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Schubert presentation of the cohomology
ring of flag manifolds G/T

Haibao Duan and Xuezhi Zhao

Abstract

Let G be a compact connected Lie group with a maximal torus T . In the context of Schubert
calculus we present the integral cohomology H∗(G/T ) by a minimal system of generators and
relations.

1. Introduction

Let G be a compact connected Lie group with Lie algebra L(G) and exponential map exp :
L(G) → G. For a non-zero vector u ∈ L(G) the centralizer P of the one-parameter subgroup
{exp(tu) ∈ G | t ∈ R} on G is a parabolic subgroup of G. The homogeneous space G/P is
canonically a projective variety, called a flag manifold of G [25, 26]. If the vector u is non-
singular the centralizer P is a maximal torus T on G, and the flag manifold G/T is also known
as the complete flag manifold of G.

Schubert calculus [31] began with the intersection theory of the 19th century, together with
its applications to enumerative geometry. Clarifying this calculus was an important problem of
algebraic geometry [6, 19, 24, 32]. van der Waerden and Weil, who secured the foundation of
modern intersection theory [36], attributed the classical Schubert calculus to the determination
of the integral cohomology rings H∗(G/P ) of flag manifolds G/P (see [35] and [37, p. 331]).

The cohomology of flag manifolds has now been well understood. The basis theorem of
Chevalley [2, 7, 8] assures that the classical Schubert classes on a flag manifold G/P form
an additive basis of the cohomology H∗(G/P ); an explicit formula for multiplying the basis
elements was obtained by the present authors [10, 14, 16]. However, concerning many relevant
studies [9, 11, 13, 15, 18, 19, 25, 26], such a description of the ring H∗(G/P ) is not a practical
one, since the number of Schubert classes on a flag manifold is normally very large, not to
mention the number of structure constants required to expand the products of Schubert classes.
It is natural to ask for a concise presentation of the ring H∗(G/P ), which is characterized as
follows.

Given a set {x1, . . . , xk} of k elements, let Z[x1, . . . , xk] be the ring of polynomials
in x1, . . . , xk with integer coefficients. For a subset {f1, . . . , fm} ⊂ Z[x1, . . . , xk], write
〈f1, . . . , fm〉 for the ideal generated by f1, . . . , fm.

Definition 1.1. A Schubert presentation of the integral cohomology ring of a flag manifold
G/P is an isomorphism

H∗(G/P ) = Z[x1, . . . , xk]/〈f1, . . . , fm〉, (1.1)
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where {x1, . . . , xk} is a set of Schubert classes on G/P that generates the ring H∗(G/P )
multiplicatively, and where both the numbers k and m in (1.1) are minimal. �

Prior to the use of Schubert classes as generators, the numbers k and m in Definition 1.1
can be seen to be invariants of the ring H∗(G/P ). Indeed, let D(H∗(G/P )) ⊂ H∗(G/P ) be
the ideal of decomposable elements, and denote by h(G,P ) the cardinality of a basis for the
quotient group H∗(G/P )/D(H∗(G/P )). Then k = h(G,P ) − 1. Furthermore, if one changes
the generating set in (1.1) to x′1, . . . , x

′
k, then each old generator xi can be expressed as a

polynomial gi in the new ones x′1, . . . , x
′
k. The invariance of the number m is shown by the

presentation

H∗(G/P ) = Z[x′1, . . . , x
′
k]/〈f ′1, . . . , f ′m〉,

where the polynomial f ′j is obtained from fj by substituting the polynomial gi for xi, 1 6 j
6 m.

Among all the flag manifolds G/P associated to a Lie group G it is the complete flag
manifold G/T that is of crucial importance. The inclusion T ⊂ P ⊂ G of subgroups induces

the fibration P/T ↪→ G/T
π−→ G/P in which the induced map π∗ embeds H∗(G/P ) as a

subring of H∗(G/T ) (see Lemma 2.3). In this paper we establish a Schubert presentation for
the cohomologies of all complete flag manifolds G/T .

Recall that all the 1-connected simple Lie groups consist of the three infinite families
SU (n + 1),Sp(n), Spin(n + 2), n > 2, of classical groups, as well as the five exceptional
ones: G2, F4, E6, E7, E8. It is also known that, for any compact connected Lie group G with
a maximal torus T , one has a diffeomorphism G/T = G1/T1 × . . . × Gk/Tk with each Gi
a 1-connected simple Lie group and with Ti ⊂ Gi a maximal torus. Moreover, by the basis
theorem of Chevalley (see Theorem 2.1), the integral cohomology H∗(G/T ) is torsion free.
Therefore, the problem of finding a Schubert presentation of the ring H∗(G/T ) is reduced by
the Künneth formula to the special cases where G is one of the 1-connected simple Lie groups.
For this reason we can assume in the remaining part of the paper that the Lie groups under
consideration are all simple. In addition, the cohomologies are over the ring Z of integers,
unless otherwise stated.

For a Lie group G of rank n, let {ω1, . . . , ωn} ⊂ H2(G/T ) be a set of fundamental dominant
weights of G [4], and set m = h(G,T )− n− 1. Our main result is the following theorem.

Theorem 1.2. There exists a set {yd1 , . . . , ydm} of m Schubert classes on G/T , with 1 <
d1 < . . . < dm and deg ydj = 2dj , so that the inclusion {ω1, . . . , ωn, yd1 , . . . , ydm} ∈ H∗(G/T )
induces an isomorphism

H∗(G/T ) = Z[ω1, . . . , ωn, yd1 , . . . , ydm ]/〈ei, fj , gj〉16i6k;16j6m, (1.2)

where:
(i) k = n−m for all G 6= E8 but k = n−m+ 2 for G = E8;
(ii) ei ∈ 〈ω1, . . . , ωn〉, 1 6 i 6 k;

(iii) the pair (fj , gj) of relations is related to the class ydj in the fashion

fj = pj · ydj + αj , gj = y
kj
dj

+ βj , 1 6 j 6 m,

with pj ∈ {2, 3, 5} and αj , βj ∈ 〈ω1, . . . , ωn〉. �

A set S = {yd1 , . . . , ydm} of Schubert classes on G/T satisfying (1.2) will be called a set
of special Schubert classes on G/T . In the course of showing Theorem 1.2, a set of special
Schubert classes, as well as the corresponding system {ei, fj , gj} of polynomials, will be made
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explicit for each simple Lie group. Along the way an algebraic criterion for a set of Schubert
classes on G/T to be special is given in Theorem 6.3.

Since the set {ω1, . . . , ωn} of fundamental weights is precisely the Schubert basis on the
group H2(G/T ) [17], the presentation (1.2) describes the ring H∗(G/T ) by certain Schubert
classes on G/T . It is worthwhile to know whether it is indeed a Schubert presentation of the
ring H∗(G/T ).

Theorem 1.3. If G 6= E8, the formula (1.2) is a Schubert presentation of H∗(G/T ). If
G = E8, a Schubert presentation of the ring H∗(E8/T ) is

Z[ω1, . . . , ω8, yd1 , . . . , yd7 ]/〈ei, fj , gt, φ〉16i63;16j67,t=1,2,3,5, (1.3)

where:
(a) the Schubert classes yd1 , . . . , yd7 and the polynomials ei, fj , gt are the same as those in

(1.2) for the case of G = E8;
(b) φ = 2y56 − y310 + y215 + β with β ∈ 〈ω1, . . . , ω8〉. �

This paper is arranged as follows. Section 2 develops cohomology properties for fibrations in
flag manifolds. Granted with the packages ‘The Chow ring of Grassmannians’ and ‘Giambelli
polynomials’ compiled in [17, § 2.6], initial data facilitating our computation are generated in
§§ 3 and 4. With these preparations the presentation (1.2) for the exceptional Lie groups is
obtained in § 5. Finally, Theorems 1.2 and 1.3 are established in § 6.

Certain relations on the ring H∗(G/T ) may be seen as detailed. However, they are useful
for encoding the topology of the corresponding Lie group G. Using the set {ei, fj , gj}
of polynomials in (1.2), one can construct uniformly the integral cohomology of compact
Lie groups [11, 15], deduce explicit formulae for the generalized Weyl invariants of G in
a characteristic p [18, Propositions 5.5–5.7], and determine the structure of the mod p
cohomology H∗(G;Fp) as a module over the Steenrod algebra Ap [18].

2. Fibrations in flag manifolds

Let G be a Lie group with maximal torus T and Cartan subalgebra L(T ). Equip the Lie algebra
L(G) with an inner product (, ), so that the adjoint representation acts as isometries on L(G).
Assume that the rank of G is n = dimT , and a system {β1, . . . , βn} of simple roots of G is
so ordered as the vertices in the Dynkin diagram of G pictured in [21, p. 58]. Then the Weyl
group of G is the subgroup W ⊂ Aut(L(T )) generated by the reflections σi in the hyperplanes
Li ⊂ L(T ) perpendicular to the roots βi, 1 6 i 6 n. By the relation H2(G/T ) ⊗ R = L(T )
due to Borel and Hirzebruch [4], the set {ω1, . . . , ωn} ⊂ H2(G/T ) of fundamental dominant
weights of G can be regarded as the basis of the space L(T ) defined by the formulae

2(βi, ωj)/(βi, βi) = δi,j , 1 6 i, j 6 n.

For a parabolic subgroup P on G, let W and W ′ be the Weyl groups of G and P , respectively.
In term of the length function l : W → Z on W , the set W of left cosets of W ′ in W can be
identified with the subset of W :

W = {w ∈W | l(w1) > l(w), w1 ∈ wW ′};

see [2, 5.1]. It follows that every element w ∈ W admits a decomposition w = σi1 ◦ . . . ◦
σir with 1 6 i1, . . . , ir 6 n and r = l(w). This decomposition is called minimized, written
w = σ[i1, . . . , ir], if the relation (i1, . . . , ir) 6 (j1, . . . , jr) holds for any (j1, . . . , jr) satisfying
w = σj1 ◦ . . . ◦ σjr , where 6 means the lexicographical order on multi-indices.
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For an element w ∈W with minimized decomposition σ[i1, . . . , ir], the Schubert variety Xw

associated to w is the image of the composition

Ki1 × . . .×Kir → G
p→ G/P, (k1, . . . , kr) 7−→ p(k1 . . . kr),

where Ki ⊂ G is the centralizer of exp(Li) in G, p is the obvious quotient map, and where
the product · takes place in G. In [7], Chevalley announced the following remarkable cellular
decomposition on the flag manifold G/P :

G/P =
⋃
w∈W

Xw, dimRXw = 2l(w) (see also [2, 8]). (2.1)

The Schubert class sw ∈ H2l(w)(G/P ) corresponding to w ∈W is defined to be the Kronecker
dual of the fundamental classes [Xw] ∈ H2l(w)(G/P ). Since only even-dimensional cells are
involved in the decomposition (2.1), one has the next result, called the basis theorem of
Schubert calculus.

Theorem 2.1 (see [2, 7, 8]). The set of Schubert classes {sw ∈ H∗(G/P ) | w ∈ W}
constitutes a basis of the graded group H∗(G/P ). �

For a subset I ⊆ {1, . . . , n}, let PI be the centralizer of the one-parameter subgroup α : R→
G, α(t) = exp(t

∑
i∈I ωi) on G. Useful information on the geometry of the flag manifold G/PI

is given by the following lemma.

Lemma 2.2 [14, 17]. The centralizer of any one-parameter subgroup on G is conjugate to
a subgroup PI for some I ⊆ {1, . . . , n}. Moreover:

(i) PI is a parabolic subgroup; its Dynkin diagram is obtained from that of G by deleting
the vertices βi with i ∈ I, and the edges adjoining them;

(ii) the Weyl group WI of PI is the subgroup of W generated by σj , j /∈ I;
(iii) the Schubert basis of H∗(G/PI) is {sw | w ∈W/WI}.

Property (i) of Lemma 2.2 characterizes the subgroup PI only up to its local type. A method
for deciding the isomorphism type of PI is given in [12].

For a proper subset I ⊂ {1, . . . , n}, the inclusion T ⊂ PI ⊂ G of subgroups induces the
fibration in flag manifolds

PI/T
i
↪→ G/T

π→ G/PI . (2.2)

The next result implies that the cohomologies of the fiber space PI/T and the base space G/PI
are much simpler than that of the total space G/T .

Lemma 2.3. With respect to the inclusion WI ⊂ W , the induced map i∗ identifies the
subset {sw}w∈WI⊂W of the Schubert basis of H∗(G/T ) with the Schubert basis {sw}w∈WI

of
H∗(PI/T ).

With respect to the inclusion W/WI ⊂W , the induced map π∗ identifies the Schubert basis
{sw}w∈W/WI

of H∗(G/PI) with the subset {sw}w∈W/WI
of the Schubert basis {sw}w∈W of

H∗(G/T ).

Proof. These come directly from the next two properties of Schubert varieties (see for
example [17, § 2]). With respect to the cell decompositions (2.1) on the three flag manifolds
PI/T , G/T , and G/PI , one has:

(i) for each w ∈ WI ⊂ W , the fiber inclusion i carries the Schubert variety Xw on PI/T
identically onto the Schubert variety Xw on G/T ;
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(ii) for each w ∈ W/WI ⊂ W , the projection π restricts to a degree-one map from the
Schubert variety Xw on G/T to the corresponding Schubert variety on G/PI . �

Convention 2.4. In view of Lemma 2.3 and for notational convenience, we shall make no
difference in notation between an element in H∗(G/PI) and its π∗ image in H∗(G/T ), and
between a Schubert class on PI/T and its i∗ pre-image on G/T .

To formulate the ring H∗(G/T ) in question from the simpler ones H∗(PI/T ) and H∗(G/PI),
assume that {y1, . . . , yn1

} is a subset of Schubert classes on PI/T , {x1, . . . , xn2
} is a subset of

Schubert classes on G/PI , and that with respect to them one has the following presentations
of the cohomologies:

H∗(PI/T ) =
Z[yi]16i6n1

〈hs〉16s6m1

; H∗(G/PI) =
Z[xj ]16j6n2

〈rt〉16t6m2

, (2.3)

where hs ∈ Z[yi]16i6n1
, rt ∈ Z[xj ]16j6n2

.

Lemma 2.5. The inclusions yi, xj ∈ H∗(G/T ) induce a surjective map

ϕ : Z[yi, xj ]16i6n1,16j6n2 → H∗(G/T ).

Furthermore, if {ρs}16s6m1
⊂ Z[yi, xj ] is a system satisfying

ϕ(ρs) = 0 and ρs|xj=0 = hs, (2.4)

then ϕ induces a ring isomorphism

H∗(G/T ) = Z[yi, xi]16i6n1,16j6n2
/〈ρs, rt〉16s6m1,16t6m2

. (2.5)

Proof. Lemma 2.3, together with Convention 2.4, implies that the map ϕ is surjective. It
remains to show that for a g ∈ Z[yi, xj ]16i6n1,16j6n2

the relation ϕ(g) = 0 implies g ∈
〈ρs, rt〉16s6m1,16t6m2

. By Lemma 2.3 and by the Leray–Hirsch property [22, p. 231] of the
fibration (2.2), one has the following presentation of H∗(G/T ), a module over its subring
H∗(G/PI):

H∗(G/T ) = H∗(G/PI){1, sw}w∈WI
.

It follows from the presentation of the ring H∗(PI/T ) in (2.3) and the assumption (2.4) that,
for any polynomial g ∈ Z[yi, xj ], one has

g ≡
∑
w∈WI

gw · sw mod 〈ρs〉16s6m1 with gw ∈ Z[xj ]16j6n2 .

From this, we find that ϕ(g) = 0 implies ϕ(gw) = 0, w ∈ WI . That is, gw ∈ 〈rt〉16t6m2 ,
w ∈WI , by the presentation of the ring H∗(G/PI) in (2.3). This completes the proof. �

3. Cohomology of generalized Grassmannians

If I = {k} is a singleton, the flag manifold G/P{k} is called the Grassmannians of G
corresponding to the weight ωk [17]. Using Table 3.1, we associate to each exceptional Lie
group G a Grassmannian G/P{k} where in the third row the subgroups P{k} are presented by
their local types determined by Lemma 2.2(i), and where the group P s{k} in the fourth row is
the simple part of the group P{k}. Our approach to the ring H∗(G/T ) amounts to applying
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Lemma 2.5 to the fibration in flag manifolds

P{k}/T
i
↪→ G/T

π→ G/P{k}. (3.1)

To this end, an account for the cohomologies of the base spaces G/P{k} is required.
In [17], a program calculating Schubert presentation of a Grassmannian G/P{k} has been

compiled, whose function is briefly described below.

Algorithm: The Chow ring of Grassmannians

Input: The Cartan matrix C = (cij)n of G, and an integer k ∈ {1, . . . , n};

Output: A Schubert presentation of the cohomology H∗(G/P{k}).

As applications of the algorithm, Schubert presentations for the five Grassmannians as shown in
Table 3.1 have been obtained. To state the results, we introduce for each of the Grassmannians
G/P{k} a set of Schubert classes {sw} on G/P{k} in terms of the minimized decomposition
σ[i1, . . . , ir] of the corresponding w, together with their abbreviations yi (with deg yi = 2i), in
Table 3.2.

Table 3.1. A Grassmannian associated to each exceptional Lie group.

G G2 F4 E6 E7 E8

k 1 1 2 2 2
P{k} SU (2) · S1 Sp(3) · S1 SU (6) · S1 SU (7) · S1 SU (8) · S1

P s
{k} SU (2) Sp(3) SU (6) SU (7) SU (8)

Table 3.2. A set of special Schubert classes on G/P{k}.

yi G2/P{1} F4/P{1} En/P{2}, n = 6, 7, 8

y3 σ[1,2,1] σ[3,2,1] σ[5,4,2], n = 6, 7, 8
y4 σ[4,3,2,1] σ[6,5,4,2], n = 6, 7, 8
y5 σ[7,6,5,4,2], n = 7, 8
y6 σ[3,2,4,3,2,1] σ[1,3,6,5,4,2], n = 6, 7, 8
y7 σ[1,3,7,6,5,4,2], n = 7, 8
y8 σ[1,3,8,7,6,5,4,2], n = 8
y9 σ[1,5,4,3,7,6,5,4,2], n = 7, 8
y10 σ[1,6,5,4,3,7,6,5,4,2], n = 8
y15 σ[5,4,2,3,1,6,5,4,3,8,7,6,5,4,2], n = 8

Theorem 3.1. With respect to the special Schubert classes on G/P{k} given in Table 3.2,
the Schubert presentations of the integral cohomology rings of G/P{k} are

H∗(G2/SU (2) · S1) = Z[ω1, y3]/〈r3, r6〉, where (3.2)

r3 = 2y3 − ω3
1 ;

r6 = y23 .

H∗(F4/Sp(3) · S1) = Z[ω1, y3, y4, y6]/〈r3, r6, r8, r12〉, where (3.3)

r3 = 2y3 − ω3
1 ;

r6 = 2y6 + y23 − 3ω2
1y4;

r8 = 3y24 − ω2
1y6;

r12 = y26 − y34 .
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H∗(E6/SU (6) · S1) = Z[ω2, y3, y4, y6]/〈r6, r8, r9, r12〉, where (3.4)

r6 = 2y6 + y23 − 3ω2
2y4 + 2ω3

2y3 − ω6
2 ;

r8 = 3y24 − 6ω2y3y4 + ω2
2y6 + 5ω2

2y
2
3 − 2ω5

2y3;

r9 = 2y3y6 − ω3
2y6;

r12 = y26 − y34 .

H∗(E7/SU (7) · S1) = Z[ω2, y3, y4, y5, y6, y7, y9]/〈rj〉j∈R(7)

with R(7) = {6, 8, 9, 10, 12, 14, 18}, where (3.5)

r6 = 2y6 + y23 + 2ω2y5 − 3ω2
2y4 + 2ω3

2y3 − ω6
2 ;

r8 = 3y24 − 2y3y5 + 2ω2y7 − 6ω2y3y4 + ω2
2y6 + 5ω2

2y
2
3 + 2ω3

2y5 − 2ω5
2y3;

r9 = 2y9 + 2y4y5 − 2y3y6 − 4ω2y3y5 − ω2
2y7 + ω3

2y6 + 2ω4
2y5;

r10 = y25 − 2y3y7 + ω3
2y7;

r12 = y26 + 2y5y7 − y34 + 2y3y9 + 2y3y4y5 + 2ω2y5y6 − 6ω2y4y7 + ω2
2y

2
5 ;

r14 = y27 − 2y5y9 + y4y
2
5 ;

r18 = y29 + 2y5y6y7 − y4y27 − 2y4y5y9 + 2y3y
3
5 − ω2y

2
5y7.

H∗(E8/SU (8) · S1) = Z[ω2, y3, y4, y5, y6, y7, y8, y9, y10, y15]/〈rj〉j∈R(8)

with R(8) = {8, 9, 10, 12, 14, 15, 18, 20, 24, 30}, where (3.6)

r8 = 3y8 − 3y24 + 2y3y5 − 2ω2y7 + 6ω2y3y4 − ω2
2y6−ω2

2z6 − 5ω2
2y

2
3

− 2ω3
2y5 + 2ω5

2y3;

r9 = 2y9 + 2y4y5 − 2y3y6 + ω2y8 − 4ω2y3y5 − ω2
2y7 + ω3

2y6 + 2ω4
2y5;

r10 = 3y10 − 2y25 + 6y4z6 − 2y3y7−4ω2y3z6 − ω2
2y8 + ω3

2y7 + 2ω4
2z6;

r12 = y34 − y26 + 4z26 − 2y5y7 − 6y4y8 − 2y3y9 − 2y3y4y5 − 2y23z6 − 2ω2y5y6

− 4ω2y5z6 + 6ω2y4y7 + 6ω2
2y4z6 − 2ω2

2y3y7 + ω5
2y7;

r14 = y27 − 6z6y8 − 3y6y8 − 2y5y9 + 3y4y10 + 6y24z6 − 2y4y
2
5 − 4y3y5z6

− 4y23y8 + 4ω2z6y7 + 4ω2
2z

2
6 + 2ω3

2y3y8;

r15 = 2y15 − y7y8 + 2y5y10 − 2y35 + y4y5z6 + 2y3z
2
6 − 2y3y4y8 + 2ω2z6y8

− 2ω3
2y

2
6 + ω3

2y4y8;

r18 = y29 + 9y10y8 − 3y10y7ω2 − 6y10z6ω
2
2 − 3y10y5ω

3
2 + 4y9z6y3

− 2y9y5y4 − 2y28ω
2
2 + y8y7y3 + 18y8z6y4 + 2y8z6y3ω2 − 2y8y

2
5

− 6y8y5y4ω2 + 6y8y5y3ω
2
2 − y8y5ω5

2 − 2y8y4y
2
3 + y8y4y3ω

3
2 − y27y4

+ 5y7z6y5 − 10y7z6y4ω2 + 3y7y5y4ω
2
2 + 3y7y5y

2
3 − 2y7y5y3ω

3
2

− 10z36 + 10z26y5ω2 − 16z26y4ω
2
2 + 4z26y

2
3 − 4z6y5y4y3

+ 6z6y5y
2
3ω2 − 4z6y5y3ω

4
2 + 2y35ω

3
2 ;

r20 = 3(y10 + 2y4z6 − y25)2 + y8(−4y9y3 + 2y9ω
3
2 − 3y8y4 + 2y8y3ω2

− y8ω4
2 + y7y5 + 2z6y5ω2 − 8z6y

2
3 + 4z6y3ω

3
2 + 2y5y4y3 − y5y4ω3

2);

r24 = 5z46 + y8(6y10z6 − 12y10y6 − 18y10y5ω2 − 12y10y
2
3 − 5y9y7

− 4y9z6ω2 − 2y9y6ω2 + 2y9y5ω
2
2 − 6y9y4y3 + 3y9y4ω

3
2 − 2y9y

2
3ω2

+ 4y28 − 14y8y7ω2 − 6y8z6ω
2
2 + 6y8y6ω

2
2 − 14y8y5y3 − 21y8y

2
4

+ 22y8y4y3ω2 − 4y8y4ω
4
2 + 5y27ω

2
2 + 10y7z6ω

3
2 − 4y7y5y4

+ 6y7y5y3ω2 + 21y7y
2
4ω2 − 10y7y4y3ω

2
2 + 4y7y4ω

5
2 + 2y7y

3
3

+ 4z26y3ω2 + 15z6y6y4 − 12z6y6y3ω2 − 12z6y
2
5 + 4z6y5y3ω

2
2
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− 24z6y
2
4ω

2
2 − 12z6y4y

2
3 + 30z6y4y3ω

3
2 − 14z6y4ω

6
2 − 2y26y3ω2

+ 4y6y
2
5 − 6y6y5y3ω

2
2 + y6y4y

2
3 + 12y35ω2 + 2y44);

r30 = z56 − (y10 + 2z6y4 − y25)3 + (y15 + y10y5 + z26y3 − z26ω3
2 + 2z6y5y4 − y35)2

+ y8(y15y7 − 4y15z6ω2 + 4y15y4y3 − 3y15y4ω
3
2 + 6y10y9y3

− 3y10y9ω
3
2 − 9y10y8y4 + 12y10y8y3ω2 − 9y10y8ω

4
2 − 2y10y7y5

− 24y10z
2
6 + 48y10z6y6 + 50y10z6y5ω2 − 48y10z6y4ω

2
2 + 24y10z6y

2
3

− 6y10z6y3ω
3
2 − 2y10y5y4y3 + 6y9y8y5 − 4y9y8y4ω2 + 8y9y8y3ω

2
2

− y9y8ω5
2 + 5y9y7z6 − 2y9y7y6 − 2y9y7y5ω2 + 3y9y7y4ω

2
2

− 5y9y7y
2
3 + 2y9y7y3ω

3
2 − 6y9z

2
6ω2 − 4y9z6y6ω2 + 44y9z6y5ω

2
2

+ 4y9z6y4y3 − 2y9z6y
2
3ω2 + 81y28z6 + 14y28y6 − 11y28y5ω2

+ 16y28y4ω
2
2 + 11y28y

2
3 − 4y28y3ω

3
2 − 7y8y

2
7 − 19y8y7z6ω2 − 6y8y7y6ω2

+ 6y8y7y5ω
2
2 − 7y8y7y4y3 − 8y8y7y

2
3ω2 + 2y8y7y3ω

4
2 + 96y8z

2
6ω

2
2

+ 24y8z6y6ω
2
2 + 44y8z6y5y3 − 32y8z6y5ω

3
2 − 59y8z6y

2
4 + 108y8z6y4y3ω2

− 27y8z6y4ω
4
2 − 16y8z6y

2
3ω

2
2 + 2y8y

2
6ω

2
2 + 6y8y6y5y3 + y8y6y

2
4

− 2y8y6y4y3ω2 + y8y6y4ω
4
2 + 6y8y5y4y3ω

2
2 − 3y8y

2
4y

2
3 + y8y

2
4y3ω

3
2

− 34y27z6ω
2
2 + y7z

2
6y3 − 109y7z

2
6ω

3
2 − 4y7z6y6y3 + 2y7z6y6ω

3
2

+ 8y7z6y5y3ω2 − 24y7z6y
2
4ω2 + 4y7z6y4y3ω

2
2 + y7y

3
5 − 51z36y4

− 92z36ω
4
2 + 102z26y6y4 − 6z26y6y3ω2 + 8z26y6ω

4
2 + 98z26y5y4ω2

+ 96z26y5y3ω
2
2 − 153z26y

2
4ω

2
2 + 55z26y4y

2
3 − z26y4y3ω3

2 − 4z26y
3
3ω2

+ 12z6y
2
6y3ω2 − 4z6y

2
6ω

4
2 − 12z6y6y

2
4ω

2
2 + 8z6y6y4y

2
3 + 2z6y6y4y3ω

3
2

− 2z6y6y
3
3ω2 + y35y4ω

3
2),

and where z6 = 2y6 + y23 + 2ω2y5 − 3ω2
2y4 + 2ω3

2y3 − ω6
2 .

We note that results in (3.3) and (3.4) have been shown in [17, Theorems 1 and 3].

4. Computing with Weyl invariants

As mentioned earlier, our approach to the ring H∗(G/T ) amounts to applying Lemma 2.5 to
the fibration (3.1). It requires in addition to Lemma 3.1 that:

(i) a presentation for the cohomology of the fiber space P{k}/T ;
(ii) a set {ρs}16s6m1 of relations on H∗(G/T ) satisfying (2.4).

These two tasks will be implemented in Lemmas 4.2 and 4.4, respectively.
The Weyl group W of a Lie group G can be regarded as the subgroup of Aut(H2(G/T ))

generated by the elements σ1, . . . , σn ∈ Aut(H2(G/T )) whose action on the set {ω1, . . . , ωn}
of weights is (see [17, § 2.1])

σi(ωk) =

ωi if k 6= i,

ωi −
∑

16j6n

cijωj if k = i, 1 6 i 6 n, (4.1)

where cij is the Cartan number relative to the pair βi, βj , 1 6 i, j 6 n, of simple roots. Given
a subgroup W ′ ⊆ W and a weight ω ∈ H2(G/T ), let O(ω,W ′) ⊂ H2(G/T ) be the W ′-orbit
through ω, and write er(O(ω,W ′)) ∈ H∗(G/T ) for the rth elementary symmetric functions
on the set O(ω,W ′). In Table 4.1, we define for each simple Lie group G 6= Spin(n) a set
cr(G) ∈ H∗(G/T ) of polynomials in the weights ω1, . . . , ωn, where W{i} is the Weyl group of
the parabolic subgroup P{i} ⊂ G specified in Table 3.1.

https://doi.org/10.1112/S1461157015000133 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157015000133


schubert presentation of the cohomology ring 497

Example 4.1. The expressions of cr(G) as polynomials in the weights ω1, . . . , ωn can be
concretely presented. As examples, in the order of G = SU (n),Sp(n), F4, E6, we get from the
formula (4.1), together with the Cartan matrix of G given in [21, p. 59], that

O(ω1,W ) = {ω1, ωk − ωk−1,−ωn−1 | 2 6 k 6 n− 1},
O(ω1,W ) = {±ω1,±(ωk − ωk−1) | 2 6 k 6 n},

O(ω4,W{1}) = {ω4, ω3 − ω4, ω2 − ω3, ω1 − ω2 + ω3, ω1 − ω3 + ω4, ω1 − ω4},
O(ω6,W{2}) = {ω6, ω5 − ω6, ω4 − ω5, ω2 + ω3 − ω4, ω1 + ω2 − ω3, ω2 − ω1}.

In the following results we clarify the roles of the polynomials cr(G).

Lemma 4.2. If G = SU (n) or Sp(n), the inclusion ωi ⊂ H2(G/T ) induces ring isomorphisms

H∗(SU (n)/T ) = Z[ω1, . . . , ωn−1]/〈c2, . . . , cn〉, cr = cr(SU (n)), (4.2)

H∗(Sp(n)/T ) = Z[ω1, . . . , ωn]/〈c2, . . . , c2n〉, c2r = c2r(Sp(n)). (4.3)

Proof. For G = SU (n) or Sp(n), we have by Borel [3] that

H∗(G/T ) = Z[ω1, . . . , ωn]/〈Z[ω1, . . . , ωn]+,W 〉,

where Z[ω1, . . . , ωn]+,W denotes the set of W -invariants in positive degrees. The lemma is
verified by the classical results that the sets of polynomials cr(G) in (4.2) and (4.3) generate
the subrings Z[ω1, . . . , ωn]+,W . �

For an exceptional Lie group G, let P{k} ⊂ G be the parabolic subgroup given by Table 3.1,
and consider the corresponding fibration

P s{k}/T
′ i
↪→ G/T

π→ G/P{k}

in flag manifolds, where P s{k} is the simple part of the group P{k}, and where T ′ is the maximal
torus on P s{k} corresponding to T .

Lemma 4.3. For each exceptional Lie group G, the polynomials cr(G) ∈ H∗(G/T ) defined
in Table 4.1 satisfy the following relations:

(i) cr(G) ∈ Im[π∗ : H∗(G/P{k})→ H∗(G/T )];
(ii) i∗cr(G) = cr(P

s
{k}).

Proof. For any parabolic subgroup P ⊂ G with Weyl group W (P ), the induced map π∗ is
injective by Lemma 2.3, and satisfies

Imπ∗ = H∗(G/T )W (P ) (see [2, Proposition 5.1]), (4.4)

where H∗(G/T )W (P ) ⊂ H∗(G/T ) is the subring of W (P )-invariants. Property (i) follows from
cr(G) ∈ H∗(G/T )W{k} by the definition of the polynomial cr(G) in Table 4.1, where k = 1 for
G = G2 or F4, and k = 2 for G = En with n = 6, 7, 8.

Note that the induced map i∗ isW{k}-equivariant. Relation (ii) comes from i∗(O(ωt,W{k})) =
O(i∗ωt,W{k}), where t = 2, 4, 6, 7, 8 in accordance to G = G2, F4, E6 · E7, E8. �

Table 4.1. The definition of the polynomials cr(G).

G SU (n),Sp(n) G2 F4 En, n = 6, 7, 8

cr(G) er(O(ω1,W )) er(O(ω2,W{1})) er(O(ω4,W{1})) er(O(ωn,W{2}))
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Lemma 4.4. For each exceptional Lie group G, a set {ρs} of relations on the ring H∗(G/T )
satisfying the property (2.4) is given in the table below:

G {ρs}
G2 3ω1 − c1; 3ω2

1 − c1
F4 3ω1 − c1; 4ω2

1 − c2; 6y3 − c3; 3y4 + 2ω1y3 − c4; ω1y4 − c5; y6 − c6
E6 3ω2 − c1; 4ω2

2 − c2; 2y3 + 2ω3
2 − c3; 3y4 + ω4

2 − c4;
3ω2y4 − 2ω2

2y3 + ω5
2 − c5; y6 − c6

E7 3ω2 − c1; 4ω2
2 − c2; 2y3 + 2ω3

2 − c3; 3y4 + ω4
2 − c4;

2y5 + 3ω2y4 − 2ω2
2y3 + ω5

2 − c5; y6 + 2ω2y5 − c6; y7 − c7
E8 3ω2 − c1; 4ω2

2 − c2; 2y3 + 2ω3
2 − c3; 3y4 + ω4

2 − c4;
2y5 + 3ω2y4 − 2ω2

2y3 + ω5
2 − c5;

5y6 + 2y23 + 6ω2y5 − 6ω2
2y4 + 4ω3

2y3 − 2ω6
2−c6;

y7 + 4ω2y6 + 2ω2y
2
3 + 4ω2

2y5 − 6ω3
2y4 + 4ω4

2y3 − 2ω7
2 − c7;

y8 − c8

where the yi are the π∗-images of the Schubert classes on G/P{k} specified in Table 3.2,
cr = cr(G), and where the sets {ρs} are presented by the order of the degrees of the enclosed
polynomials ρs.

Proof. By Lemma 4.3(i) and by the injectivity of the map π∗, we can regard cr(G) ∈
H∗(G/P{k}); see Convention 2.4. Moreover, since cr(G) is a polynomial in the Schubert classes
ω1, . . . , ωn, the package of ‘Giambelli polynomials’ [17, § 2.6] is functional to expand it as a
polynomial in the special Schubert classes on H∗(G/P{k}) given in Table 3.2. This yields the
relations ρr on the ring H∗(G/T ) presented in the table.

Finally, by Lemma 4.2 and Lemma 4.3(ii), property (2.4) is satisfied by the set {ρr} of
relations on H∗(G/T ). �

Remark 4.5. Results in Lemma 4.4 have geometric interpretations. Taking G = En with
n = 6, 7, 8 as examples, the subgroup P(2) = SU (n) ·S1 has a canonical n-dimensional complex
representation that gives rise to a complex n-bundle ξn on the Grassmannian En/P{2} [1]. It
can be shown that if we let cr(ξn) ∈ Hr(En/P{2}) be the rth Chern class of ξn, 1 6 r 6 n,
then

cr(ξn) = cr(G), 1 6 r 6 n.

In this regard, the relations ρs = 0 indicate formulae that express the Chern classes cr(ξn) by
the special Schubert classes on En/P{2}.

Note that if we let p : CP (ξn) → En/P{2} be the complex projective bundle associated to
ξn, then CP (ξn) = En/P{2,n}, and the projection p agrees with the bundle map induced by
the inclusion P{2,n} ⊂ P{2} ⊂ En of parabolic subgroups.

5. The ring H∗(G/T ) for exceptional Lie groups

Summarizing the computation of §§ 3 and 4, we have associated each exceptional Lie group
G with a fibration P s{k}/T

′ ↪→ G/T → G/P{k} in which presentations of the cohomologies
of the base and fiber spaces by Schubert classes have been obtained in Theorem 3.1 and
Lemma 4.2, respectively. In addition, a set of relations on H∗(G/T ) satisfying the condition
(2.4) has been determined in Lemma 4.4. Therefore, Lemma 2.5 is directly applicable to yield
the following result, where the yi are the Schubert classes on G/P{k} given in Table 3.2, and
where cr = cr(G) as in Lemma 4.4.
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Theorem 5.1. For each exceptional Lie group G, the cohomology ring H∗(G/T ) has the
following presentation:

H∗(G2/T ) = Z[ω1, ω2, y3]/〈ρ2, r3, r6〉, where (5.1)

ρ2 = 3ω2
1 − 3ω1ω2 + ω2

2 ;

r3 = 2y3 − ω3
1 ;

r6 = y23 .

H∗(F4/T ) = Z[ω1, ω2, ω3, ω4, y3, y4]/〈ρ2, ρ4, r3, r6, r8, r12〉 where (5.2)

ρ2 = c2 − 4ω2
1 ;

ρ4 = 3y4 + 2ω1y3 − c4;

r3 = 2y3 − ω3
1 ;

r6 = y23 + 2c6 − 3ω2
1y4;

r8 = 3y24 − ω2
1c6;

r12 = y34 − c26.

H∗(E6/T ) = Z[ω1, . . . , ω6, y3, y4]/〈ρ2, ρ3, ρ4, ρ5, r6, r8, r9, r12〉, where (5.3)

ρ2 = 4ω2
2 − c2;

ρ3 = 2y3 + 2ω3
2 − c3;

ρ4 = 3y4 + ω4
2 − c4;

ρ5 = 2ω2
2y3 − ω2c4 + c5;

r6 = y23 − ω2c5 + 2c6;

r8 = 3y24 − 2c5y3 − ω2
2c6 + ω3

2c5;

r9 = 2y3c6 − ω3
2c6;

r12 = y34 − c26.

H∗(E7/T ) = Z[ω1, . . . , ω7, y3, y4, y5, y9]/〈ρ2, ρ3, ρ4, ρ5, ri〉,
where i ∈ {6, 8, 9, 10, 12, 14, 18} and where (5.4)

ρ2 = 4ω2
2 − c2;

ρ3 = 2y3 + 2ω3
2 − c3;

ρ4 = 3y4 + ω4
2 − c4;

ρ5 = 2y5 − 2ω2
2y3 + ω2c4 − c5;

r6 = y23 − ω2c5 + 2c6;

r8 = 3y24 + 2y3y5 − 2y3c5 + 2ω2c7 − ω2
2c6 + ω3

2c5;

r9 = 2y9 + 2y4y5 − 2y3c6 − ω2
2c7 + ω3

2c6;

r10 = y25 − 2y3c7 + ω3
2c7;

r12 = y34 − 4y5c7 − c26 − 2y3y9 − 2y3y4y5 + 2ω2y5c6 + 3ω2y4c7 + c5c7;

r14 = c27 − 2y5y9 + 2y3y4c7 − ω3
2y4c7;

r18 = y29 + 2y5c6c7 − y4c27 − 2y4y5y9 + 2y3y
3
5 − 5ω2y

2
5c7.

H∗(E8/T ) = Z[ω1, . . . , ω8, y3, y4, y5, y6, y9, y10, y15]/〈ρi, rj〉,
where i ∈ {2, 3, 4, 5, 6}, j ∈ {8, 9, 10, 12, 14, 15, 18, 20, 24, 30} and where (5.5)

ρ2 = 4ω2
2 − c2;

ρ3 = 2y3 + 2ω3
2 − c3;
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ρ4 = 3y4 + ω4
2 − c4;

ρ5 = 2y5 − 2ω2
2y3 + ω2c4 − c5;

ρ6 = 5y6 + 2y23 + 10ω2y5 − 2ω2c5 − c6;

r8 = 3c8 − 3y24 − 2y3y5 + 2y3c5 − 2ω2c7 + ω2
2c6 − ω3

2c5;

r9 = 2y9 + 2y4y5 − 2y3y6 − 4ω2y3y5 + ω2c8 − ω2
2c7 + ω3

2c6;

r10 = 3y10 + 6y4z6 − 2y25 − 2y3c7 − ω2
2c8 + ω3

2c7;

r12 = y34 − 2y3y9 − 2y23z6 − 2y3y4y5 − c26 + 4c6z6+2ω2y5c6 − 2ω2c5z6

− 4y5c7 + 3ω2y4c7 + c5c7 − 6y4c8;

r14 ≡ c27 + 3y4y10 + 6y24z6 − 2y3y5c6 − ω2
2y5c7 + ω3

2y5c6 mod c8;

r15 ≡ 2y15 + 2y5(y10 − y25 + 2y4z6) + 2y3z
2
6 − 2ω3

2z
2
6 mod c8;

r18 ≡ y29 − 10z36 + 5y5z6y7 − y4y27 − 2y4y5y9 + 4y3z6y9 + 6y3y5y10

− 4y3y
3
5 + 8y3y4y5z6 + 4y23z

2
6 − y23y5y7 − 3ω2y7y10 + 10ω2y5z

2
6

− 10ω2y4z6y7 − 2ω2y
2
3y5z6 − 6ω2

2z6y10 − 16ω2
2y4z

2
6 + 3ω2

2y4y5y7

− 3ω3
2y5y10 + 2ω3

2y
3
5 mod c8;

r20 ≡ 3(y25 − y10 − 2y4z6)2 − y35ρ5 mod c8;

r24 ≡ 5(2y6 + y23 + 4ω2y5 − ω2c5)4 − 2y73ρ3 mod c8;

r30 ≡ (−y15 − y5y10 + y35 − 2y4y5z6 − y3z26 + ω3
2z

2
6)2 + (y25 − y10 − 2y4z6)3

+ (2y6 + y23 + 4ω2y5 − ω2c5)
5 − 6y46ρ6 mod c8,

in which z6 = 2y6 + y23 + 4ω2y5 − ω2c5. �

Concerning the formulation of the presentations (5.1)–(5.5) in Theorem 5.1, we make the
following remarks.

(a) Certain Schubert classes yk on the base space G/P{k} can be eliminated against
appropriate relations of the type ρk. As an example, when G = E7 the generators y6, y7
and the relations ρ6, ρ7 can be excluded by the formulae ρ6 (y6 = c6−2ω2y5) and ρ7 (y7 = c7)
in Lemma 4.4.

(b) For simplicity, the relations rk on the ring H∗(E8/T ) with k > 14 are presented after
module c8, while their full expressions have been recorded in (3.5).

(c) Without altering the ideal, higher degree relations of the type ri may be simplified using
the lower degree relations. The main idea of performing such simplifications is the following
one: for two ordered subsets {fi}16i6n and {hi}16i6n of a graded polynomial ring with

deg f1 < . . . < deg fn and deg h1 < . . . < deg hn,

write {hi}16i6n ∼ {fi}16i6n to denote the statements that deg hi = deg fi and that (fi−hi) ∈
〈fj〉16j<i. Then

{fi}16i6n ∼ {hi}16i6n implies that 〈h1, . . . , hn〉 = 〈f1, . . . , fn〉. (5.6)

6. Proofs of Theorems 1.2 and 1.3

Proof of Theorem 1.2. If G = SU (n) or Sp(n), we have m = 0, and the presentation (1.2) is
shown by Lemma 4.2. If G = G2, F4, E6, E7, the formula (1.2) is verified by the presentations
(5.1)–(5.4).

For G = E8, the presentation (5.5) can be summarized as

H∗(E8/T ) = Z[ω1, . . . , ω8, yr]/〈ei, fj , gt, φ〉16i63;16j67,t=1,2,3,5, (6.1)
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where r ∈ {3, 4, 5, 6, 9, 10, 15} and where:
(i) ei ∈ 〈ω1, . . . , ω8〉, 1 6 i 6 3;

(ii) fj = pjydj + αj , pj ∈ {2, 3, 5}, αj ∈ 〈ω1, . . . , ω8〉, 1 6 j 6 7;

(iii) gt = yktdt + βt with βt ∈ 〈ω1, . . . , ω8〉, t = 1, 2, 3, 5;

(iv) φ = 2y56 − y310 + y215 + β with β ∈ 〈ω1, . . . , ω8〉.
Comparing (1.2) with (6.1), we find that:

(a) the polynomial φ in (iv) does not belong to any of the three types ei, fj , gj of relations
in Theorem 1.2;

(b) the polynomials g4, g6, g7 in (1.2) required to couple f4, f6, f7 (see Theorem 1.2) are
absent in (iii).

However, if we set 
g4 = −12φ+ 5y46f4 − 4y210f6 + 6y15f7,

g6 = −10φ+ 4y46f4 − 3y210f6 + 5y15f7,

g7 = 15φ− 6y46f4 + 5y210f6 − 7y15f7,

(6.2)

then the obvious properties

g4, g6, g7 ∈ 〈ei, fk, gs, φ〉; φ = 2g4 − g6 + g7 ∈ 〈ei; fj , gj〉16i63,16j67

with 1 6 i 6 3, 1 6 k 6 7, s = 1, 2, 3, 5, imply the relation

〈ei; fj , gs, φ〉16i63;16j67,s=1,2,3,5 = 〈ei; fj , gj〉16i63,16j67.

It shows that the formula (1.2) for G = E8 is identical to (6.1).
For the remaining case G = Spin(m), let yk be the Schubert class on Spin(2n)/T associated

to the element wk = σ[n− k, . . . , n− 2, n− 1] in the Weyl group of Spin(2n), 2 6 k 6 n− 1.
According to Marlin [27, Proposition 3], one has the presentation

H∗(Spin(2n)/T ) = Z[ω1, . . . , ωn, y2, . . . , yn−1]/〈δi, ξj , µk〉

with

δi := 2yi − ci(ω1, . . . , ωn), 1 6 i 6 n− 1,

ξj := y2j + (−1)jy2j + 2
∑

16r6j−1

(−1)ryry2j−r, 1 6 j 6

[
n− 1

2

]
,

µk := (−1)ky2k + 2
∑

2k−n+16r6k−1

(−1)ryry2k−r,

[
n

2

]
6 k 6 n− 1,

where ci(ω1, . . . , ωn) is the ith elementary symmetric function on the orbit set

O(ωn,W ) = {ωn, ωi − ωi−1, ωn−1 + ωn − ωn−2, ωn−1 − ωn, 2 6 i 6 n− 2}.

In view of the relations of the type ξj , we note that the generators y2j with 1 6 j 6 [(n− 1)/2]
can be eliminated to yield the compact presentation

H∗(Spin(2n)/T ) = Z[ω1, . . . , ωn, y3, y5, . . . , y2[(n−1)/2]−1]/〈δ′i, µ′k〉, (6.3)

where δ′i and µ′k are the polynomials obtained from δi and µk by replacing all the classes y2r
by the polynomials

(−1)r−1y2r + 2
∑

16k6r−1

(−1)k−1yky2r−k (by the relation ξr).
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For G = Spin(2n), we have formula (1.2) and it is verified by (6.3). Similarly, one obtains
formula (1.2) for G = Spin(2n+ 1) from [27, Proposition 2].

It remains to show that the numbers n and m in (1.2) satisfy h(G,T ) = n+m+ 1. This will
be done in the proof of Theorem 1.3. �

The sets of integers appearing in the formula (1.2),

{k,m}, {deg ei}16i6k, {dj ; pj ; kj}16j6m, (6.4)

can be shown to be invariants of the corresponding Lie group G and will be called the basic
data of G. With the formula (1.2) being made explicit, all the simple Lie groups in Lemma 4.2,
in formulae (5.1)–(5.5) and in formula (6.3), one gets the following corollary.

Corollary 6.1. The basic data of the 1-connected simple Lie groups are as given in Tables
6.1 and 6.2.

For a Lie group G, we set A(G) := H∗(G/T )/〈ω1, . . . , ωn〉. In the associated short exact
sequence of graded rings,

0→ 〈ω1, . . . , ωn〉 → H∗(G/T )
p→ A(G)→ 0, (6.5)

the quotient map p is clearly given by p(α) = α|ω1=...=ωn=0, α ∈ H∗(G/T ). It follows from
the formulas (1.2) and (1.3) that

A(G) =


Z[yd1 , . . . , ydm ]

〈pi · ydi , y
ki
di
〉16i6m

if G 6= E8,

Z[yd1 , . . . , yd7 ]

〈piydi , y
kt
dt
, 2y5d4 − y

3
d6

+ y2d7〉16i67,t=1,2,3,5

if G = E8.

(6.6)

Inputting the values of the data {dj ; pj ; kj}16j6m given by Corollary 6.1 one gets, in particular,
the following corollary.

Table 6.1. Basic data for the classical groups.

G SU (n+ 1) Sp(n) Spin(2n) Spin(2n+ 1)

{k,m} {n, 0} {n, 0}
{[

n+ 3

2

]
,

[
n− 2

2

]} {[
n+ 2

2

]
,

[
n− 1

2

]}
{deg ei} {2i+ 2} {4i} {4t, 2n, 2[log2(n−1)]+2}16t6[(n−1)/2] {4t, 2[log2 n]+2}16t6[n/2]

{dj} {4j + 2} {4j + 2}
{pj} {2, . . . , 2} {2, . . . , 2}
{kj} {2[log2 ((n−1)/(2j+1))]+1} {2[log2 (n/(2j+1))]+1}

Table 6.2. Basic data for exceptional Lie groups.

G G2 F4 E6 E7 E8

{k,m} {1, 1} {2, 2} {4, 2} {3, 4} {3, 7}
{deg ei} {4} {4, 16} {4, 10, 16, 18} {4, 16, 28} {4, 16, 28}
{dj} {6} {6, 8} {6, 8} {6, 8, 10, 18} {6, 8, 10, 12, 18, 20, 30}
{pj} {2} {2, 3} {2, 3} {2, 3, 2, 2} {2, 3, 2, 5, 2, 3, 2}
{kj} {2} {2, 3} {2, 3} {2, 3, 2, 2} {8, 3, 4, 5, 2, 3, 2}
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Corollary 6.2. For the five exceptional Lie groups, one has

A(G2) = Z[y3]/〈2y3, y23〉;
A(F4) = Z[y3, y4]/〈2y3, y23 , 3y4, y34〉;
A(E6) = Z[y3, y4]/〈2y3, y23 , 3y4, y34〉;
A(E7) = Z[y3, y4, y5, y9]/〈2y3, 3y4, 2y5, 2y9, y23 , y34 , y25 , y29〉;
A(E8) = Z[y3, y4, y5, y6, y9, y10, y15]/

〈2y3, 3y4, 2y5, 5y6, 2y9, 3y10, 2y15, y83 , y34 , y45 , y29 , 2y56 − y310 + y215〉.

Proof of Theorem 1.3. By Theorem 1.2, the numbers of generators and relations in the
presentation of the ring H∗(G/T ) in (1.2) for G 6= E8, and in (1.3) for G = E8, are both
n + m. We shall show that this number is minimum with respect to any presentation of the
ring H∗(G/T ) in the form (1.1) without the constraint that the generating set {x1, . . . , xk}
consists of Schubert classes on G/T .

Let {s1, . . . , sh} ⊂ H∗(G/T ) be a subset that generates the ring H∗(G/T ) multiplicatively.
Since the set {ω1, . . . , ωn} of fundamental weights is a basis of the group H2(G/T ), none of
which can be expressed as a polynomial in the lower degree ones, we can assume h > n and
si = ωi for 1 6 i 6 n. Now (6.5) implies that the quotient ring A(G) is generated by those
p(sj) with n+ 1 6 i 6 h. Since m is the minimal number of generators required to present the
quotient ring A(G) by (6.6), we have further that h − n > m. This shows that m + n is the
least number of generators of the ring H∗(G/T ). In particular, h(G,T ) = n+m+ 1.

To show that n+m is the least number of relations to characterize H∗(G/T ), we can assume,
by the remark after Definition 1.1, that {h1, . . . , hq} is a set of homogeneous polynomials in
{ωi, ydj}16i6n,16j6m which satisfies

H∗(G/T ) = Z[ωi, ydj ]16i6n,16j6m/〈h1, . . . , hq〉. (6.7)

Then one gets in addition to (6.6) another presentation of the quotient ring:

A(G) = Z[yd1 , . . . , ydm ]16j6m/〈h1, . . . , hq〉, hi = hi|ω1=...=ωn=0.

Comparing this with (6.6) and in view of the sets {dj}16j6m, {kj}16j6m of integers given by
Corollary 6.1, we can assume further q > m and hi = piydi for all 1 6 i 6 m, where the latter
is equivalent to

hi = piydi + γi with γi ∈ 〈ω1, . . . , ωn〉, 1 6 i 6 m. (6.8)

Since H∗(G/T ;Q) = H∗(G/T )⊗Q, one gets by (6.7) and (6.8) that

H∗(G/T ;Q) = Q[ω1, . . . , ωn]/〈h̃m+1, . . . , h̃q〉, (6.9)

where h̃t, m + 1 6 t 6 q, is the polynomial obtained from ht by substituting in ydi =
−(1/pi)γi by the relations (6.8). Since the variety G/T is finite dimensional, we must have
dimH∗(G/T ;Q) < ∞. Consequently, q −m > n by (6.9). That is, in the presentation (6.7)
one must have q > n+m. This completes the proof. �

Let D(A(G)) be the ideal of decomposable elements of the ring A(G), and let q : A(G) →
A(G) := A(G)/D(A(G)) be the quotient map. In view of (6.6), the graded group A(G) is
determined by the data {dj ; pj}16j6m as

A(G) = Z
⊕

16j6m

Adj (G) with Adj (G) = Zpj . (6.10)

The proof of Theorem 1.3 is applicable to show the following theorem.
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Theorem 6.3. A set S = {xd1 , . . . , xdm} of Schubert classes on G/T is special if and only

if the class q ◦ p(xdj ) is a generator of the cyclic group A2dj
(G), 1 6 j 6 m.

We give an application of Theorem 1.2. For a Lie group G with a maximal torus T ,
consider the corresponding fibration π : G → G/T . In [20], Grothendieck introduced the
Chow ring A(Gc) for the reductive algebraic group Gc corresponding to G, and proved the
relation

A(Gc) = Im {π∗ : H∗(G/T )→ H∗(G)}. (6.11)

On the other hand, resorting to the Leray–Serre spectral sequence of π, one can show that

Imπ∗ = H∗(G/T )/〈Im τ〉 (see [11, Lemma 4.3]), (6.12)

where τ : H1(T )→ H2(G/T ) is the transgression in the fibration π [28, p. 185]. Granted with
the explicit presentation of the rings H∗(G/T ), as well as the formula [11, formula (3.4)] for τ ,
formula (6.12) is ready to apply to yield formulae for the ring A(Gc) by the Schubert classes
on G/T .

As examples, if G is 1-connected, then 〈Im τ〉 = 〈ω1, . . . , ωn〉 by [11, formula (3.4)]. Formula
(6.12) implies that

A(Gc) = A(G) (see Corollary 6.2).

Similarly, for the adjoint Lie groups PG with G = SU (n), Sp(n), E6 and E7m, one has (see
[11, formula (6.2)])

A(PSU (n)c) =
Z[ω1]

〈brωr1 | 1 6 r 6 n〉
with br = gcd {C1

n, . . . , C
r
n},

A(PSp(n)c) =
Z[ω1]

〈2ω1, ω2r+1

1 〉
, n = 2r(2s+ 1),

A(PE c
6) =

Z[ω1, y
′
3, y4]

〈3ω1, 2y′3, 3y4, x
′2
6 , ω

9
1 , y

3
4〉
, y′3 = y3 + ω3

1 ,

A(PE c
7) =

Z[ω2, y3, y4, y5, y9]

〈2ω2, ω2
2 , 2y3, 3y4, 2y5, 2y9,y

2
3 , y

3
4 , y

2
5 , y

2
9〉
.

(6.13)

Remark 6.4. For G = Spin(n), G2 and F4, Marlin [27] obtained the ring A(Gc) by Schubert
classes on G/T . For the simple Lie groups, Kač [23] computed the algebras A(Gc)⊗ Fp with
generators specified by the degrees.

Remark 6.5. For the earlier works studying the presentation of the ring H∗(G/T ), see
[3, 5, 27, 29, 30, 33, 34]. A basic requirement of intersection theory [19] is to present the
cohomology H∗(X) of a projective variety X by explicit described geometrical cycles, such as
the Schubert classes of flag manifolds, so that the intersection multiplicities can be computed
by the cup products on the ring H∗(X). In this regard, the approaches due to Bott–Samelson
[5] and Marlin [27] are inspiring.

Acknowledgements. The authors would like to thank the referees for valuable suggestions.
In particular, the question of giving formulae for the Chow rings for the adjoint Lie groups
PG has motivated the subsequent work [11] on the integral cohomology of compact Lie
groups.
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