point ofXs , thenϕ(C) has degree2 overOK , and|G| is even.

Moreover,CK ⊂ X(K) if and only ifϕ(CK) ⊂ Y (K).
(c) Assume thatx is a double point ofXs and thatCK ⊂ X(K). Then there exists

a semi-stable modelY1 of Y which dominatesY such that the points ofϕ(CK)
specialize to two distinct smooth points of(Y1)s and such thatN(Y1,K(X))

is semi-stable.

Proof. We will assume in the proofs of (a) and (b) thatK is complete. Indeed,
assume that the proposition holds in this case. Denote byK̂ the completion ofK.
ThenK̂(R) is tamely ramified overK̂, and thusK(R) is tamely ramified overK.
Therefore, sinceK is strictly Henselian,K(R) andK̂ are linearly disjoint overK.
Thus Parts (a) and (b) are true overK.

(a) SinceXs → Ys is tamely ramified atx, we can apply Lemma 3.3. to
conclude thatx is rational overk. Then the completion of the local ringOX,x is
isomorphic toOK[[v]]. Let σ be a generator of the cyclic inertia groupIx (2.1.
(b)). Since the order ofσ is not divisible by the residual characteristic, there exists
a change of variablesv 7→ w such thatσ ∗: OK [[w]] → OK [[w]] is of the form
σ ∗(w) = ξnw, with ξn ∈ OK annth root of unity (see, e.g., [Lor], 1.3). Then the
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ramification of the inclusionOK[[w]]〈σ ∗〉 ⊆ OK[[w]] occurs at the ideal(w). Thus
C is a section ofX overOK .

(b) Let us now consider the case wherex is not smooth. Thenx is an ordinary
double point ofXs and, as such, is rational overk.

LEMMA 3.6. Let K be a discrete valuation field. LetX/OK be a semi-stable
(not necessarily regular) model of a curveX/K. Letx be a singular point ofXs ,
rational overk. LetG be a finite group of automorphisms ofX. Assume that the
inertia groupIx is not trivial and of order prime top. Assume also that the elements
of Ix either do not permute the irreducible components ofXs passing throughx
or, if Xs is irreducible atx, do not permute the tangent directions atx. Thenx is
isolated in the ramification locus ofX→ X/G.

Proof. SinceIx 6= {id}, x is ramified. Assume thatx is not isolated in the
ramification locus. Then there exists a closed pointP ∈ XK which specializes
to x and such that the inertia groupIP is not trivial. After extendingK if necessary
and replacingX by its base change, we can assume thatP is rational overK. This
implies thatx is singular inX.

Let ψ : X̃ → X denote the minimal desingularization ofx. ThenX̃ is semi-
stable, andP specializes to a smooth pointx̃ of X̃s. Let 0 ⊆ ψ−1(x̃) be the
irreducible component of̃Xs passing through̃x. SinceIP ⊆ Ix, the hypothesis
on the action ofIx implies thatIP acts on0, fixing the two intersection points of
0 with the other components of̃Xs . Furthermore, since0 has multiplicity 1, the
morphism0 → 0/IP has degreeIP and, thus,IP is a subgroup of Aut(0). The
morphism0 → 0/IP is ramified in at least three points (the intersection points
and x̃) and0 ' P1

k. Using the Riemann–Hurwitz formula and the fact thatIP is
cyclic, the reader will check that such a morphism cannot exist.

Let us return to the proof of (b). Sincex in this case is not isolated in the
ramification locus ofX→ Y, Lemma 3.6. implies thatIx must either permute the
components ofXs passing throughx or permute the tangent directions atx. Hence
Ix is obviously an extension 1→ Jx → Ix → Z/2Z → 0. SinceX/Ix → Y is
étale in a neighborhood of the image ofx in X/Ix, andX→ X/Jx is étale outside
of x in a neighborhood ofx (3.6, 2.1(a)), we may restrict our attention to the double
coverX/Jx → X/Ix. We claim that the image ofx in X/Ix is a smooth point.
This statement is local and follows from our next lemma.

LEMMA 3.7. LetK be a discrete valuation field. LetX/OK be a good regular
model or a semi-stable model of a curveX/K. Letx be a singular point of(Xs)red,
rational overk. Let σ be an involution ofX which fixesx and which either per-
mutes the components ofXs containingx or, if Xs is irreducible atx, permutes
the tangent directions atx. Then the quotientY := X/〈σ 〉 is regular at the image
y of x. Moreover, ifXs is reduced, thenY is smooth aty.

Proof.LetA be the formal completion̂OX,x. By hypothesis, the maximal ideal
of A is generated byt, u1, u2, with a relation(tn) = (ur1u

r
2), n, r ∈ N. We have
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ÔY,y = A〈σ 〉. Setu := u1 + σ (u1), andv := u1σ (u1). Consider the continuous
homomorphismφ: ÔK [[U,V ]] → A defined byφ(U) = u andφ(V ) = v. Let
C = Im(φ) ⊆ A〈σ 〉. One easily checks that{1, u1} is a basis forA overC, and thus
A is integral overC. The maximal ideal ofC is generated byt , u, andv. Sinceσ
permutes the components,tnv−r is an unit inC; and since eithern or r is 1, we find
thatC is regular. It follows thatC = A〈σ 〉. Moreover, ifXs is reduced, thenr = 1.
SoC/tC = k[[u]] is formally smooth overk. Thus Lemma 3.7. is proved.

Let us now study the ramification and branch loci of the quotient mapX/Jx →
X/Ix. Denote byx1 andy1 the images ofx in X/Jx andX/Ix. LetC := ÔX/Ix,y1.
Lemma 3.7. shows thatC = OK[[u]] and that sincep 6= 2, the ringA := ÔX/Jx,x1

is generated overC by an elementw satisfying a quadratic relationw2−α(u) = 0.
Moreover, modulo(t), this relation must give an ordinary double point, so that
Weierstrass’ Preparation Theorem implies thatα(u) = a(u)m(u), with a(u) a
distinguished polynomial of degree 2, andm(u) a unit. Sincep 6= 2, A contains
the square root ofm(u). So we can assume thatm(u) = 1. ThusA is generated
overC by {1, w}, withw2 = a(u). Thus the ramification locusR is defined by(w)
in a neighborhood ofx. This achieves the proof of Part (b) of the proposition since
A/(w) = C/(a(u)) and the latter has degree two overOK .

Let us prove Part (c) of Proposition 3.5. Consider the minimal desingularization
X1→ X of X. ThenG acts onX1, and we denote byY1 the quotient. Clearly,Y1

is semi-stable and dominatesY. SinceX1 is regular, the points ofCK specialize to
two distinct smooth pointsx1 andx2 of (X1)s (use Part a)). Proposition 1.6. implies
that the points in the image ofCK also specialize to smooth points of(Y1)s . We
claim that these points are distinct. Indeed, the Going-Down Theorem 4.2 implies
that if the two points in the image ofCK pass through the same pointy of (Y1)s ,
then there are two points of the ramification locus off that specialize tox1 (use
the fact that the morphismf is Galois), which is a contradiction.

Remark 3.8.It is natural to wonder, in the case where the groupG of X → Y

has order divisible byp, whether thep-part of the extensionLX/K can also be
described in terms of thep-part ofLY/K and of some explicit data coming from
the geometry of the coverf :X → Y := X/G. We showed in Remark 2.4 that,
contrary to the tame case, this ‘explicit data’ cannot be the field of rationalityK(B)

of the branch locus off .
The example presented in 2.4 is a wild coverf :X → P1

K , whereX is given
by the affine equationvp = u(1− u), andf is the projection to theu-axis. The
reader will note that a twist ofX has good reduction over a tame extension ofK.
Indeed, the curveX is isomorphic overK to the curve given by 1/4− u2 = vp.
Thus the twist 1/4−u2 = vp/4 is isomorphic to 1− z2 = vp. Theorem 2.3. can be
applied to the hyperelliptic curvez2 = 1−vp to show that this curve achieves good
reduction after a tame extension ofK (the reader may also proves this fact using
this explicit equation). Thus in this example thep-part of the extensionLX/K is
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in some sense ‘explained’ by the fact that a twist ofX has good reduction over a
tame extension ofK.

The following is an example of an elliptic curveE/K over the maximal unrami-
fied extensionK of Q2 such that all its points of order 2 areK-rational and such
that the extensionLE/K has order 24. In particular, none of the twists ofE/K has
good reduction overK. To find examples of such a curve, one can use the tables
in the corollary to Theorem 3 of [Kra]. The curvev2 = u(u + 1)(u + 4) is such a
curve with discriminant 2832 and conductor 24. Note that[LE : K] is divisible by
3, even though 3 is prime top and the points of the branch locus are allK-rational.
As we saw in Corollary 3.2, this cannot happen whenp does not divide the degree
of the morphismf :X → Y . Note also that the minimal extension ofK such that
one of the twists ofE has good reduction is explicitly computable ([Ive]).

Let us consider a final example of ap-cover. LetK be the maximal unramified
extension ofQp(ζp), with uniformizert := 1− ζp. Letm > 1 be an integer prime
to p. Consider the curveX/K given by the affine equationvp = um + t−p. The
automorphismv 7→ ζpv allows us to viewX as ap-cover ofP1. The branch locus
of this cover is only defined over a tamely ramified extension ofK, even thoughX
has already good reduction overOK . Indeed, the change of variablev = w − 1/t
shows thatX has good reduction overOK , with reduction of the formwp+w = um.

Given a Galois coverf :X→ Y of degree prime top, Theorem 2.3 exhibits an
extensionL/K such thatXL has semi-stable reduction. A ‘piece’ of this extension
is described using the vertical ramification indices of a well-chosen morphism of
modelsN(Y,K(X)) → Y. In our next theorem, we determine exactly which
vertical ramifications need to be ‘killed’ forX to obtain semi-stable reduction.

THEOREM 3.9. LetK be strictly Henselian. Letf : X → Y be a Galois cover
of curves overK, of degree prime top, with branch locusB. LetM := K(B).
Assume thatYM has semi-stable reduction. LetY/OM be a semi-stable model of
YM such that the points ofBM ⊂ YM(M) specialize to distinct smooth points ofYs .
Denote by11, . . . ,1d the components ofYs which are in the vertical branch locus
of N(Y,K(XM))→ Y, with ramification indicese1, . . . , ed . Denote by{BM} the
closure ofBM in Y. Consider the setF of components1 of Ys such that either
pa(1) > 1 or 1 contains at least three points of{BM} ∪ (Ys)sing. If F is empty,
thenXM has semi-stable reduction overM. If F is not empty, letL be the totally
ramified extension ofM of degreelcm(ei | 1i ∈ F ).

(a) ThenL contains an extensionLX.
(b) Assume thatg(X) > 2 or, if g(X) = 1, thatX has potentially good reduc-

tion. Then[L : LX] 6 gcd(2, |G|). Moreover,L/M is the unique minimal
extension ofM such thatXL has semi-stable reduction.

Proof. (a) Let Y be any semi-stable model ofYM such that the closure ofB
in Y is contained in a smooth open subset ofY (Lemma 1.9). Consider the set
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F = F (Y) of components1 of Ys such that eitherpa(1) > 1 or1 contains at
least three points of{B} ∪ (Ys)sing. If F = ∅, then eitherY ' P1

M and|B| 6 2,
or Y is an elliptic curve with multiplicative reduction andB = ∅. In the first case,
g(X) = 0, and since the branch locus off isM-rational,X(M) 6= ∅. ThusX/M
has semi-stable reduction. In this second case,X is also an elliptic curve and is
isogenous toY ; thusX has also multiplicative reduction. Therefore, ifF is empty,
X has semi-stable reduction overM and (a) holds.

Assume for the remainder of this proof thatF 6= ∅ (this is true under the
assumption of (b)). LetY→ Y′ be the contraction of the components ofYs which
do not belong toF (see [BLR], Section 6.7, Proposition 4). We leave it to the
reader to check that the closure{B}′ of B in Y′ is again contained in a smooth
open subset ofY′. This follows from the fact that the exceptional components in
the minimal desingularizatioñY of Y do not belong toF (Ỹ). Moreover, the reader
will check that:

LEMMA 3.10. The modelY′ of Y described above is the unique semi-stable
model minimal among all semi-stable modelsZ of Y for which all points ofB
specialize to distinct smooth points ofZs. The construction ofY′ commutes with
base change.

Make the extensionOL/OM to kill the vertical ramification. Then, as in 2.3,
Lemma 2.1 can be applied to show thatN(Y′OL,K(XL)) is semi-stable. Hence,L
contains an extensionLX.

(b) Using Theorem 3.1(b), we see that to prove the stated inequality, it is suf-
ficient to prove thatL ⊆ LXM. Let X := N(Y′,K(XM)). Let us show first that
L is the smallest extension ofM such that the normalization ofXOL has reduced
special fiber. LetE/K be such an extension. For any1i ∈ F , let ξ denote the
generic point of a component ofXs lying over1i , and letη be a point of the
normalization ofXOE lying overξ . Then we have a commutative diagram

Oξ
- Oη

OK

6

- OE

6

of discrete valuation rings. Comparing the ramification indices in this diagram, we
find thatei divides[E : K]. Thus[L : K] divides[E : K]. SinceL/K is totally
and tamely ramified andK is strictly henselian, we find thatL ⊆ E.

Let F := LXM. Let W be the stable (resp. smooth ifg(X) = 1) model of
XF (see the beginning of Section 4). By uniqueness ofW ,G acts onW . Applying
Proposition 3.5 toW → W/G, we see that there exists a dominant morphism
Y1→ W/G such thatY1 andN(Y1,K(XF )) are both semi-stable, and the Zariski
closure ofBF in Y1 is smooth and contained in the smooth locus ofY1 (when|G|
is odd, pickY1 := W/G). ThusY1 dominatesY′OF and, hence,N(Y1,K(XF ))

https://doi.org/10.1023/A:1001141725199 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001141725199


78 QING LIU AND DINO LORENZINI

dominatesN(Y′OF ,K(XF )). In particular,N(Y′OF ,K(XF ))s is reduced. ThusL ⊆
F and, hence,L = F .

Suppose thatN/M is a subextension ofL such thatXN has semi-stable reduc-
tion. ThenN contains an extensionL′X/K, and the discussion above shows that
L′XM = L. SinceL′XM ⊆ N , we find thatN = L.

Remark 3.11.Keep the notation and hypotheses as in 3.9(b). SinceL = F , we
find that we have a dominant morphismY1→ Y′OL . Assume that|G| is odd. Then
Y1 = W/G by construction, and sinceN(Y′OL,K(XL)) is semi-stable (Theorem
2.3) and dominated byW , it follows thatN(Y′OL,K(XL)) = W . In particular, if
g(X) > 2, thenN(Y′OL,K(XL)) is the stable model ofXL. When|G| is even, the
situation is more complicated, but it should also be possible to find a semi-stable
modelY′′/OM of YM such thatN(Y′′OL,K(XL)) = W (i.e., stable ifg(X) > 2 or
smooth ifg(X) = 1).

4. Extending Covers to Stable Models

Let X be a (proper, smooth and geometrically connected) curve overK. Assume
thatg(X) > 2. A semi-stable model (see 1.5)X is said to bestableif any irredu-
cible component of the geometric special fiberXs̄ isomorphic toP1 meets the other
components ofXs̄ in at least three points ([D-M], Definition 1.1). A stable model
X together with the isomorphismXK

∼= X is unique ([D-M], Lemma 1.12). Let
X0 be the minimal regular model ofX overOK . ThenX admits a stable model if
and only ifX0 is semi-stable. In fact, given any regular semi-stable modelX of X,
the stable model ofX is obtained by contracting all the smooth rational curves of
self-intersection−2 in Xs ([D-M], Section 1). LetKsh be the strict henselization
ofK. Since the minimal regular model commutes with étale extensions ofOK (see
for instance [Li1], Section 8, Lemme 11),X has a stable model overOK if and
only if XKsh has a stable model overOKsh.

Let X andY be stable curves overOK with smooth generic fibersX andY ,
respectively. Letf :X → Y be a finite morphism. In this section, we investigate
whether it is possible to extendf to a morphism fromX to Y. It is easy to see
that, in general,f cannot be extended to a finite morphism, unlessX is assumed to
be smooth (see Corollary 4.10 below). However, we prove in Proposition 4.4 that
the answer to the above question is positive if one does not require the extended
morphism to be finite.

To begin, let us recall some well known facts on the birational geometry of
normal surfaces. LetX be a curve overK. Let O be a valuation ring ofK(X)
dominatingOK . For any modelW of X over OK , let Spec(O) → W be the
birational morphism given by the valuative criterion of properness. The image of
the closed point of Spec(O) in Ws is calledthe center ofO in W . Note that for any
generic pointξ of Ws , OW ,ξ is a discrete valuation ring ofK(X) asW is normal.
The following lemma is well known and useful.
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LEMMA 4.11. LetX be as above. LetX and W be two models ofX over OK .
Assume that for any generic pointξ of Ws, the center ofOW ,ξ in X is a generic
point ofXs. Then the birational mapX→ W induced by the identity mapXK '
WK is a morphism.

Proof. Let 0 ⊆ X ×OK W be the graph of the birational mapT : X → W .
Suppose that there exists a fundamental pointx ∈ X of T (see [Har], V.5.1);x is
closed. Letp1:0 → X be the first projection. Then Zariski’s Main Theorem (see
for instance [Har], V.5.2) implies thatT (x) := p2(p

−1
1 (x)) is connected and of

dimension> 1. So there is a generic pointξ of Ws which lies inT (x). SinceT −1

is defined atξ , we haveT −1(ξ) = x. This contradicts the assumption thatT −1(ξ)

is a generic point ofXs .

4.2. Another useful tool in this section is the going-down property ([Mat], 5.E.v,
p. 34). LetB be an integral domain, letA be a normal subring ofB over which
B is integral. Letm be a prime ideal ofA, let n be a prime ideal ofB lying over
m. Then, given any prime idealp contained inm, there exists a prime idealq of B
contained inn and lying overp (i.e., such thatq ∩ A = p).

LetE be a (possibly not normal or not reduced) connected curve over an algeb-
raically closed field. For any closed pointx ∈ E, denote bymE,x the number
of points lying overx in the normalization ofE (which is, by definition, the
normalization ofEred).

LEMMA 4.3. Letψ : W → Z be a finite surjective morphism of normal flatOK-
schemes of finite type of dimension2. Let z ∈ Zs be a closed point and letw ∈
ψ−1(z). Let1 be any irreducible component ofZs containingz.

(a) There is an irreducible component ofWs containingw which maps surject-
ively onto1.

(b) Assume thatK is complete and thatk is algebraically closed. LetE be the
union of the irreducible components ofψ−1(1) passing byw. ThenmE,w >
m1,z.

Proof. (a) Apply the going-down property to the case whereA = OZ,z, B =
(ψ∗OW )z, m is equal to the maximal ideal ofA, andn is equal to the maximal ideal
of B corresponding tow. (b) Using the embedded resolution of curve singularities
([Sha], page 38), there is a birational morphismπ : Z̃ → Z such that the strict
transform1̃ of 1 by π is smooth. LetW̃ be the normalization of̃Z in K(W).
Then one has a commutative diagram

W̃ λ - W

Z̃

ψ̃

?
π - Z

ψ

?
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Let Ẽ be the strict transform ofE by λ. To prove Lemma 4.3, it is enough to show
that the map̃ψ :λ−1(w) ∩ Ẽ → π−1(z) ∩ 1̃ is surjective. Letw1 ∈ λ−1(w) ∩
Ẽ, z1 = ψ̃(w1) and z2 6= z1 be another point ofπ−1(z) ∩ 1̃. Sinceπ−1(z) is
connected, there is a chain of irreducible components11, . . . ,1r of π−1(z) such
that z1 ∈ 11 andz2 ∈ 1r . Using (a), one gets a connected chain of irreducible
components01, . . . , 0r, 0r+1 of W̃s such thatw1 ∈ 01, ψ̃(0i) = 1i for all i 6 r,
andψ̃(0r+1) = 1̃. Letw2 ∈ 0r ∩ 0r+1 be a point lying overz2. By construction,
λ(∪16i6r0i) containsλ(w1) = w and is connected. Moreover,λ(∪16i6r0i) ⊆
ψ−1(z), and thus is equal tow. Hence,w ∈ λ(0r+1) and0r+1 ⊆ Ẽ. Thusw2 ∈
λ−1(w) ∩ Ẽ with ψ̃(w2) = z2.

The above lemma is also proved in Youssefi’s thesis in the context of valued
function fields ([Y-M], Remarque, page 120).

PROPOSITION 4.4.Let OK be a discrete valuation ring. LetX andY be stable
curves overOK with smooth generic fibersX andY (in particular, g(Y ) > 2). Let
f :X→ Y be a finite morphism. Then the following properties hold:

(a) The morphismf extends to a (not necessarily finite) morphism ofOK -schemes
ϕ: X→ Y.

(b) Let y ∈ Ys be a singular point. Ifϕ−1(y) is finite, then it is contained in the
singular locus ofXs .

Proof. (a) We need to show that the rational mapX → Y is a morphism. Let
OL be any discrete valuation ring dominatingOK . If XOL → YOL is a morphism,
thenXR → YR is a morphism for some sub-OK -algebraR of OL of finite type.
Let 0f ⊂ X ×OK Y be the graph ofX → Y and letp:0f → X be the first
projection. SinceR/OK is flat and of finite type (thus universally open), the graph
of XR → YR is (0f )R. SopR is an isomorphism. ButR/OK is faithfully flat,
sop is already an isomorphism. This means thatX → Y is defined everywhere.
Since the stable model commutes with base change, we are allowed to make any
extensionOL/OK in the course of the proof. Hence, we will assume thatK is
complete and thatk is algebraically closed.

Letψ : W → Y be the normalization ofY in X. It is a finite morphism sinceK
is complete, hence excellent. For any irreducible component0 of Ws, a theorem
of Epp ([Epp], Theorem 2.0) proves the existence of a discrete valuation ringOL

finite overOK with the following property: letW ′ be the normalization ofWOL ,
then any irreducible component ofW ′s lying over 0 is of multiplicity 1. Let F
be the compositum of all theOL’s. Since a component of multiplicity 1 remains
of multiplicity 1 after any base extension, the normalization ofWOF has reduced
special fiber. Thus, after a suitable base change if necessary, we may assume that
Ws is reduced.

The statement (a) is equivalent to saying that the birational mapX → W is a
morphism. Letπ : W̃ → W be the minimal desingularization ofW . We claim that
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for any irreducible component0 of Ws , the strict transform̃0 of 0 in W̃ cannot be
exceptional of the first or second kind (that is,0̃ cannot be isomorphic toP1 with
0̃2 = −1 or−2). This claim implies that̃W is the minimal regular model and that
0̃ is mapped onto a component ofXs . Lemma 4.11 shows then thatX→ W is a
morphism.

It remains to prove the claim. Let0 be a component ofWs such that̃0 is excep-
tional of the first or second kind. Let1 be its image inY. Let y ∈ 1 be a singular
point ofYs. Letx ∈ π−1(ψ−1(y))∩0̃ and letw = π(x). We want to show first that
x is singular inW̃s. It is easy to see, using Lemma 4.3, thatmWs ,w > mYs ,y > 2. If
π is an isomorphism overw, we are done. Otherwise,π−1(w) is a connected one-
dimensional curve. Hence there is an irreducible component0′ of W̃s , contained
in π−1(w) and containingx. So0′ 6= 0̃, andx ∈ 0̃ ∩0′. Thusx is singular inW̃s .

Sincẽ0 is rational and dominates1, the latter is also rational. SinceYs is stable,
either1 contains at least three intersection points, or it contains one double point
and one intersection point. By hypothesis,0̃ is regular. So there are at least three
points in0̃ lying over singular points ofYs contained in1. These three points are
all singular inW̃s as we just showed, but this contradicts the hypothesis on0̃. Thus
the claim is proved.

(b) We may assume thatK is complete andk is algebraically closed. Then (b)
is a consequence of Lemma 4.3(b) or Proposition 1.6.

T. Saito informed us that Proposition 4.4(a) is proved in [Moc], Lemma 8.3, in
the case where the morphismf :X→ Y is étale.

Remark 4.5.Note that Proposition 4.4(a) is not true if one replaces ‘stable
curves’ by ‘minimal regular models’. Indeed, consider a Galois coverf :X → Y

with Galois groupG. LetX/OK be the minimal regular model ofX and letx ∈ Xs

be an intersection point of two irreducible components01 and02 of Xs . The
groupG acts onX. It may well happen that the inertia groupIx is nontrivial and
leaves fixed each0i . If X is semi-stable, then the imagey of the pointx in the
quotientX/G is a singular point (see, for instance, the beginning of the proof of
6.2). Thus we may expect that the minimal regular modelY of Y has ‘too many
components’ coming from the desingularization ofy for the morphismf to extend
to a morphism fromX to Y.

Remark 4.6.If X → Y is separable, then Proposition 4.4(a) can be proved in
a somewhat simpler manner as follows. As explained before, we are allowed to
extend the base fieldK. Let us do it in such a way that: (1) the Galois closure
X̂ of X → Y is geometrically connected and smooth; (2) the residue fieldk is
algebraically closed; and (3)̂X admits a stable model̂X over OK . LetG denote
the group Gal(K(X̂)/K(Y )). LetH be the subgroup Gal(K(X̂)/K(X)) ofG. Then
X1 := X̂/H andY1 := X̂/G are semi-stable (Proposition 1.6), andf extends to
ϕ1: X1 → Y1 by Galois property. Let0 be any component of(X1)s mapped to
a closed point of the stable modelX of X. Then0 ' P1

k and meets the other
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components of(X1)s in at most two points. By Lemma 4.3, any point of0 lying
over a singular point of(Y1)s is a singular point of(X1)s. We conclude thatϕ1(0)

is isomorphic toP1
k and meets the other components of(Y1)s in at most two points.

Soϕ1(0) is mapped to a point of the stable modelY of Y . Lemma 4.11 implies
then thatϕ1 induces a morphismϕ: X→ Y which extendsf .

COROLLARY 4.7. Let f :X → Y be a finite morphism of curves overK, with
g(Y ) > 2. Assume thatX admits a stable modelX overOK . ThenY has a stable
modelY overOK andf extends to a morphismX→ Y.

Proof. Let L/K be a finite Galois extension with Galois groupG such thatYL
admits a stable modelY′ over the integral closureOL of OK in L. Proposition 4.4
implies thatfL extends to a morphismXOL → Y′. Sof extends to a morphism
X → Y := Y′/G overOK . SinceXs is geometrically reduced, so isYs. Hence
YOL is normal (1.1.). The morphismY′ → YOL is finite and birational, thus it is an
isomorphism. SoY is stable. ThusY admits a stable model overOK .

We may also use Néron models to prove thatY has a stable model overOK .
Indeed, a curve of genus> 2 admits a stable model if and only if the Néron
model of its Jacobian has semi-Abelian reduction ([D-M], Theorem 2.4). Since
the Jacobian Jac(X) of X is isogenous to a product Jac(Y ) × A, Corollary 7 in
[BLR], Section 7.3, implies that the Néron model of Jac(Y ) is semi-Abelian.

Remark 4.8.Let us consider in this remark the case whereg(Y ) = 1. If Y has
potentially good reduction, then Proposition 4.4. and Corollary 4.7. still hold if
one replaces ‘stable model ofY ’ by ‘smooth model ofY ’. The proof is exactly the
same.

If Y has potentially multiplicative reduction andf :X → Y is any cover ofY
such thatg(X) > 2 andX has a stable model overOK , thenY has multiplicative
reduction overOK already. This can be seen easily using Jacobians. However, it
may happen that the morphismf cannot be extended to a morphism between the
stable model ofX and a semi-stable model ofY . Let us consider the following
example.

Let K be complete with algebraically closed residue fieldk andp 6= 2. Let
G := Z/nZ, with n prime top. By gluing together two suitableG-covers ofP1

k,
we can construct a semi-stable curveXs over k with a faithful action ofG, and
such that (1)Xs has two smooth irreducible components01 and02 that intersect
at exactly two points, (2)G leaves fixed these points as well as each0i , and (3)
g(01) > 1, g(02) = 0, andg(01/G) = 0. Let X′s = Xs/G. ThenX′s is the
union of two smooth rational lines that intersect transversally in two distinct points.
Consider the étale map of degree two fromX′s to a rational curve with a node. Let
us denote this latter curve byYs.

Our aim is to lift the compositionXs → Ys to a finite morphism of models. To
do so, we will use some results of Saïdi. LetY be a semi-stable model of a Tate
elliptic curveY/K, with special fiber isomorphic toYs . After making a ramified
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extension if necessary, we can use [Said], 5.7, first to lift the morphismX′s → Ys

to a finite morphismX′ → Y of semi-stable models, and then to lift the morphism
Xs → X′s to a finite morphism of semi-stable modelsX → X′ (the schemeX
is normal by 1.1). Letϕ: X→ Y denote the composition, and letf = ϕK . Let Z
be the stable modelX overOK . Its special fiber consists in the curve01 with two
points identified.

We claim that the morphismf cannot be extended to a morphism fromZ to
any semi-stable model ofY . To prove this fact, letY′ be any semi-stable model of
Y . Let us show first that if a morphismZ→ Y′ exists, thenY′ = Y. Indeed,Y′s is
irreducible. Letξ1, ξ , η, andη′, denote respectively the generic points of01, Zs, Ys

andY′s . ThenOX,ξ1 = OZ,ξ dominates bothOY,η andOY′,η′ . ThusOY,η = OY′,η′
andY′ = Y (Lemma 4.11). If a morphismZ→ Y exists, then it is finite. ThusZ
is the integral closure ofY in K(X) and, hence,X = Z, which is impossible.

Remark 4.9.As pointed out by R. Coleman, the following variation on Pro-
position 4.4(a) holds without the assumption thatg(Y ) > 2. Let X and Y be
semi-stable curves overOK with smooth generic fibersX andY . Let f :X → Y

be a finite morphism. Then after a suitable extensionOL of OK , there exists a
semi-stable modelX′/OL dominatingXOL such thatf extends to a morphism
X′ → YOL .

To prove this statement, we may assume thatK is complete. LetZ be a model of
X which dominates bothX andN(Y,K(X)). Then after a finite extensionOL/OK ,
there is a semi-stable modelX′/OL ofXL which dominatesZOL (see reference just
before 1.8). ThusX′ dominatesXOL andf extends toX′ → YOL .

COROLLARY 4.10. Let f :X → Y be a finite morphism of curves overK.
Assume thatg(Y ) > 1, and thatX admits a smooth modelX. ThenY admits
a smooth modelY, andf extends to a finite morphismX→ Y.

Proof.Assume thatg(Y ) > 2. LetY be the stable model ofY overOK , which
exists by Corollary 4.7. Letϕ: X → Y be the morphism which extendsf . Since
Xs is irreducible,ϕ is finite. Thus Proposition 4.4(b), implies thatYs is smooth,
and the corollary is proved wheng(Y ) > 2.

Let us now present a different argument that also applies to the case where
g(Y ) = 1. Let J (X) (resp.J (Y )) be the Jacobian ofX (resp. ofY ). ThenJ (X)
has good reduction, and so doesJ (Y ) ([S-T], Section 1, Corollary 2). SinceX
is smooth, it has a section over some étale extension ofOK ([EGA], IV.17.16.3
(ii)). Let Y be the minimal regular model ofY over OK . Then by composition
Y also has an étale quasi-section. So the identity component of the Néron model
of J (Y ) overOK is isomorphic to Pic◦Y/OK ([BLR], Section 9.5, Remark 5),Y is
semi-stable, all the irreducible components ofYs are smooth and the graph ofYs

is a tree (loc. cit. Section 9.3, Corollary 12(c)). Sinceg(Y ) > 1 and the graph
is a tree,Ys contains an irreducible component1 of positive genus. As before,
we may assumeK complete. In particular, the ringOK is excellent. Consider the
normalizationX′ := N(Y,K(X)) of Y in K(X). Then1 is dominated by some
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irreducible component0 of X′s of positive geometric genus. SinceX is smooth,0
is the unique component ofX′s with positive geometric genus, and thus1 is the
unique such component ofYs . Hence,Ys = 1 andY is smooth. Any irreducible
component ofX′s dominates1, and thus has positive geometric genus. Therefore,
X′s = 0. SinceX is smooth andg(X) > 1, X is the unique model ofX with
integral special fiber of positive geometric genus. Hence,X′ = X and we have a
finite morphismX→ Y.

Remark 4.11.The fact that the good reduction ofX implies that ofY is already
known, and can be found in the literature in [Lge], Section 3, Lemma 1, in the case
whereX(K) 6= ∅, and in [Y-M], théorème 2.2, in the general case; see also [N-S],
Lemma 5.1.

The hypothesis thatg(Y ) > 1 is necessary in the statement of the corollary.
Indeed, here is a counterexample to Corollary 4.10 whenY = P1

K . Let Z → Y

to the cover corresponding to the field extensionK(Y ) = K(y) → K(Z) =
K(Y )[z]/(z2− yz+ t), wheret is an uniformizing parameter ofK. ThenZ ' P1

K

sinceZ has rational points at infinity. Consider the modelY = SpecOK[y] ∪
SpecOK [1/y] ' P1

OK
of Y . PutZ = N(Y,K(Z)). ThenZ is regular, andZs is the

union of two projective lines of self-intersection−1. One can contract one of these
lines, with contraction morphismZ→ W , so thatW ' P1

OK
.

Let X → W be a finite cover withX smooth overOK . SinceWK = Z, one
obtains a coverX := XK → Y by composition. We claim that this cover cannot
be extended to smooth models. Assume for simplicity thatg(X) > 0. Assume
thatX → Y extends to a cover of smooth modelsX′ → Y′. ThenX′ = X by
uniqueness of the smooth model ofX over OK . Let ξ (resp.ξ ′) be the generic
point of Ys (resp. ofY′s). ThenOY,ξ andOY′,ξ ′ are discrete valuation rings with
same quotient fieldK(Y ) and both dominated by the valuation ring induced by
the generic point ofXs , so they are equal. This implies thatY′ = Y andX =
N(Y,K(X)). But N(Y,K(X))s has at least two components since the same is
true forN(Y,K(Z))s = Ws, so there is contradiction.

Remark 4.12.Corollary 4.10. holds even wheng(Y ) = 0 if f :X → Y is
Galois with Galois groupG: in this case the quotientX/G is smooth (Proposition
1.6.). Unfortunately, the general case of Corollary 4.10. cannot be deduced from
this Galois case. Indeed, letX → Y be any separable cover. LetX̂ → Y be
the Galois closure ofX overY . Assume thatX has good reduction. One can ask
whetherX̂ also has good reduction. The answer to this question is negative in
general. Consider for instance the coverX → Y = P1

K in Remark 4.11 LetH
be the subgroup Gal(K(X̂)/K(X)) of G. If X̂ had good reduction, then the cover
X→ Y would extend to a Galois cover of smooth modelsX̂/H → X̂/G. But we
saw in Remark 4.11 that this is impossible.

Remark 4.13.Assume thatY has a smooth modelY overOK . LetX→ Y be an
étale Galois cover of groupG. A theorem of Grothendieck states that if the order of
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G is prime to the residue characteristicp = char(k), then after a base change of the
ground field,N(Y,K(X)) is smooth and étale overY. This can be deduced easily
from Theorem 2.3. Ifp divides the order ofG, then the situation is more complex.
See [Ray], especially Section 3, for further information. In particular, it is possible
to construct examples whereX may not have potentially good reduction.

Finally, let us state the following lemma which pertains to the problem of ex-
tending finite covers. Given a morphismf :X → Y and a modelY of Y , the
process of normalization produces a modelN(Y,K(X)) of X that is in general
finite overY. But in general, given a modelX ofX, it is not possible to construct a
modelY and a finite morphismX→ Y. The following lemma shows the existence
of a modelY and a rational mapX → Y with some finiteness and surjectivity
properties.

LEMMA 4.14. Let f :X → Y be a finite cover of curves overK. Let X andY′
be models ofX andY over OK , respectively. Then there is a modelY of Y over
OK which dominatesY′ and such thatf extends to a rational mapX→ Y which
is quasi-finite in codimension1. If K is Henselian, then there is a modelY′′ of Y
overOK such thatf extends to a rational mapX→ Y′′ which is quasi-finite and
surjective in codimension1.

Proof. Let ξ be the generic point of an irreducible component ofXs . Then
O ′ := OX,ξ ∩ K(Y ) is a valuation ring ofK(Y ). Let us show first that there is a
modelZ of Y such that the center ofO ′ in Z is a generic point ofZs .

Let p be the center ofO ′ in Y′. The residue field ofO ′ is a sub-extension of
finite index ofk(ξ), so it has transcendental degree 1 overk. We can easily deduce
thatO ′ is a prime divisor ofY′ of centerp in the sense of Zariski (see [Art], Section
5). By a theorem of Zariski, after a suitable blow-upZ′ → Y′, the center ofO ′ in
Z′ will be a generic point ofZ′s (op. cit., Theorem 5.2). The normalizationZ of
Z′ satisfies the required condition. By induction, one constructs a modelY of Y
dominatingY′ and such that the local ring of any one-codimensional point ofX
dominates the local ring of an one-codimensional point ofY.

If K is Henselian, one can contract the irreducible components ofYs which are
not dominated by a component ofXs ([BLR], Section 6.7, Proposition 4). After
such a contraction, the new modelY′′ fulfills the required conditions.

5. Models that Dominate Regular Models

In this preparatory section, we study some properties of the fibers of a birational
morphismZ → Y whenY is assumed to be regular. As we shall see, these fibers
behave as if they belonged to the special fiber of a regular model ofP1

K (compare
with [Li2], Section 3.2). The results of this section will be used to prove the main
results of the next two sections. The reader may skip this section and refer to it as
necessary while reading the following sections.
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Let Z be a model. We denote byr(0) the multiplicity of a vertical divisor0 in
Z. Let Z′ be another model ofZK and letπ : Z′ → Z be a morphism of models.
Let 0̃ be the strict transform of0 in Z′. When0 is smooth,Z′ → Z induces
an isomorphism̃0 → 0, and r(0̃) = r(0). To simplify our notation when no
confusion may result, the strict transform̃0 will be denoted again by0. We shall
say that a pointx of 0 is an interior point of 0 in Z if Zs is irreducible atx. If
π : Z′ → Z is any birational morphism andz ∈ Z, we may denote the fiberπ−1(z)

simply byZ′z.
Let W/OK be a normal model of a curveW over a discrete valuation fieldK.

Let w0 be a closed point ofWs . SetW+(w0) := {P ∈ W | {P } ∩ Ws = {w0}},
where{P } denotes the Zariski closure of{P } in W . Note thatW+(w0) depends on
the choice of the modelW , even though this dependence is not explicitly indicated
in our notation. Note also that ifK is Henselian, then{P } ∩Ws is alway reduced
to a single point.

LEMMA 5.1. LetK be Henselian with algebraically closed residue fieldk. Let
X/OK be a regular model of a curveX/K. Fix a closed pointx ∈ Xs. Denote
by01, . . . , 0n the irreducible components ofXs containingx, with multiplicities
r1, . . . , rn, respectively.

(a) LetP ∈ X+(x). Then[K(P ) : K] ∈∑n
i=1 riN. (N denotes the set of positive

integers.)
(b) Assume thatX is a good model as in1.8. Then there exists a pointP ∈ X+(x)

such that[K(P ) : K] =∑n
i=1 ri.

(c) Assume thatX is a good model and thatx belongs to two distinct components
01 and02 ofXs . Letπ : Z→ X be a morphism of models ofX such that0 :=
π−1(x) is irreducible of multiplicityr1 + r2 and meets the other components
of Zs in two distinct points, and such thatπ is an isomorphism overX \ {x}.
Thenπ is the blow-up ofX with (reduced) centerx. In particular,Z is regular.

Proof. Consider the closed subscheme{P } as a divisor onX. Then[K(P ) :
K] = {P } ·Xs =∑i ri({P } · 0i). This proves (a).

(b) SinceX is a good model,n = 1 or 2. Assume first thatn = 1. Let u ∈
OX,x be a local equation of01 at x. Sincex is regular in01, the maximal ideal
of O01,x = OX,x/(u) is generated by the image of someh ∈ OX,x. Thus(u, h)
is the maximal ideal ofOX,x. Let D be an irreducible component of div(h). Then
D intersects01 transversally atx, and thus the generic pointP of D belongs to
X+(x). It is easy to check thatK(P ) has degreer1 overK.

Consider now the casen = 2. Let X′ → X be the blow-up with centerx.
Denote byE the exceptional component. ThenE has multiplicityr1+ r2 (Lemma
1.4.). Letx1 be an interior point ofE. From the casen = 1, we get a pointP ∈
X+(x1) ⊆ X+(x) with [K(P ) : K] = r1 + r2.

(c) Let Z̃ → Z be the minimal desingularization ofZ. Denote bỹ0 the strict
transform of0 in Z̃. The compositioñZ → X is a birational morphism between
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two regular schemes and in thus a sequence of blow-ups. The first blow-up is the
blow-up of the pointx and thus its exceptional fiber1 is a component of multipli-
city r1+ r2. Any component of̃Zs lying overx has multiplicity inr1N+ r2N. The
only components of̃Zs that have multiplicity equal tor1+ r2 are components that
are obtained by blowing up smooth points on components of multiplicityr1+ r2.

Since the modelZ is obtained by contracting all the components ofZ̃s lying
overx except̃0, and since0 meets the rest of the fiber in two distinct points, we
see that̃0 can only be the component1. SinceZ̃ is the minimal desingularization
of Z, none of the added components are rational of self-intersection−1 in Z̃. On
the other hand,̃Z is not a minimal regular model, and thus0̃must be an exceptional
divisor. Intersection theory oñZ shows then that the multiplicity of any component
that intersects̃0 is strictly smaller thanr1+r2. Hence,̃Z = Z, andZ is the blow-up
of X alongx.

In the sequel, we will need the following terminology used in graph theory.
Recall that avertexof thedual graphassociated to a curve represents an irreducible
component of the curve, and that two vertices are linked by as many edges as the
number of intersection points of the corresponding irreducible components. Recall
that the degreed(v) of a vertexv of a graphG is the number of edges ofG attached
to v. Whend(v) = 1, the vertex is calledterminal, and whend(v) > 3, the vertex
is called anode. A terminal chain of a graphG attached to a vertexv is a connected
component ofG\ {v} that contains a terminal vertex but does not contain any node.

LEMMA 5.2. Assume thatk is algebraically closed. LetY/OK be a normal model
of a curveY/K, and letπ : Z → Y be a proper birational morphism withZ
normal. Fix a closed pointy ∈ Ys such thatπ−1(y) is one-dimensional.

(a) Assume thaty is a rational singularity. Then each irreducible component of
π−1(y) is isomorphic toP1

k. If Z is regular, then the graph ofπ−1(y) is a
tree. In general, the graph ofπ−1(y) may contain loops, but only because
of the existence of the following configuration of curves. Let01, . . . , 0n be a
sequence ofn > 2 distinct components ofπ−1(y) such that0i ∩ 0i+1 6= ∅,
i = 1, . . . , n − 1, and0n ∩ 01 6= ∅. Then there is a single pointx in π−1(y)

such that0i ∩ 0i+1 = {x}, i = 1, . . . , n− 1, and0n ∩ 01 = {x}.
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(b) Assume thatY is a good model and thatZ is regular. ThenZ is also a good
model andπ−1(y) contains at least one exceptional divisor0. Then0 meets
the other components ofZs in at most two points. Moreover, if0 is unique,
then the graph ofπ−1(y) can be described as in Figure 1.
Each vertex• in Figure 1 represents a smooth rational curve. The symbol2
indicates the position of the unique curve of self-intersection−1. The special
fiberYs meetsπ−1(y) in one or both componentsA andB, and nowhere else.
The symbols> and< next to a chain indicate that the multiplicities decrease
(resp. strictly increase) along that chain when read from left to right. We have
r(C1) = r(C ′1), r(C2) > r(C1), r(C2) = r(C ′2), etc.

(c) Keep the hypothesis of (b). Let01, . . . , 0m be the exceptional divisors ofZ
contained inπ−1(y). Thenmax{r(0i) | 1 6 i 6 m} is also the maximum of
the multiplicities of the components ofπ−1(y).

Proof.(a) Sincey is a rational singularity,R1π∗OZ = 0 ([Lip2], 1.1 and 1.2 (2)).
LetC be any connected reduced curve overk contained inπ−1(y). Let I ⊂ OZ be
the sheaf of ideals definingC. Then the sequence 0→ I → OZ → OC → 0 is
exact. The long exact cohomology sequence gives an exact sequence

R1π∗OZ→ R1π∗OC → R2π∗I.

The last group vanishes since the fibers ofπ have dimension at most 1. Thus
H1(C,OC) = 0. If Z is regular, then intersection theory onZ shows that each
component ofC is a projective line, and that the dual graph ofC is a tree. WhenZ is
not regular, let̃Z→ Z denote the minimal desingularization ofZ, and denote byη
the compositioñZ→ Y. The curveπ−1(y) is obtained by contracting components
of the curveη−1(y), whose dual graph is a tree. The last statement of (a) follows.

(b) The morphismZ→ Y consists of successive blow-ups of closed points, so
Z is good. Sincey is a regular point,π−1(y) must contain an exceptional divisor
0. One can contract0 and get a new regular modelZ1 dominatingY. All the
components ofZs that meet0 then meet each other at a same point inZ1. But
Z1 is a good model, so there are at most two components inZs which intersect0.
Assume that0 is the unique exceptional divisor ofπ−1(y). Then exactly one of
the components ofπ−1(y) that meet0 becomes the unique exceptional divisor of
(Z1)y. Now it is easy to check by induction on the number of components that, in
case where0 is the unique exceptional divisor inπ−1(y), the shape of the divisor
π−1(y) is as indicated in Figure 1.

(c) We proceed by induction on the numbern of components ofπ−1(y). If
n = 1, the statement holds. Ifn > 1, contract01 to get a new modelZ1 and a fac-
torizationZ→ Z1 → Y. Then the exceptional divisors of(Z1)y are02, . . . , 0m,
and possibly the image of a component, say00 ⊂ π−1(y), that intersects01 in Z.
Sincer(00) 6 r(01), (c) holds.
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We now apply the above lemma to study the exceptional locus of the minimal
desingularization of a singular point ofZ.

LEMMA 5.3. Assume thatK is henselian andk is algebraically closed. LetY/OK

be a good model (see1.8) of a curveY/K, and letπ : Z→ Y be a proper birational
morphism withZ normal. Fix a closed pointy ∈ Ys such thatπ−1(y) is one-
dimensional.

(a) Let0 be a component ofπ−1(y) of multiplicity r and letz be an interior point
of 0 in Z. Thenz is singular inZ if and only if there existsQ ∈ Y+(z) such
that [K(Q) : K] < r. Assume now thatz is singular inZ and letZ̃ → Z
denote the minimal desingularization ofz. ThenZ̃z consists of a chain of
vertical divisors. Moreover, as one moves away from the component0 along
the chain, the multiplicities of the components are strictly decreasing.

(b) Let0 be a component ofπ−1(y). Assume that0 meets a component01 in z1

and a second component02 in z2, with z1 6= z2. If the multiplicities of01 and
02 are strictly smaller thanr(0), then all the interior points of0 are regular
in Z.

(c) Let z be a point ofπ−1(y), singular inZ, and which belongs to exactly two
components01 and 02 of Zs . Let Z̃ → Z be the minimal desingulariza-
tion of z. Then each component of̃Zz has multiplicity less than or equal to
max{r(01), r(02)}.

Proof. We shall use the following common construction in the proofs of (a)–
(c). Let z be a singular point ofZ. Let Z → Z0 be the contraction of all the
components ofπ−1(y) except for the components that containz. This contraction
is an isomorphism in a neighborhood ofz. Let λ: W → Z0 be the minimal desin-
gularization ofZ0. Let Z̃ → Z be the minimal desingularization ofz ∈ Z. Then
Z̃ is isomorphic toW in a neighborhood of̃Zz. Moreover,Z̃z is isomorphic to
λ−1(z). Thus it is enough to prove the statements (a)–(c) forλ−1(z). Denote by
η: W → Y the compositionW → Z0 → Y. Since the regular modelW is the
minimal desingularization,W has the property that the only possible exceptional
divisors contained inη−1(y) are the strict transforms of the components ofπ−1(y)

that meetz. Note that sinceW is not the minimal model, at least one of these strict
transforms must be exceptional.

(a) Assume thatz is singular, and consider the morphismη introduced above.
Then0 is the unique exceptional divisor contained inη−1(y). Sincez is an isolated
point, we find, using Figure 1 in the case of the morphismη: W → Y, that the
only possibility forλ−1(z) is to correspond to the terminal chain attached to the
exceptional curve0. This proves the statement aboutZ̃z (which is isomorphic to
λ−1(z)).

Let1 be a component ofλ−1(z). Then, as we just showed,r(1) < r. LetQ ∈ Y
be a closed point of degree[K(Q) : K] = r(1) specializing to an interior point of
1 (use 5.1(b), sinceW is a good model). ThenQ ∈ Y+(z) and[K(Q) : K] < r.
If z is regular, then Lemma 5.1(a) implies that[K(Q) : K] > r for all Q ∈ Y+(z).
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(b) Assume that there exists a singular interior pointz ∈ 0 ⊂ Zs. Let W be the
model constructed usingz ∈ Z as above. Then0 is the unique exceptional curve
on η−1(y), and thus Lemma 5.2(b) implies that0 can meet the rest ofη−1(y) in
at most two points. Sincez is singular,0 certainly meetsη−1(y) at z. To obtain a
contradiction, we will show that eachzi gives rise to a component ofWs that meets
0 in zi. We need to consider two cases. First, if0i ⊂ π−1(y), then there is a point
Qi ∈ Y of degreer(0i) that specializes to an interior of0i ⊂ Z (use 5.1(b), since
the curve0i contains a point smooth in(Zs)red and regular inZ). So Part (a) shows
that zi ∈ 0 is singular inZ0 sinceQi specializes tozi ∈ Z0 andr(0i) < r(0).
Hence, a component ofWs meets0 in zi. Second, if0i is not a component of
π−1(y), then it is not contracted inZ0. Thus again a component ofWs meets0
in zi.

(c) Consider the modelW associated toz as above. The only possible excep-
tional divisors inW are01 and02. Thus (c) is a consequence of Lemma 5.2(c)
applied toW → Y.

6. Normalization of Regular Models

Let f :X → Y be a cover of smooth, proper, and geometrically connected curves
overK. It is natural to wonder whether there exist regular modelsX andY of X
andY respectively, and a finite morphismϕ: X→ Y such thatϕK = f . Note that
in this caseX = N(Y,K(X)) sinceϕ is finite. We shall say thatf can be extended
to a cover of regular modelsif such a coverϕ: X→ Y exists.

This question was considered by Abhyankar in [Ab1]. Letf : X′ → Y′ be a
finite morphism of normal schemes of dimension 2. The morphismf is said to
have the property of simultaneous resolution of singularities if there exist a regular
schemeX and a birational morphismπX: X → X′, a regular schemeY and a
birational morphismπY : Y → Y′, and a finite morphismϕ: X → Y such that
f ◦ πX = πY ◦ ϕ. Given any cyclic groupG of ordern > 3 and any fieldk of
characteristic prime ton, Abhyankar gave examples ofG-covers of normal surfaces
X′ → Y′ over k which do not satisfy the property of simultaneous resolution of
singularities. In this section, we give local obstructions in some cases to a positive
solution to the extension problem (6.2 and 6.4), and then use these local obstruc-
tions to construct global examples of cyclic étale morphisms of curvesf :X → Y

of degreen > 3 where the extension problem has a negative answer (6.6). We treat
the case of covers of degree 2 and 3 in the next section.

Throughout this section, we assume thatK is complete andk algebraically
closed.

6.1. THE LOCAL CASE

Let us recall some facts about intersection theory in the following special case.
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Let W andZ be local regular schemes of dimension 2, with closed pointsw and
z, respectively. Letϕ: W → Z be a dominant finite morphism. Consider two
irreducible divisors01, 02 in W . Let 1i := ϕ(0i). Assume that11 6= 12 and
ϕ−1(11) = 01. Defineϕ∗11 := e01/1101, wheree01/11 is the ramification index
of 01 over11, andϕ∗02 := [k(02) : k(12)]12. The projection formula is the
equality11 ·ϕ∗02 = [k(w) : k(z)]ϕ∗11 ·02. Since this equality is a local property
on Z, the reader will have no difficulty in proving it by adapting to the local case
the proof given for arithmetic surfaces in [Lan], III, Theorem 4.1. It follows from
the definitions that the above formula is equivalent to

(11 ·12)degϕ = e01/11e02/12[k(w) : k(z)](01 · 02). (1)

In particular, ifk(w) = k(z) and01 · 02 = 11 ·12 = 1, then

degϕ = e01/11e02/12. (2)

Recall that a sequence of irreducible components11, . . . ,1n of a modelZ is
called achain if 1i ∩1i+1 is a single point for alli 6 n− 1 and if1i ∩ 1j = ∅
whenever|i − j | > 2.

PROPOSITION 6.2.Let W = Spec(OK [[u, v]]/(uv − t)). LetG be a group of
OK-automorphisms ofW of order n > 4. Assume thatG does not permute the
two irreducible components ofWs . Then for any proper birational morphismY→
W/G with Y regular, the normalizationN(Y,K(W)) is a singular scheme.

Proof. Since the components ofWs are not permuted byG, (W/G)s has two
irreducible components1′ and1′′. The quotientW/G is semi-stable overOK

(Proposition 1.6). Thus, ifW/G were regular, then the components1′ and1′′
would intersect transversaly, and this would contradict the projection formula re-
called above. Hence,W/G is singular. Assume that there existsY → W/G as in
the statement of the proposition withX := N(Y,K(W)) regular. We can choose
Y to be minimal with respect to this property.

In the first part of this proof, let us show thatYs consists of a chain of irre-
ducible components. Decompose the morphismY → W/G into a sequence of
modificationsY = Yq → Yq−1 → · · · → Y0 → W/G, where eachYi is
regular,Yi+1→ Yi is the blow-up along a closed point in(Yi)s , andY0→ W/G

is the minimal desingularization ofW/G. SinceW/G is semi-stable,(Y0)s is a
chain of rational curves1′ =: 11,12, . . . ,1` := 1′′, crossing transversaly. Let
X0 := N(Y0,K(W)), and letϕ: X0→ Y0 be the canonical morphism.

We claim thatϕ−1(1i) is irreducible for alli, and thatϕ−1(11), . . . , ϕ
−1(1`)

is a chain of components of(X0)s. Denote by0′ and0′′ the (smooth) compon-
ents ofWs. Then (up to renumbering) we can assume thatϕ−1(11) = 0′ and
ϕ−1(1`) = 0′′. Fix an integeri with 2 6 i 6 ` − 1. Let0i be a component of
(X0)s lying over1i. Using repeatedly 4.2 (or its geometric form in Lemma 4.3(a)),
we can construct a sequence of components01, . . . , 0i, . . . , 0`, with ϕ(0j) = 1j
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and0i∩0i+1 6= ∅. In particular,01 = 0′ and0` = 0′′. Denote byπ : X0→ W the
natural morphism. SinceW is regular at its closed pointw, Lemma 5.2(a) provides
information on the dual graph of the curveπ−1(w). In particular, two distinct
components0r and0s cannot intersect in more than one point. Since(Y0)s is a
chain, Lemma 5.2(a) implies that the sequence01, . . . , 0` must also be a chain. If
there exists a different component0′i of (X0)s lying over1i , then we can construct
a different chain of components(0′j )16j6` with 0′1 = 0′ and0′` = 0′′. Moreover,
sinceX0 → W is an isomorphism when restricted to0′, the components02 and
0′2 intersect0′ at the same point; hence,02∩0′2 6= ∅. Similarly,0`−1∩0′`−1 6= ∅.
If two such chains existed, then the dual graph ofπ−1(w) would contain a true
loop, and this would contradict Lemma 5.2(a). The claim is thus proved.

Note that each componentϕ−1(1j ), j = 2, . . . , ` − 1, has multiplicity greater
than one: the minimal desingularizatioñX0 of X0 is obtained by a sequence of
blow-ups fromW , and any component in(X̃0)s has multiplicity greater than one
except for the components corresponding to0′ and0′′. Denote byxj the intersec-
tion ofϕ−1(1j ) andϕ−1(1j+1). We claim thatϕ−1(1j)\{xj−1, xj } is contained in
the regular locus ofX0. Indeed, consider the modelX0j where all the components
ϕ−1(1i) of X0 have been contracted except fori = 1, j , and`. Sinceϕ−1(11)

andϕ−1(1`) have multiplicity 1, our claim follows from Lemma 5.3(b) applied
to X0j . Now the minimality ofY implies thatY1 → Y0 is the blow-up along
an intersection point of(Y0)s. In particular,(Y1)s is still a chain of irreducible
components. Repeating the same arguments forY1,Y2, . . . ,Yq = Y proves that
Ys is a chain.

Renumbering the components if necessary, we writeYs = ∪16j6N1j with
11 = 1′,1N = 1′′ and1j ∩1j+1 is a single point. Letϕq be the canonical map
X → Y. Using similar arguments as above, we see thatϕ−1

q (1j) is irreducible,
and thatϕ−1

q (1j) ∩ ϕ−1
q (1j+1) is a single pointxj . The special fibersXs,Ys are

represented in Figure 2.
Denote bymj the multiplicity of1j in Ys and byrj that ofϕ−1

q (1j) in Xs .
SinceY is obtained by successive blow-ups of closed points starting fromY0,
Ys is a divisor with normal crossings. Similarly, the same is true forXs. The
projection formula (2) applied to the localization ofX at xj implies thatn =
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(rj/mj)(rj+1/mj+1). Sincem1 = r1 = 1, we see thatrj = mj if j is odd and
rj = nmj if j is even. SincemN = rN = 1,N must be an odd number. We will
show by induction onj that, for all 16 j 6 (N − 1)/2,

m2j+1 > max{m2j−1,2m2j }. (3)

Sincer2 = nm2 divides r1 + r3 = 1 + m3 (intersection theory on the regular
schemeX), we havem3 > 2m2. Thus, the inequality (3) is true forj = 1. Assume
that it is true forj and thatj + 1 6 (N − 1)/2. For the same reason as before,
m2j+3 > nm2j+2 − m2j+1. Butm2j+2 > m2j+1 −m2j (intersection theory onY),
so

m2j+3 > (n− 1)m2j+1 − nm2j > (n/2− 1)m2j+1 > m2j+1,

(the last inequality holds becausen > 4). On the other hand, 2m2j+3 > m2j+3 +
m2j+1 > nm2j+2, som2j+3 > 2m2j+2, and the inequality (3) is proved for all
j 6 (N − 1)/2. In particular, sinceN is odd, we find thatmN > 2. This is a
contradiction.

6.3. THE GLOBAL CASE

LEMMA 6.4. Let X be a curve of genusg(X) > 1 overK. Denote byX0 its
minimal regular model overOK . LetG be a finite subgroup ofAutK(X). Assume
that there existsx ∈ (X0)s such that in a neighborhood ofx, X0 is semi-stable and
not smooth, and the inertia groupIx does not permute the irreducible components
of (X0)s passing throughx. Then if |Ix| > 4, the coverX → X/G cannot be
extended to a finite cover of regular models.

Proof.Denote bymx the maximal ideal ofOX0,x. Then themx-adic completion
Ôx of OX0,x is isomorphic toOK[[u, v]]/(uv − t), Ix acts faithfully on Spec(Ôx)

and does not permute the irreducible components of Spec(Ôx ⊗ k). Let y be the
image ofx in Y0 := X0/G and letÔy be themy-adic completion ofOY0,y. Then
Spec(Ôx)→ Spec(Ôy) is a Galois cover with groupIx.

Assume thatX→ X/G can be extended to a finite morphismX→ Y between
regular models. ThenX dominatesX0, soY dominatesY0. The fiber product̂Y :=
Y ×Y0 Spec(Ôy) is regular since it is formally smooth overY, and the projection
Ŷ→ Spec(Ôy) is proper and birational. The fiber productX×Y0 Spec(Ôy) is regu-
lar (formally smooth overX), and finite overY×Y0Spec(Ôy) = Ŷ. Since Spec(Ôx)

is a connected component ofX0 ×Y0 Spec(Ôy), this implies thatN(Ŷ,K(Ôx)) is
regular. But this is impossible by Proposition 6.2.

Remark 6.5.One can give a stronger conclusion under the assumption of the
above lemma:for any extension of discrete valuation fieldsL/K, the coverXL→
YL cannot be extended to a cover of regular models.

Actually, (X0)OL is semi-stable on a neighborhood of the pointx′ lying over
x. Consider the minimal desingularizationψ : X1→ (X0)OL . One can see that no
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irreducible component of(X1)s lying over a component of(X0)s passing through
x is exceptional. ThusX1 is isomorphic to the minimal regular model ofXL
over OL in a neighborhood ofx′. We may then apply Lemma 6.4. to the data
(XL,G, x

′, Ix ′).

PROPOSITION 6.6.LetK be a complete discrete valuation field with algebraic-
ally closed residue fieldk. Let n > 4 be any integer prime top = char(k) > 0.
Then for anyg > 0, there exists a cyclic coverX→ Y of ordern, with g(Y ) = g,
which cannot be extended to a finite cover of regular models. Moreover,X → Y

can be chosen to be étale ifg > 1.
Proof. Denote byG = 〈σ 〉 a cyclic group of ordern. In the caseg = 0, it is

possible to construct explicitly the desired coversX → P1
K . Let P(u) ∈ OK [u]

be a monic polynomial such that̃P(u), its image ink[u], is separable and does not
vanish at 0. Assume moreover thatn and deg(P )+p are coprime (when the residue
characteristic is 0,p > 1 will denote a fixed integer coprime ton). Let X/K be
the curve whose function fieldK(X)/K is the field of fractions of the domain
K[u, v]/(vn − (up − tpn−nu)P (u)). The curveX has genus(n − 1)(deg(P ) +
p − 1)/2. Let ζn ∈ K is a primitive nth root of unit. Letσ acts onK(X) as
σ (u) = u andσ (v) = ζnv. The quotientX/G is isomorphic toP1

K . The minimal
regular modelX0 of X over OK is semi-stable. Indeed,(X0)s consists of two
smooth components; one of the components is the normalization of the reduction
of vn − (up − tpn−nu)P (u)modulot , which has genus equal to(n− 1)deg(P )/2.
The other component is obtained as follows. Make a change of variablesu = tnu1

and v = tpv1. Thenvn1 = (u
p

1 − u1)P (t
nu1). This equation modulo(t) gives

rise to a smooth curve of genus(n − 1)(p − 1)/2. Since the genus of these two
components add up to the genus ofX, we see that the reduction ofX s stable and
that the components can intersect only in a single pointx. (Note that we can also
use Theorem 3.9 to determine the stable model ofX). To check thatx is a regular
point in X0, we need only to note that its image under the quotient map of the
stable model is a point of multiplicityn. With the notation of Lemma 6.4, we find
thatIx = G. SoX→ P1

K cannot be extended to a cover of regular models.
Now assume thatg > 1. LetC/k be a smooth proper curve of genusg− 1. Fix

two distinct pointsy1, y2 ∈ C. There existD ∈ Pic0(C) andf ∈ k(C) such that
div(f ) = y1−y2+nD. Consider theG-coverE→ C defined byk(C)[v]/(vn−f ).
It is totally ramified aty1 andy2, and étale elsewhere. LetXs/k be the stable curve
obtained by gluing together the preimages inE of y1 and y2. Let x denote the
unique singular point ofXs. The action ofG onE induces an action onXs. The
morphismXs → Xs/G is étale away fromx, and we claim that this cover is of
Kummer type (see [Said], 5.6(iii) and [Said2], 2.1). Indeed, letxi be the preimage
of yi in E. Thenv is a parameter ofE at x1, while v−1 is a parameter ofE at x2.
Let σ be a generator of Gal(k(E)/k(C)). Then there exists ann-th root of unitξn
such thatσ (v) = ξnv andσ (v−1) = ξ−1

n v−1. Sincex1 andx2 are the points ofE
lying overx ∈ Xs , this shows thatXs → Xs/G is of Kummer type.
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Let Ys := Xs/G and lety be the singular point ofYs. As in [Said], 6.3, one
can lift Ys to a semi-stable curveY/OK such thaty is a singular point ofY of mul-
tiplicity n. (As stated, [Said], 6.3 applies only whenYs has smooth components.
However, a slight modification of the proof of 6.3 leads to a proof of the desired
lifting.) Now Xs → Ys can be lifted to aG-coverX → Y of semi-stable curves
of OK (see [Said], 5.7). Note that the lifting in 5.7 can be made toOK directly,
and not to an extension ofOK because the multiplicity ofy is a multiple of the
order of the inertia group atx). We haveIx = G and the multiplicity ofy in Y is
n = |Ix|. Since the multiplicity ofx in X is that ofy divided by|Ix| (see the proof
in [Ray], Proposition 5, Premier cas), the pointx is regular inX. We may thus
use Lemma 6.4 to conclude thatXK → YK cannot be extended to a finite cover
of regular models. Finally, by construction, the arithmetical genus ofXK andYK

are (g − 1)n + 1 andg, respectively. Using Hurwitz’s formula, we see that the
morphismXK → YK is étale.

7. Cyclic Covers of Degree 2 or 3

The counterexamples presented in the previous section are all cyclic covers of
degree at least 4. In this section, we treat the case of cyclic covers of degree 2
or 3. In [Ab2], Theorems 9 and 10, Abhyankar proved that iff : X′ → Y′ is any
cyclic cover of degree 2 or 3 between normal algebraic surfaces over a fieldk

whose characteristic is prime to deg(f ), then there are suitable desingularizations
X → X′ and Y → Y′ of X′ and Y′ such thatf extends to a cyclic cover
ϕ: X → Y. In Theorem 7.3, we prove this result for normal models of curves,
without any assumption on the residue characteristic. The method of proof that
we use applies only to relative curves over an one-dimensional base. However, a
version of this theorem ought to hold in the more general setting of cyclic covers
ϕ: X → Y of degree 2 or 3 between two normal excellent schemes of dimension
two.

LEMMA 7.1. Let A be a Noetherian factorial local ring and letG be a finite
group of automorphisms ofA. LetB := AG. Assume thatA is finite overB. Letq
be a prime ideal of height1 in B, and letp be a prime ideal ofA lying overq. If the
extensionBq → Ap has trivial residue field extension, thenq is a principal ideal.
If in additionB/q is regular, thenB is regular.

Proof. SinceA/B is finite, the primep is of height 1, and is thus principal,
generated by an elementv. We claim thatq is generated byu := NormA/B(v).
Let S := B \ q. We may apply the theory of Dedekind domains to the extension
S−1A/Bq. In particular, since the extension of residue fields induced byAp/Bq is
trivial, we conclude that NormS−1A/Bq

(p) = qBq = (u). Hence, any elementb of q

can be written asb = αuβ, with α, β ∈ B andβ /∈ q. Considering the factorization
of βb = αu in A, we conclude thatb = γ u for someγ ∈ A. Since bothb andu
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belong toB, γ is fixed byG and is thus inB, soq = uB. Finally, if B/q is regular,
thenB is regular sinceq is principal.

The following corollary is an immediate consequence of Lemma 7.1.

COROLLARY 7.2. Let X be a regular model overOK of a curveX/K. Fix a
closed pointx ∈ Xs . LetG be a finite group acting onX/OK and fixingx. Denote
by ϕ: X → X/G the canonical morphism. Let0 be an irreducible component of
Xs that passes throughx. If ϕ(x) is regular inϕ(0) and if r(0) = |G|r(ϕ(0)),
thenϕ(x) is regular inX/G.

THEOREM 7.3. Let OK be a Dedekind domain with perfect residue fields. Let
f :X → Y be a Galois cover of curves overK, with Galois groupG. LetW/OK

be a regular model ofX/K. Assume thatG acts onW . If, for every closed point
x ∈ Ws, the inertia groupIx has order at most3, thenf can be extended to a
G-cover of regular models.

Proof. Let Y0 be a good model ofY (see 1.8) which dominatesW/G. Let X0

be the minimal good model ofX dominatingN(Y0,K(X)). ThenG acts onX0.
Denote byS0 the (finite) set of points ofX0 whose images inX0/G are singular. If
S0 is empty, Theorem 7.3 holds. IfS0 is not empty, consider the blow-upX1→ X0

alongS0. ThenX1 is a good model, andG acts onX1 sinceS0 is globally fixed by
G. Define similarly the setS1 ⊂ X1 relatively to the quotientX1 → X1/G. One
defines in this way a sequence of blow-upsXm→ Xm−1 and a sequence of subsets
Sm ⊂ Xm. Note thatSm is contained in the preimage ofSm−1. We will prove that
S1 is empty if all nontrivial inertia groups have order 2, and thatS1 or S2 is empty
if at least one inertia group has order 3.

We may assume thatK is Henselian andk algebraically closed. Indeed, all of
the above operations (taking regular models, blow-ups, quotients) commute with
étale base change, andOK is assumed to have perfect residue fields.

Let us note now that to prove Theorem 7.3, it is sufficient to consider the cases
where|G| = 2 or 3. SinceY0 dominatesW/G, X0 dominatesW . Let x0 ∈ S0, let
w be its image inW . ThenIx0 ⊆ Iw. ThusH := Ix0 has order 2 or 3. Consider the
quotientXm/H . Denote byx′0 the image ofx0 in X0/H , and byηm the canonical
mapXm/H → X0/H . Then it is easy to check thatXm/H → Xm/G is étale
in a neighborhood ofη−1

m (x
′
0). Thus in a neighborhood of the preimage ofx0 by

Xm → X0, the quotient mapXm → Xm/G behaves exactly likeXm → Xm/H .
Since the study of singularities in the quotient is a local problem, we can replace
G byH , and suppose thatS0 = {x0}, |G| 6 3.

The groupG fixes x0 as well as each component ofXs passing throughx0;
indeed, there are at most two components throughx0, and if G permuted the
components, then|G| = 2, and Lemma 3.7 would imply that the image ofx0

is regular. LetY := X0/G and letψ : X0 → Y be the canonical morphism. We
will distinguish two cases.
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Figure 3.

First case Suppose thatx0 belongs to two irreducible components01 and02

of (X0)s . Let ri := r(0i) and1i := ψ(0i). Then Lemma 5.2(a) shows that1i is a
smooth rational line, and Corollary 7.2 shows then thatr(1i) = ri (sinceψ(x0) is
assumed to be singular, and|G| is prime). Consider the blow-upπ : X1→ X0 with
centerx0 (Figure 3 below). Thenπ−1(x0) consists of a divisor00 of multiplicity
r0 = r1 + r2, and00 is stable underG. Let xi , i = 1,2 denote the intersection
0i ∩ 00. If the image10 of 00 in X1/G has multiplicity r0/|G|, thenX1/G is
regular in a neighborhood of10 (Corollary 7.2), and thusS1 is empty. So suppose
that r(10) = r0. Denote byyi the intersection point1i ∩ 10, for i = 1,2. The
pointsy1 andy2 are singular (use the projection Formula 6.1).

Let Y1→ X1/G be the minimal desingularization ofX1/G aty1 andy2 (Figure 4
below). Let1 be any component of(Y1)s lying overy1, and let0 be a component
ofN(Y1,K(X))s lying over1. Then0 is mapped to the regular pointx1 ∈ 01∩00

of X1. Thusr(0) ∈ r1N + r0N. On the other hand, Lemma 5.3(a) implies that
r(1) 6 r0. So r(0) = |G|r(1). HenceN(Y1,K(X)) → Y1 is totally rami-
fied over1, in particular it induces a bijection between the set of the irreducible
components ofN(Y1,K(X))x1 and the set of irreducible components of(Y1)y1.

Let13 be a component of(Y1)s lying overy1 that intersects10. Let03 be its
preimage inN(Y1,K(X)). Define similarly14 and04. Thenr(0i) = |G|r(1i)

for i = 3,4.
Note thatY1 is a desingularization ofy0, and that the only divisor of(Y1)s

lying overy0 that could possibly be exceptional is10. Sincer(10) = r1 + r2 >
max{r(11), r(12)}, Lemma 5.3(c) shows that10 is in fact exceptional. Sor(10) =
r1+r2 = r(13)+r(14). When|G| = 2, the equality|G|(r1+r2) = r(03)+r(04)

is impossible, and thusS1 is empty. When|G| = 3, this equality is only possible
if r(13) = (r1 + r0)/3 andr(14) = (r2 + r0)/3. In this case,r(03) = r1 + r0
andr(04) = r2 + r0. Lemma 5.1(c) implies then that03 and04 are obtained by
blowing-up X1 at x1 and x2, respectively. LetX2 → X1 be the blow-up with
center{x1, x2}, represented in Figure 5.
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It follows from Lemma 5.3(b) thatX2/G is regular at all interior points of10,
and Corollary 7.2. implies thatX2/G is regular at all points of13 ∪ 14. This
achieves the proof of the theorem in the first case.

Second case. Assume thatx0 is contained in a unique component00 of (X0)s ,
with multiplicity r0. Let ρ: Y1 → X0/G be the minimal desingularization ofy0.
Let10 denote the image of00 in Y1. As in the previous case, we may assume that
r(10) = r0. According to Lemma 5.3(a), the preimage ofy0 in Y1 consists of a
chain of components11,12, . . ., thus(Y1)s has the form represented in Figure 6
with r(1i+1) < r(1i) for all i > 0. As in the first case (Figure 4), the preimage
0i of 1i in N(Y1,K(X)) is irreducible,r(0i) ∈ r0N, andN(Y1,K(X))→ Y1 is
totally ramified over1i. Write r(0i) = air0, r(1i) = air0/|G| with |G| > a1 >

a2 > · · ·. Moreover, ifaj = 1, thenr(0j ) = r0, and Lemma 5.3(a) implies that the
interior points of0j are regular inN(Y1,K(X)).
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Let us show thatx1 ∈ 01 ∩ 00 is regular. LetP ∈ X+(x1), and letQ =
ψ(P ) ∈ Y . Then [K(P ) : K] ∈ r0N, and [K(Q) : K] ∈ a1r0N/|G| + r0N.
Since[K(P ) : K(Q)] = 1 or |G|, and since|G| is prime, it is easy to see that
[K(P ) : K] > a1r0. Lemma 5.3(c) implies thatx1 is regular.

If a1 = 1, thenρ−1(y0) = 11, and in this case we have proved above that01

is contained in the regular locus ofN(Y1,K(X)). It follows thatN(Y1,K(X))→
X0 is the blow-up ofX0 with centerx0. Sincea1 = 1 is automatically true when
|G| = 2, Theorem 7.3 is proven in this case.

It remains to treat the case where|G| = 3, a1 = 2 anda2 = 1. We proved
already that the interior points of02 are regular. Lemma 5.3(b) implies that the
interior points of01 are also regular. The projection formula (6.1) shows that the
intersection point of02 and03 is singular. Lety2 ∈ 11 ∩ 12. Let Y2 → Y1 be
the blow-up with centery2. Denote by13 its exceptional divisor and by03 the
preimage of13 in N(Y2,K(X)). Then03 is irreducible.

Let us show thatr(03) = r(13) = r0. Let y3 = 03 ∩ 01. If r(03) = 3r(13),
the projection formula 6.1 shows that the pointy3 is singular. Consider the min-
imal desingularizationZ of N(Y2,K(X)) at y3. Any component ofZ abovey3

has multiplicity ar0, with a 6 3 (Lemma 5.3.(c)). Moreover,ar0/|G| or ar0 ∈
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2r0/3N + r0N. We see that we must havear0 ∈ 2r0/3N + r0N, and that the only
possibility is a = 3 et 3r0 = 3(2r0/3) + r0. Consider now the component0
of Z abovey3 that meets01. Then0 has multiplicity 3r0, and meets one com-
ponent of multiplicity 2r0 and, say,j components of multiplicity 3r0. SinceZ is
regular abovey3, the self-intersection of0 is equal to(3jr0 + 2r0)/3r0. Since the
self-intersection is an integer, we have obtained a contradiction, and we find that
r(03) = r(13) = r0.

As noted above already, Lemma 5.3.(a) implies, sincer(03) = r0, that the
interior points of03 are regular inN(Y2,K(X)). Two arguments similar to the one
given above in the case ofx1 show that the intersection points of03 with 02 and
01 are regular. It follows thatN(Y2,K(X)) is regular and equal toX2 (notation as
at the beginning of the theorem). This concludes the proof of Theorem 7.3.

Acknowledgement

The authors would like to thank Michel Matignon for helpful conversations.

References

[Ab1] Abhyankar, S.: On the ramification of algebraic functions,Amer. J. Math. 77 (1955),
575–592.

[Ab2] Abhyankar, S.: Simultaneous resolution for algebraic surfaces,Amer. J. Math. 78 (1956),
761–790.

[A-K] Altman, A. and Kleiman, S.:Introduction to Grothendieck Duality Theory, Lecture Notes
in Math. 146, Springer-Verlag, New York, 1970.

[Art] Artin, M.: N éron models, In: Cornell & Silverman (eds),Arithmetic Geometry, Springer-
Verlag, New York, 1986.

[BPV] Barth, W., Peters, C. and Van de Ven, A.:Compact Complex Surfaces, Springer-Verlag,
New York, 1984.

[Bro] Brouillard, Ch.: Action du groupe de Galois sur les périodes de certaines courbes de
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