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There is currently considerable interest in the guided-jet mode, as a result of recent
works demonstrating it being the upstream component of various resonant systems in
high-speed flows. For given jet operating conditions, the mode is known to exist over
only a finite-frequency range that, for a twin-jet system, has been observed to vary with
both jet separation and solution symmetry. Vortex-sheet and finite-thickness linear stability
models are here employed to consider the behaviour of the guided-jet mode as the two
jets are brought together, for both a planar and round twin-jet system. It is demonstrated
that in both cases as the twin-jet system merges it forms a higher-order mode of an
equivalent single-jet geometry. This then imposes a constraint on the guided-jet mode as
the finite-frequency range must change to meet that of the equivalent geometry the system
merges to, explaining the previously observed dependence on jet separation.

Key words: jets, jet noise, shear-flow instability

1. Introduction

Modelling of coherent structures in turbulent jets has been of interest since pioneering
works by Mollo-Christensen (1967) and Crow & Champagne (1971) demonstrated the
presence of such structures in flows that had previously been considered populated
by disorganised turbulent eddies. Among the structures currently considered are the
upstream-travelling waves, as discussed in Tam & Hu (1989) and Towne et al. (2017).
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Figure 1. Illustration of the resonant feedback loop.

Of particular interest among them is the upstream-propagating guided-jet mode (k) that
is characterised as having a phase speed very close to the speed of sound, maintaining
a radial structure outside of the jet core (as such not confined within it) and travelling
upstream towards the nozzle (Tam & Hu 1989; Towne et al. 2017). For a supersonic jet,
at any given set of jet operating conditions this mode will be propagative only within a
finite band of frequencies — referred to as the existence region of the mode. The lower
bound of this frequency band, where the mode moves away from the sonic line describing
free-stream sound waves, is referred to as the branch point (cut-on) and the upper bound
as the saddle point (cut-off). The saddle point is formed between the k, mode and a

downstream-propagating duct-like mode (k) (Towne et al. 2017). As the flow parameters
are varied, the dynamics of the modes studied here changes significantly: in particular its
group velocity. A convectively neutrally stable upstream-travelling mode, the k£, mode,
is found only within a finite region in frequency, demarcated by the branch and saddle
points. For frequencies above the saddle point, the k,” mode becomes evanescent (spatially
decaying).

Recent interest in the k&, mode has been motivated by the study of aeroacoustic
resonance. The feedback fz)op characterising a given form of resonance consists of
four components (Edgington-Mitchell 2019), as shown in figure 1. The first is a
downstream-propagating disturbance, often taken to be the Kelvin—Helmholtz (KH) mode,
that transports energy to some point downstream of the nozzle. The second is an
interaction converting some of this energy to an upstream-propagating disturbance, the
third component of resonance. This disturbance travels back to the nozzle where, via
another interaction, it excites a new downstream-propagating disturbance. The latter is
the last component of the cycle, and which closes the resonance loop. The form of the
upstream-propagating component was historically considered to be a free-stream acoustic
wave (Powell 1953), but recent work has shown that it is instead the K~ mode that acts
as the upstream component to close the resonance loop. A range of cases that have
considered the k, mode to close resonance include an impinging jet (Tam & Ahuja 1990),

jet-edge interaction (Jordan et al. 2018), and screech for both single (Shen & Tam 2002;
Edgington-Mitchell et al. 2018; Gojon, Bogey & Mihaescu 2018; Mancinelli et al. 2021;
Nogueira et al. 2022b) and twin (Nogueira & Edgington-Mitchell 2021; Stavropoulos et al.
2023) round jets. For the specific case of screech, high-amplitude and discrete-frequency
acoustic tones present in non-ideally expanded jets (Raman 1999; Edgington-Mitchell
2019), the finite existence region of the k£ mode then also serves to explain the cut-on
and cut-off behaviour of the screech tones (Mancinelli et al. 2019; Stavropoulos et al.
2023). This is because by considering the screech cycle to be closed by the k,; mode,
the screech tones can then only be found within the band of frequencies comprising the
finite existence region. Recent work by Edgington-Mitchell et al. (2021), following the
hypothesis put forth by Tam & Tanna (1982), has demonstrated how interactions between
the KH mode and the shock-cell structure can result in the creation of new waves, including
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the kp_ mode. Later, in Nogueira et al. (2022a), it was shown that the KH mode interacts

with both the primary and sub-optimal shock-cell wavenumbers to give rise to the &
mode for different screech tones. As the shock-cell structure exhibits variations in the
axial direction (Harper-Bourne & Fisher 1974), sub-optimal wavenumbers represent these
variations and appear when taking an axial Fourier transform. This was then generalised
by Edgington-Mitchell et al. (2022) to explain the observed screech mode staging (Merle
1957; Powell, Umeda & Ishii 1992) in a round single jet.

The introduction of a second jet introduces additional complexities, as indicated through
measurements of inter-jet pressure exceeding twice that of the single-jet value at the
same jet distance (Seiner, Manning & Ponton 1988), along with the complex, and often
intermittent, coupling behaviour observed (Raman, Panickar & Chelliah 2012; Bell et al.
2021; Wong et al. 2023). In twin-jet systems the jet separation is one of the main
parameters governing the dynamics, which now have the tendency to lock into different
coupling symmetries about each plane. Prior applications of linear stability theory to the
round twin-jet system have shown how these parameters affect the growth rate of the KH
mode (Morris 1990) and the allowable coupling forms (Rodriguez ez al. 2023). For the &,
mode (upstream component in resonance), these parameters also play a role as they have
been seen to affect its existence region (Du 1993; Stavropoulos et al. 2023). However, there
is not currently an explanation as to why this behaviour occurs.

In this work linear stability models will be applied to the supersonic twin-jet case, for
both planar and round geometries, to examine the behaviour of the k,;” mode as a function
of the jet separation and mode symmetry. By considering changes in frequency of the &,
mode branch and saddle points, and thus, the existence region of the mode, along with their
radial structure, an explanation for the dependence of these characteristics on jet separation
and mode symmetry will be sought. The approach taken in this work to utilise local, rather
than global, models allow for the presented results to be obtained at lower computational
cost whilst still providing accurate agreement. It has also been shown (Mancinelli et al.
2021; Nogueira et al. 2022a) that local analysis captures several elements of the resonance
loop, in particular concerning the characteristics of the different waves that underpin it,
with the upstream component being the focus of the current paper.

The paper is organised as follows. The formulations for the numerical models, vortex
sheet and finite thickness, utilised are outlined in § 2. Results are shown in § 3, with
concluding remarks made in § 4.

2. Mathematical models
2.1. Planar twin-jet vortex-sheet model

The planar twin-jet vortex-sheet model considered builds on the planar single-jet model
detailed in Martini, Cavalieri & Jordan (2019). The planar jet is formed using two vortex
sheets (Lessen, Fox & Zien 1965; Michalke 1970; Morris 2010). In the vortex-sheet
formulation the axial velocity is constant inside the jet region and zero outside. To extend
this to a planar twin-jet configuration, the symmetry line previously imposed at y = 0 for
the single-jet case is moved to a position of y = —H, the midpoint of the twin-jet system,
and no assumptions are made about the symmetry of the flow within each individual jet.
This resulting configuration is illustrated in figure 2(a). The two jets are separated by a
distance 2H and the length scale used for non-dimensionalisation is the jet half-width /.
A normal-mode ansatz is used to describe pressure fluctuations,

P = P(y)el—en, 2.1)
983 A17-3
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where k is the streamwise wavenumber, w is the frequency and P(y) is referred to as the
pressure eigenfunction. Following Martini et al. (2019) the pressure eigenfunction takes
the form

P(y) = Cpe'io? 4+ Cpe™ oY, (22)

The constants C, and Cj, in (2.2) are referred to as eigenfunction coefficients, and 4; , is

1
m:Jﬁ—#wqwﬂ

Ay = VK2 — w?,

where M is the acoustic Mach number and T is the temperature ratio between the jet
and free stream. Boundary conditions imposed on the twin-jet system are continuity
of pressure and displacement across each vortex sheet, boundedness of the solution as
y — oo and the symmetry condition at the midpoint between the two jets (y = —H).
This symmetry condition is the solution having either zero gradient (symmetric) or is
zero-valued (anti-symmetric). This results in the matrix equation

(2.3)

A(k)c =0, (2.4)
where
- e—/lg + e—ZH/loe/lo _e—/l,' _efli 0 7
A — e Aet
_; (e—/lg - e—ZH/loe/lo) 1 i€ 1 i€ 0
— (kM — w)?  — (kM — )?
A= T T 2.5)
0 —eli —e el |’ .
/l,-e/li —/l,'e_/li Ao “o
0 1 1 —26
i ?@M—wf ?wM—wﬂ @ |
and ¢ contains the eigenfunction coefficients
Ci
C
c= é (2.6)
Ce

The eigenfunction coefficients are related to each flow region through

P(y) = Cie* + Cre™ —H <y < —h,
P(y) = C3e’liy + C4e_/liy —h<y<h, (2.7)
P(y) = Cse™ 4+ Cee™" y > h,

where C> and Cs have been eliminated prior to forming (2.4) by enforcing the symmetry
and bounded boundary conditions, respectively. Setting the determinant of A equal to zero
forms the dispersion relation for the planar twin jet that is used to obtain k, the system
eigenvalue, for a given set of jet parameters. Once k has been found, (2.4) can then be used
to obtain the corresponding eigenfunction coefficients c.
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Figure 2. Set-up of both the planar (a) and round (b) twin-jet geometries.

For the single planar jet, the dispersion relation given in Martini et al. (2019) is used,

1 kM (A
tanh(1)=' + — (1-—) (=) =0, (2.8)
T w A
with the pressure eigenfunctions given by
i 4+ i
%e_w . yzh
e 0
P(y) = { etV £ e, —h<y=>h, 2.9)
e i £ eli Ly

€ 0}5 =< _ha

e_ﬂo y
where the £ terms in (2.8) and (2.9) indicate symmetric or anti-symmetric solutions, about
the jet centre, respectively.

2.2. Finite-thickness model

The finite-thickness model follows the formulation used previously for round twin-jet
systems (Nogueira & Edgington-Mitchell 2021; Stavropoulos et al. 2023). The two jets,
each of diameter D, are separated by a centre-to-centre distance S as illustrated in
figure 2(b). Solutions for the twin-jet system are denoted as either SS, SA, AS, or AA,
where each letter denotes symmetry (S) or anti-symmetry (A) about the x—y and x—z planes,
respectively (Rodriguez, Jotkar & Gennaro 2018). All parameters are non-dimensionalised
by D, free-stream sound speed and density. The generalised eigenvalue problem can be
expressed, here in terms of pressure, in the form

LP = kRP, (2.10)

with P = Pel*? and operators L and R functions of the mean flow, its derivatives,
and flow variables w, M;, S and the ratio of specific heats y. Here, u is the Floquet
exponent resulting from the Floquet ansatz that is associated with the different symmetries
of the flow (Nogueira & Edgington-Mitchell 2021), u = 0 describes a solution that
is symmetric about the x—z plane and pu =1 is anti-symmetric about it. Equation
(2.10) utilises a Fourier discretisation in azimuth and Chebyshev polynomials in radius
(Trefethen 2000), with boundary conditions imposed following previous works (Nogueira
& Edgington-Mitchell 2021), with the full matrix operators detailed in Stavropoulos et al.
(2023). A numerical mapping (Bayliss & Turkel 1992) is applied to ensure appropriate
resolution in the shear layer of the jets. The sparsity of the system is exploited to further
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Figure 3. Sample elliptical jet mean flow, U, used for the finite-thickness model. Computed for M; = 1.16,
AR =2and s =0.2.
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reduce computational cost. The mean flow for each jet is modelled as a hyperbolic-tangent
velocity profile (Michalke 1971) of the form

U()—M|:05—|—05t h((ﬁ—i)iﬂ @2.11)
r) = . Stan F Tw)%)] .

with R; the ideally expanded jet radius and 6 used to characterise the shear-layer thickness.
In each case, the mean temperature is obtained from (2.11) through the Crocco-Busemann
relation. A twin-jet mean flow is constructed through the addition of two single-jet mean
flows, following Rodriguez (2021). When considering instead an elliptical geometry,
which will be used as a comparison to the merged round twin-jet system in § 3.2, (2.11) is
used with R; = Ry, the boundary curve describing the ellipse

. ab

Vb2 cos2(0) + a2 sin®(0)
Here b is the ellipse semi-minor axis, and a is both the semi-major axis and the length
scale used in normalisation for the ellipse. An example of a single elliptical jet mean flow

using (2.12) and (2.11) is provided in figure 3, for an ideally expanded jet Mach number
(Mj) of 1.16, § = 0.2 and aspect ratio (AR) of 2.

Ry 2.12)

3. Results
3.1. Planar twin jet

To aid in understanding the behaviour of a round twin-jet system, a planar twin-jet
system, as described in § 2.1, is considered first. For two jets being brought together to
the point of merging, the simplified geometry of the planar case allows for a more intuitive
understanding of the result. As the planar jets merge they are expected to form a single
planar jet, whose width is twice that of the individual planar jets. The effect on the structure
of the pressure eigenfunction as the two jets merge (H — 1) is shown in figure 4 for both
the symmetric and anti-symmetric solutions, respectively. In each case the wavenumber
of the kp_ (0, 2) mode is found through (2.4). Here the classification (0, 2) follows the
form (m, n,), with m the azimuthal mode number and n, the number of anti-nodes in
the pressure eigenfunction, as defined previously for round jets (Tam & Hu 1989). The
same classification will be used to refer to the equivalent mode of the planar system. The
primary difference observed between the symmetric (figure 4a—d) and anti-symmetric
(figure 4e—h) eigenfunctions is the enforced symmetry condition at the midpoint of the
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Figure 4. Variation in structure of the symmetric (a—d) and anti-symmetric (e—h) planar twin-jet pressure
eigenfunctions of the k, (0, 2) as the two jets merge (H — 1). Computed for M; = 1.16, T computed through
an isentropic relation, and St = 0.25 (a—d), 0.27 (e,f) and 0.3 (g,h). Eigenfunctions are normalised by their
maximum absolute value. The inter-jet region is shaded in grey. For the case of H =1 (d,h), the single-jet
eigenfunction is overlaid. Results are shown for (a) H = 20, (b)) H =5, (¢c) H=1.5,(d) H =1, (e) H = 20,
(fHH=5,(g9gH=15,(hH=1.

system, which is consistent with results seen for a round twin-jet system (Stavropoulos
et al. 2023). It is observed in both cases that as H decreases the eigenfunctions approach a
higher-order mode shape, with additional anti-nodes in the pressure eigenfunctions when
H =1 (figure 4d,h). This higher-order mode the system reduces to (for H = 1) differs
depending on whether the symmetric or anti-symmetric solution is considered. In the
symmetric case (figure 4a—d) the amplitude at the midpoint between the jets increases with
H before forming an anti-node. Conversely, the symmetry condition for the anti-symmetric
case forces a node to form at the centre (figure 4e—h). This results in the anti-symmetric
case converging to a mode of greater radial order than the symmetric case.

A direct comparison between the twin-jet system at H = 1 and double-width jet can be
seen in figure 4(d,h) for the symmetric and anti-symmetric eigenfunctions, respectively.
The double-width jet is defined as a single planar jet with half-width 2A, solved for using
the dispersion relation for a single planar jet, (2.8), but for a St twice that of the twin-jet
case, due to the present formulation normalising by jet half-width that then becomes 2.
For both the symmetric and anti-symmetric case in figure 4, the twin-jet solution matches
exactly with the double-width jet. This indicates that the converged mode for H = 1
corresponds to a mode of the double-width jet. That is, the system is seen to reduce to
that of a single planar jet with half-width 2.

This consideration of the eigenfunction structure of a planar twin-jet system as H — 1
identified key behaviours. When the planar twin-jet system merges it becomes equivalent
to a single planar jet of twice the width. At the point of merging (H = 1) the pressure
eigenfunction converges to a higher-order mode. For the symmetric case, as the two jets
merge, a mode that previously had three peaks on each isolated jet forms a mode with five
peaks in the merged jet (H = 1). An equivalent mode for the anti-symmetric case forms
a mode with six peaks, indicating the formation of a greater radial order mode than the
symmetric case.

This convergence to the double-width jet solution of the twin jet as H — 1 can also be
observed when considering the branch and saddle point frequencies of the &, (0, 2) mode.
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Figure 5. Branch and saddle points for the symmetric and anti-symmetric planar twin jet as a function of jet
spacing H at M; = 1.16 and T from an isentropic relation. Present also in each figure is the corresponding
value of the symmetric single planar jet. Here the St values converged to at H = 1 correspond to half those
of the double-width jet. Results are shown for the (a) symmetric branch points, (b) symmetric saddle points,
(¢) anti-symmetric branch points, (d) anti-symmetric saddle points.

It has been observed previously that the existence region formed by these bounds is
strongly dependent on jet separation for a round twin-jet system (Du 1993; Stavropoulos
et al. 2023), and this is also seen to be the case for a planar twin-jet system. Figure 5
shows the change in value of the branch and saddle points for both the symmetric and
anti-symmetric case. For both symmetries, the branch and saddle point values are seen
as being equal to those of the symmetric planar single jet for large values of H. This is
not unexpected when considering figure 4, where it can be observed that, for large H, the
twin-jet eigenfunctions resemble two symmetric planar jets. As H — 1, figure 5 shows
the twin-jet branch and saddle points approach new values. The exception to this being
figure 5(a), the symmetric solution saddle point, which remains virtually unchanged for
all H. The values to which the branch and saddle points converge to are all related to the
double-width jet, being exactly half the values of the single-jet branch and saddle points.
Recalling that an equivalent double-width jet has a St value twice that of a planar twin-jet
mode, then figure 5 is indicating that when the twin-jet system merges (H = 1), the
branch and saddle points change to match those of the higher-order mode of the single-jet
configuration that the system has converged to. This equivalence in eigenvalues can also be
shown to hold when varying jet parameters, or considering other flow structures, as would
be expected. The theoretical equivalence between single and twin planar jets as H — 1 is
shown in Appendix A.

The explanation for the &, (0, 2) mode branch and saddle point behaviour in a planar
twin-jet system now motivates the investigation of the round twin-jet system.
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Parameter  figure 6(a)  figure 6(b)

a 0.1129 0.0917
0.4025 0.6299
c 0.6307 0.2470

Table 1. Value of parameters for the exponential trendline fitted to the branch points in figure 6.

3.2. Round twin jet

For the round twin-jet system, it has been seen previously that the SA symmetry k,

(0, 2) mode exhibits a strong dependence on jet separation (Stavropoulos et al. 2023).The
behaviour of both the SS and SA symmetry round twin-jet branch points are compared
with those of the symmetric and anti-symmetric planar twin-jet system in figure 6. Results
for the round twin-jet system are obtained using (2.10) and (2.11) with § = 0.2. In the SA
(figure 6a) and planar anti-symmetric (figure 6b) systems the branch points both exhibit a
strong exponential trend as the jets are brought together. This exponential trendline is of
the form ae®* + ¢, with the parameter values as described in table 1. A similar agreement
in trends can be seen between the SS (figure 6¢) and planar symmetric (figure 6d) branch
points. Here the branch points exhibit a constant trend with jet separation and only at
very low jet separations is there a change (being at lower jet separation than previous
considerations of the SS k; (0, 2) mode Du 1993; Stavropoulos et al. 2023). This change
is greater for the SS round twin jet than the symmetric planar twin jet. The similarity in
trends of figure 6 suggests that the round twin-jet system is also converging to an equivalent
geometry, when S = 1, and that drives this change in branch point frequency in a manner
analogous to that of the planar jet system. The behaviour of the round twin-jet pressure
eigenfunctions can then also be considered, as S — 1. These are presented in figure 7
for both the SS and SA symmetries at M; = 1.16 and 6 = 0.2. As the two round jets are
brought together, the SA symmetry condition enforced at the system midpoint becomes an
additional node as part of a higher-order mode. This is the same behaviour as was observed
previously for the anti-symmetric planar twin-jet system (figure 4). The SS symmetry
condition enforced at the system midpoint becomes an anti-node and the twin-jet system
reduces to a higher-order mode, again in-line with observations of the planar twin jet
(figure 5). Comparing the SS and SA eigenfunctions at S =1 (figure 7d,h), the same
difference as previously identified for the planar twin-jet system (§ 3.1) is observed, with
the SA solution converging to a greater radial order mode than the SS solution. Figure 7
further indicates that the round twin-jet system approaches a yet-unknown equivalent
geometry.

The geometry of a round twin-jet system does not lend itself to an obvious equivalent
geometry when the two jets merge, unlike the planar twin-jet system discussed previously
(§3.1). Instead a comparison will be made with ellipses of differing AR. The two ARs
considered are 1.5 and 2, with each shown superimposed over the § = 1 round twin-jet
system in figure 8. The AR 1.5 case (figure 8a) provides a match with a large extent
of the round twin-jet system, whilst the AR 2 case (figure 8b) is an ellipse of equal
area to the twin-jet system. The § = 1, SA round twin-jet existence region is compared
with (k, St) pairs computed for the elliptical jet, using (2.12) to define the mean flow,
in figure 9. Here, the parameters were chosen as M; = 1.16 and 6 = 0.2, with u = 0, 1 for
the ellipse and S = 1 for the twin jet. In figure 9 both the St and k values for the round

twin-jet system are scaled by a factor of \/AR/2 (the ratio between the semi-major axis
983 A17-9
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Figure 6. Dependence of the klj (0, 2) branch point with jet separation for both the SA (a) and SS (c¢) round
twin jet, and the anti-symmetric (b) and symmetric (d) planar twin jet. Computed for M; = 1.16 and § = 0.2
(round twin jet). Overlaid on (a,b) is an exponential trendline, with a constant trendline on (c,d). Results are
shown for the (a) SA round, (b) anti-symmetric planar, (¢) SS round, (d) symmetric planar.
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Figure 7. Variation in structure of the SA (a—d) and SS (e—h) round twin-jet pressure eigenfunctions of the
k; (0, 2) mode as the two jets merge (S — 1). Computed for M; = 1.16 and § = 0.2. Values of St are 0.595
(a), 0.64 (b), 0.665 (c), 0.695 (d), 0.555 (e), 0.565 (f), 0.57 (g) and 0.58 (k). Eigenfunctions are normalised
by their maximum absolute value. The inter-jet region is shaded in grey. Results are shown for (@) SA, S = 5;
(b)SA,S=2;(c)SA,S=1.5;(d)SA,S=1;(e) SS,S=5;(f)SS,S=2;(g)SS,S=1.5;(h) SS, S = 1.
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Figure 8. Geometric comparison between the S = 1 round twin-jet system and an elliptical jet of AR 1.5 (a)
and 2 (b).
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Figure 9. Comparison of the existence regions of the SS and SA, § = 1 round twin-jet k, (0, 2) mode and the
w1 = 0, 1 elliptical jet mode branch it lies closest to. Computed for M; = 1.16, § = 0.2, and AR = 1.5 (a,c) and
2 (b.d). Values of St for the twin-jet system are scaled to match the normalisation of the elliptical Sz. Included
also is the sonic line representing the free-stream acoustic waves in red. Results are shown for (a) SA, © =1,
AR =1.5;(b)SA, u =1,AR=2;(¢c)SS, t =0,AR=1.5;(d) SS, u =0, AR = 2.

of the ellipse and the diameter of the single jet, used in the twin-jet computations, when
considering an equivalent diameter for both the ellipse and merged twin jet) to keep the
normalisation consistent between the two cases. It can be seen that of the ARs considered,
the merged round twin-jet system more closely resembles the AR 2 ellipse (figure 9b,d).
This is evident from the close agreement observed at the region near the branch point, and
the similar behaviour of the twin jet and elliptical jet mode branches. Conversely in the AR
1.5 case (figure 9a,c) the existence regions for the elliptical and round twin jet do not show
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Figure 10. Comparison of the SA, S = 1 round twin jet and the u = 1 elliptical jet across a larger St range than
considered in figure 9. Computed for M; = 1.16, § = 0.2 and AR =2. Values of St for the twin-jet system are
scaled to match the normalisation of the elliptical Sz. Included also is the sonic line representing the free-stream
acoustic waves in red.
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Figure 11. Visual comparison of the mean flows for an AR 2 ellipse (@) and S = 1 twin jet (). Computed for
M;=1.16and § = 0.2.

alignment. Note that this is not implying that a round twin-jet system converges to a perfect
ellipse, but that an AR 2 ellipse could be considered a close approximation to the resultant
converged geometry in the context of the existence region. When looking across a larger
range in St, figure 10 shows that while this agreement is strong at moderate St values, it
will begin to lessen as the St value increases. For these lower St values, the associated
wavelengths will be larger than the characteristic lengths of the jet. Investigating other
geometries at these St values with similar ARs, in particular a rectangular jet geometry,
may also lead to similar agreement as observed in figure 9 and could be considered in
future studies.

Considering just the AR 2 case, comparisons between the mean flows for the ellipse
and round twin jet can be made to further compare the similarities. Both mean flows are
illustrated in figure 11 for the elliptical (a) and round twin jet (b), respectively. These are
computed for M; = 1.16,§ = 0.2, AR =2 (ellipse) and S = 1 (round twin jet). A qualitative
view of figure 11 indicates that the two mean flows are quite different, particularly in
their respective behaviour close to the z axis. A more quantitative comparison is made in
figure 12 where the velocity profiles are compared along multiple angles, €, measured from
the y axis (see figure 2b). For lower 6 (figure 12a—d), there is strong agreement observed
between the two mean flows. It is only at larger 6 (figure 12e¢, f) that the two mean flows
display noticeable difference. As such, this provides a strong justification for considering
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Figure 12. Comparison of mean flow axial velocity profiles between the AR 2 ellipse and S = 1 twin jet.
Computed for M; = 1.16, § = 0.2 for different 6 all measured from the positive y axis. Results are shown for
(@)0=0,()0 =18,(c) 0 =36,(d) 6 =54,(e) 6 =72, (f) 6 =90.

an AR 2 ellipse as a substitute for the equivalent geometry of a merged round twin-jet
system.

Further comparisons are made by considering the pressure eigenfunctions between the
ellipse and round twin jet. These are given in figure 13 at the branch point, for the
radial profile along the y axis (figure 13a,b) and the pressure contours (figure 13b—d).
In figure 13(a) the shape of the eigenfunctions agree well between the elliptical and
twin-jet solutions. The difference between the © =1 ellipse and SA round twin jet is
in the eigenfunction amplitudes, with the first and third nodes having greater magnitude
for the ellipse than the round twin jet. When considering instead the p© = 0 ellipse and
SS round twin jet (figure 13b), a greater degree of difference is observed between the two
eigenfunctions. For y/D > 1, the elliptical eigenfunction decays at a slower rate than the
twin-jet eigenfunction, and at y/D = 0 there is no match between the two. Comparing
the pressure contours for the u = 1 ellipse and SA round twin jet (figure 13¢,d) indicates
a similar location for the maximum pressure with differences in the contours occurring
outside of this region. This is similarly observed when comparing the = 0 ellipse and
SS round twin jet (figure 13e, f). In both cases greater differences between the elliptical and
twin-jet contours are seen near to the z axis (6 close to m/2 as described by figure 2b). This
result is consistent with the previous comparisons of mean flow velocity profiles between
the ellipse and S = 1 round twin jet (figure 12), where it is observed that differences
between the velocity profiles occur for values of 6 close to 7/2. Trends in the pressure
eigenfunction radial profiles, from branch point to saddle point are compared in figure 14.
For the SA round twin jet (figure 14a) and pu =1 ellipse (figure 14b), both are seen
to display similar behaviour in the pressure eigenfunction as St increases towards the
saddle point value. Differences between the two geometries are observed in the pressure
eigenfunction amplitudes and the profile at the saddle point. When considering the SS
round twin jet (figure 14c¢) and p = O ellipse (figure 14d), similar agreement between the
geometries is observed; however, at y/D = 0 the SS twin jet increases in amplitude as St
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Figure 13. Pressure eigenfunctions of the = 0 and 1 ellipses, and the SS and SA, S = 1 round twin jet
computed at the branch point. Shown for the radial profile (a,b), anti-symmetric contours (c,d) and symmetric
contours (e,f). Computed for M; = 1.16 and § = 0.2. Eigenfunctions are normalised by their maximum
absolute value. Results are shown for the (a) anti-symmetric, (b) symmetric, (¢) SA twin jet, (d) n© = 1 ellipse,
(e) SS twin jet, (f) u = 0 ellipse.

increases to a larger extent than the v = 0 ellipse does. Combined figures 13 and 14, like
figure 9, indicate that an equivalent geometry a round twin-jet system merges to is close in
shape to an AR 2 ellipse.

4. Conclusion

This work sought to explain the strong dependence observed for the existence regions
of the k, (0, 2) mode, a mode that has been of increasing interest due to its role as
the upstream component of a range of resonant systems in high-speed flows, with jet
separation in a twin-jet system. A planar twin-jet model was first considered due to the
simplified geometry it provides. The model demonstrated that as the two jets are brought
together a higher-order mode is formed, corresponding to that of a single-jet system of
twice the jet width. This imposes a constraint on the branch and saddle point frequencies
of the klj (0, 2) mode: that it matches those of the higher-order mode branch. To meet
this constraint, the frequency values must then change with jet separation, explaining the
previous observations of the dependence of branch and saddle points on jet separation.
The symmetry condition of the twin-jet system, symmetric or anti-symmetric, influences

983 Al7-14


https://doi.org/10.1017/jfm.2024.129

https://doi.org/10.1017/jfm.2024.129 Published online by Cambridge University Press

Upstream-travelling waves in merging twin jets

(@) (b)
: 1.0
—510.695 —510.695
—510.7 08 —510.705 |
510.705 510.715
—510.71 0% \ —§10.725
|P|
- 0.4 ||
K v ||
= ] e
2 3 4 0 | 2 3 4
(©) ) o
—510.58 ) || —510.555
v Y | st 060
t 0. 1 0.
810625 o6 | —510.625
|P|
04 -
0.2 lv .
0 1 2 3 4 0

yID

Figure 14. Comparison of the pressure eigenfunction behaviour between the S = 1 round twin jet (a,c) and
the AR 2 ellipse (b,d), when moving from the branch to saddle point. Computed for M; = 1.16, § = 0.2 and
AR = 2. Eigenfunctions are normalised with the absolute value plotted along the y axis. Results are shown for
the (a) SA twin jet, (b) © = 1 ellipse, (¢) SS twin jet, (d) 1 = 0 ellipse.

the shape of the higher-order mode that is formed. An anti-symmetric mode must evolve
to a higher-order mode than a symmetric system, and this results in a greater change in
branch and saddle point frequencies with jet separation. The same behaviour was observed
for the round twin-jet system that converges to an equivalent geometry similar to an AR
2 ellipse. A higher-order mode similar to that of an elliptical jet is formed as the jets are
brought together, and the existence region of the &, (0, 2) mode is then constrained to
match this. The agreement found between the round twin-jet system and AR 2 ellipse
lessened as the St value increased, suggesting that the equivalence is strongest in regions
where the wavelengths are large compared with the characteristic lengths of the system. As
this &, (0, 2) mode behaviour is due to a geometric effect, in converging to an equivalent
single-jet geometry as the individual jets merge, such behaviour will be observed in any
twin-jet system. Future investigation may also consider other jet geometries, such as the
rectangular jet, and whether similar agreement can also be found between them and the
twin-jet system.
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Appendix A. Dispersion relation equivalence

Presented here is the mathematical equivalence between the planar twin jet for H = 1,
whose dispersion relation is described by (2.4), and the double-width planar jet, described
by the single-jet dispersion relation (2.8). This will be presented for the symmetric
solution, with the anti-symmetric solution following in the same manner. Beginning with
(2.5) it can be seen that by substituting H = 1, and considering the symmetric solution,
that the term in the second row and first column ((4, /a)z) (e~ e~ 0eo)) becomes
zero. Similarly, if instead the anti-symmetric solution were considered then the term in
the first row and first column (e~ + e~2H40edo) would be zero. As the first column of
the matrix now contains only a single term, the determinant may be readily solved using a
cofactor expansion yielding

— Qe Aeti 0
1 1
?(kM—a))z ?(kM—a))z
det(A) = 2e~% —eti —e i e~ |, (A1)
el — et Ao oo
Lor—w? Lam—w? @
T(kM w) T(kM w)

As (A1) is set to zero in order to solve for the dispersion relation, then the term 2e =% may
be omitted. Expanding the 3 x 3 determinant produces

a—Adi oA
I (o) Do g o I -
- (kM — w)? @ - (kM — w)?
2
a—Ai adi
—e | < e - Lie —et) D=0 g, (A2)
o (kM — w)? o (kM — w)? @
which may then be simplified to
1 kMN\? [ 2,
tanh) + = (1-—) (=2 ) =o0. (A3)
T w A

When comparing (A3) with the single-jet dispersion relation (2.8), the difference noted is
the factor of 2 present. By changing the normalisation used in (A3) from % to 2k, these
factors are removed and the equation matches (2.8). That is, (A3) represents the dispersion
relation for a single planar jet with width 2A. As such, it is seen that by setting H = 1 in
the twin-jet dispersion relation (2.4) it recovers the dispersion relation for the double-width
planar jet (2.8).
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