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Maximal Weight Composition Factors for
Weyl Modules

Jens Carsten Jantzen

Abstract. Fix an irreducible (ûnite) root system R and a choice of positive roots. For any alge-
braically closed ûeld k consider the almost simple, simply connected algebraic group Gk over k
with root system k. One associates with any dominant weight λ for R two Gk-modules with highest
weight λ, the Weyl module V(λ)k and its simple quotient L(λ)k . Let λ and µ be dominant weights
with µ < λ such that µ is maximal with this property. Garibaldi, Guralnick, and Nakano have asked
under which condition there exists k such that L(µ)k is a composition factor of V(λ)k , and they
exhibit an example in type E8 where this is not the case. _e purpose of this paper is to to show that
their example is the only one. It contains two proofs for this fact: one that uses a classiûcation of the
possible pairs (λ, µ), and another that relies only on the classiûcation of root systems.

1 Introduction

For general background on representations of Lie algebras and of algebraic groups we
refer the reader to [6, 9].

1.1 Let g be a simple ûnite dimensional Lie algebra over the complex numbers. Choose
a Cartan subalgebra h of g, denote by R the corresponding root system, choose a
system R+ of positive roots, and denote the set of simple roots by S. We write α∨ for
the coroot associated with a root α ∈ R. Denote the Weyl group of R by W and the
re�ection with respect to some α ∈ R by sα .

We denote by X ⊂ h∗ the set of integral weights and by X+ ⊂ X the set of dominant
weights. We write ≤ for the usual partial order relation on X where µ ≤ λ if and only
if λ − µ ∈ ∑α∈S Nα. For any λ ∈ X+ let V(λ) be a simple g-module with highest
weight λ. For any µ ∈ X let V(λ)µ denote the corresponding weight space of V(λ).

1.2 For any prime number p, ûx an algebraically closed ûeld k of characteristic p. _en
let Gk denote the almost simple, simply connected algebraic group over k with root
system R. We can then identify X with the group of characters of a maximal torus
in Gk . For each λ ∈ X+ let V(λ)k be aWeyl module with highest weight λ. Its radical
radV(λ)k is a maximal submodule, and the quotient L(λ)k = V(λ)k/ radV(λ)k is
a simple module with highest weight λ. Both V(λ)k and L(λ)k are direct sums of
weight spaces that we denote by V(λ)k ,µ and L(λ)k ,µ , respectively.

1.3 Garibaldi, Guralnick, and Nakano prove the following result in [5].

Received by the editors June 13, 2016; revised July 28, 2016.
Published electronically November 15, 2016.
AMS subject classiûcation: 20G05, 20C20.
Keywords: algebraic groups, represention theory.

https://doi.org/10.4153/CMB-2016-055-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-055-4


Maximal Weight Composition Factors for Weyl Modules 763

_eorem ([5]) Let λ be a dominant weight. _en V(λ)k is simple for all k if and only
we are in one of the following cases:
(i) λ = 0;
(ii) λ is minuscule;
(iii) the root system R has type E8 and λ is the unique dominant root.

We use minuscule here in the sense of [2, Déf. 1 in Chap. VIII, § 7]; see also [1,
Exerc. 24 in Chap. VI, § 1].
Actually, the result in [5] is stronger: for all other λ one can ûnd a ûeld k such that

V(λ)k is not simple and Char k ≤ 2 rk g + 1.

1.4 In reply to a ûnal question in [5] we are going to prove the following theorem.

_eorem Let λ be a dominant weight. Let µ < λ be a dominant weight that is maxi-
mal among the dominant weights less than λ. Exclude the case where the root system R
has type E8 and λ is the unique dominant root. _en there exists a ûeld k such that
L(µ)k is a composition factor of V(λ)k .

Note that _eorem 1.4 together with information about the E8 case implies _e-
orem 1.3 as stated here, i.e., without the explicit bound on Char k. (_e simplicity
of V(λ)k for all k in the cases (i)–(iii) is well known.)

1.5 _eorem 1.4 can be generalised to more general reductive groups. One should ûx a
root datum and set Gk equal to the connected reductive group over k with this root
datum. In the simplest case one gets a direct productGk = G0,k×G1,k×⋅ ⋅ ⋅Gr ,k , where
G0,k is a torus and where each G i ,k with i > 0 is an almost simple, simply connected
group. In this case a dominant weight is a tuple λ = (λ0 , λ1 , . . . , λr) where each λ i
is a dominant weight for G i ,k (any weight for i = 0). Another dominant weight,
µ = (µ0 , µ1 , . . . , µr), is maximal among the dominant weights less than λ if and only
if there exists i > 0 such that µ i is maximal among the dominant weights for G i ,k less
than λ i and if µ j = λ j for all j /= i (including j = 0). If so, then L(µ)k is a composition
factor of V(λ)k if and only if L(µ i)k is a composition factor for G i ,k of V(λ i)k , since
both Weyl modules and simple modules are tensor products of the corresponding
modules for each G j,k . Now _eorem 1.4 says that there does not exist k with L(µ)k
a composition factor of V(λ)k if and only if G i ,k has type E8 and µ i = 0 and λ i the
dominant root.
For arbitrary root data one can ûnd a central covering G′

k → Gk such that G′ has a
direct product decomposition as above. One then uses that Weyl modules (resp. sim-
ple modules) for Gk li� to Weyl modules (resp. simple modules) for G′

k .

2 Maximal Dominant Weights

2.1 _e ûrst proof of _eorem 1.4 will involve induction on the rank as well as a descrip-
tion of the maximal dominant weights less than a given one. We shall see (in Subsec-
tion 2.2) that most of the time these maximal weights arise by subtracting a simple
root from the top weight.
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For any subset I ⊂ S, set RI = R ∩ZI; this is a root system for a suitable Levi factor
of g. One can choose R+I = R+ ∩ RI as the set of positive roots; then I is the set of
simple roots for this choice. We can identify the set XI of integral weights for RI with
a lattice in ∑α∈I Qα. For any λ ∈ X, denote by λI ∈ XI the weight with ⟨λI , α∨⟩ =
⟨λ, α∨⟩ for all α ∈ I. If λ, µ ∈ X satisfy λ − µ = ∑α∈I mαα for some mα ∈ Z, then
λI − µI = ∑α∈I mαα = λ − µ.

Lemma Let λ, µ ∈ X with λ dominant and µ < λ. Suppose that λ − µ = ∑α∈I mαα
for some mα ∈ Z, mα ≥ 0.
(i) _e weight µ is dominant if and only if µI is dominant for the root system RI .
(ii) _eweight µ is dominant andmaximal among the dominant weights less than λ if

and only if µI is dominant for the root system RI and maximal among the weights
less than λI and dominant for the root system RI .

(iii) If the weight µ is dominant andmaximal among the dominant weights less than λ,
then the subset {α ∈ I ∣ mα > 0} of S is connected in the Coxeter graph.

Proof We have

⟨µ, β∨⟩ = ⟨λ, β∨⟩ −∑
α∈I

mα⟨α, β∨⟩ ≥ ⟨λ, β∨⟩ ≥ 0

for all β ∈ S ∖ I; this implies (i).
Any weight in XI between λI and µI has the form λI − ∑α∈I m′

αα with m′
α ∈ Z,

0 ≤ m′
α ≤ mα for all α ∈ I. It is then equal to νI where ν = λ − ∑α∈I m′

αα. We know
by (i) that νI is dominant for RI if and only if ν is dominant. _is implies (ii).

In order to see (iii) we assume that mα > 0 for all α ∈ I. Suppose that I = J ∪ K is
the disjoint union of two nonempty subsets J and K with ⟨α, β∨⟩ = 0 for all α ∈ J and
β ∈ K. _en µ′ = λ −∑α∈J mαα satisûes µ < µ′ < λ and ⟨µ′ , α∨⟩ = ⟨µ, α∨⟩ ≥ 0 for all
α ∈ J and ⟨µ′ , β∨⟩ = ⟨λ, β∨⟩ ≥ 0 for all β ∈ K as well as ⟨µ′ , γ∨⟩ ≥ ⟨λ, γ∨⟩ ≥ 0 for all
γ ∈ S ∖ I. So µ′ is dominant, and µ is not maximal.

2.2 Lemma 2.1 reduces the classiûcation of the maximal dominant weights less than a
given dominant weight to the following result. Here we use the numbering of the
simple roots from [1, Planches I–IX] and write ϖ i = ϖα i . Our convention below is
that all roots are short when they all have the same length.

Proposition Let λ, µ ∈ X+ such that µ = λ − ∑α∈S mαα with mα ∈ Z, mα > 0 for
all α ∈ S. _en µ is maximal among the dominant weights less than λ if and only if the
pair (λ, µ) occurs in the following list:
(I) _e root system has type A1; we have ⟨λ, α∨1 ⟩ ≥ 2 and µ = λ − α1.
(II) λ is the unique short root that is dominant and µ = 0.
(III) _e root system has type Bn , n ≥ 2; we have λ = ϖ1 + ϖn and µ = ϖn .
(IV) _e root system has type G2; we have λ = ϖ2 and µ = ϖ1.
(V) _e root system has type G2; we have λ = ϖ1 + ϖ2 and µ = 2ϖ1.

Proof If the root system has type A1, then the claim is obvious. Let us exclude this
case from now on.
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In Case (II), 0 is the only dominant weight less than λ, hence maximal, and of
course the only maximal one.

In Cases (III)–(V), we have µ = λ − ∑α∈S α. In order to check maximality, one
has to show for any non-empty proper subset I of S that λ −∑α∈I α is not dominant.
_is is easily done in theG2-cases. In the Bn-case we would otherwise get a dominant
weight νI < λI , which is impossible as λI is eitherminuscule or equal to 0. _e equality
λ − µ = ∑α∈S α in Cases (III)–(V) implies also that µ is the only maximal dominant
weight µ′ < λ such that λ − µ′ has support in all simple roots.

We now have to prove that our list is complete. So let λ, µ ∈ X+ such that µ =

λ − ∑α∈S mαα with mα ∈ Z, mα > 0 for all α ∈ S and such that µ is maximal among
the dominant weights less than λ. _is implies that λ − ∑α∈I α is not dominant for
any non-empty proper subset I of S. Write λ = ∑α∈S nαϖα . For each α ∈ S we know
by assumption that λ − α is not dominant; this implies nα ≤ 1. We next want to show
that the cases (II) for type An , (III), and (V) are the only ones where there is more
than one α ∈ S with nα = 1.

Write n i = nα i . Let us ûrst look at R of type An . If n i = 1 for at least two distinct
indices i, then we can ûnd indices 1 ≤ i < j ≤ n such that n i = n j = 1 and n l = 0 for
all l with i < l < j. _en λ−∑ j

m=iαm is dominant. Our assumption now implies i = 1
and j = n, so λ = ϖ1 + ϖn is the dominant root; we are in Case (II).

We can apply the construction from the preceding paragraph for arbitrary R to any
subset I of S such that RI has type A. Since the subset is proper, we see that there is at
most one α ∈ I with nα = 1.

In the case where all roots have the same length, any two simple roots belong to a
subsystem RI of type A. So for types Dn and En we are reduced to the case where λ is
a fundamental weight.

If there are two root lengths in R, then we have to look at λ = ϖα +ϖβ with α long
and β short. For R of type Bn , n ≥ 2, and for R of type Cn , n ≥ 3, we have to deal with
λ = ϖ i+ϖn with i < n. For R of type Bn and i = 1 we are in Case (III). For R of type Bn
and i > 1 we observe that ϖ i − ∑

n
j=i α i = ϖ i−1. _is rules out not only λ = ϖ i + ϖn ,

but also λ = ϖ i .
In theCn case we haveϖn−(αn−1+αn) = ϖn−2. _is rules out not only λ = ϖ i+ϖn ,

but also λ = ϖn .
For R of type F4 one has ϖ1−(α1+α2+α3) = ϖ4 and ϖ2−(α2+α3) = ϖ1+ϖ4. _is

implies n1 = n2 = 0 and rules out not only λ = ϖα+ϖβ as above, but also λ ∈ {ϖ1 ,ϖ2}.
Now the only candidates le� for λ are fundamental weights. Of course, anyminus-

cule ϖα cannot lead to examples, since there are no dominant weights less than ϖα .
_is takes care of type An . In type Bn this excludes ϖn . We have already taken care of
the ϖ i with 1 < i < n. And ϖ1 leads to Case (II).

Let us look at types Cn and Dn . Exclude the minuscule fundamental weights, i.e.,
ϖ1 for Cn and ϖ1, ϖn−1, ϖn for Dn . In the remaining cases the dominant weights less
than ϖn are all ϖ i−2 j with 0 < j ≤ i/2 where we set ϖ0 = 0. (_is can be seen by real-
ising V(ϖn) as a submodule of the i-th exterior power of the natural representation
of g.) _e only maximal dominant weight is ϖ i−2, and ϖ i − ϖ i−2 is a linear combi-
nation of the αh with h > i − 2. So we have total support only for λ = ϖ2, which is
Case (II) for our root system.
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In type F4 we have already excluded ϖ1 and ϖ2. For λ = ϖ4 we are in Case (II).
_e only dominant weights less than ϖ3 are 0 < ϖ4 < ϖ1 (cf. the tables in [10] or
[2, Ch. VIII, §9, Exerc. 16]). As ϖ3 − ϖ1 = α1 + 2α2 + α3, we can rule out λ = ϖ3.

We are le� with the fundamental weights for R of type E6, E7, E8. Here one checks
the claim by inspection. _ere is in [3] a list of all weights for any V(ϖ i), actually for
all root systems. For g of type E8 there is one correction to [3] in [4]. One checks that
the only contribution to our list in type E8 comes from ϖ8, which is the dominant
root. By using Lemma 2.1 one can get the result for E6 and E7 from the calculations
in type E8. _is concludes the proof of the proposition.

2.3 We use the notation [M ∶E] to denote the multiplicity of a simple module E as a com-
position factor of amoduleM. (It will be clear from the context, what type ofmodules
we consider.)

Note: If µ ∈ X+ is maximal among the dominant weights less than some λ ∈ X+,
then L(λ)k and L(µ)k are the only possible composition factors of V(λ)k that can
have weight µ. _is implies

(2.1) [V(λ)k ∶L(µ)k] = dimV(λ)k ,µ − dim L(λ)k ,µ = dimV(λ)µ − dim L(λ)k ,µ .

2.4 Proof of Theorem 1.4

Consider λ and µ as in the theorem. We want to use induction on the rank of g. Write
λ−µ = ∑α∈S mαα and set I = {α ∈ S ∣ mα > 0}. If I /= S thenwe consider the analogue
GI ,k to Gk for the root system RI . Denote by VI(λI)k and LI(µI)k the analogues to
V(λ)k and L(λ)k for GI ,k . One then has

[V(λ)k ∶L(µ)k] = [VI(λI)k ∶LI(µI)k] ;

see [9, II.5.21(2)]. Lemma 2.1 implies that we can apply induction on the right-hand
side, since RI cannot have type E8; we thus get some k with [VI(λI)k ∶LI(µI)k] > 0,
hence also with [V(λ)k ∶L(µ)k] > 0.

So we can assume that I = S, which means that we are in one of Cases (I)–(V) in
Proposition 2.2. In most of these cases one can ûnd a ûeld k with [V(λ)k ∶L(µ)k] > 0
in [5]. For example, Case (I) is treated there in the ûnal section “Further Directions”,
Case (II) appears at the end of Section 1 under the heading “Quasi-minuscule rep-
resentations”, and Case (III) is the topic of [5, Section 5]. Case (IV) is mentioned
at the end of [5, Section 4]. In Case (V), one can apply the results on G2 in [8]:
If we take k with Char k = 7, then λ belongs to the interior of the “third” domi-
nant alcove and µ is its mirror image in the “second” dominant alcove, which implies
[V(λ)k ∶L(µ)k] = 1.

3 Alternative Proof and Multiplicities

In this section we give an elementary proof for _eorem 1.4 that does not rely on
the classiûcation in Subsection 2.2. It generalises the method used in [7, pp. 19–20],
for λ a dominant short root in the case of two root lengths. To start with, we recall
the classical construction of the Weyl modules V(λ)k . A reference for the following
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subsections is [9, Chapter II.8], in particular II.8.3 and II.8.17. At the end we show
how our method yields a uniûed approach to the computation of [V(λ)k ∶L(µ)k] in
the cases from Proposition 2.2.

3.1 For any root α let Hα ∈ h be the element with λ(Hα) = ⟨λ, α∨⟩ for all λ ∈ h∗. We
choose a Chevalley system (Xα ∣ α ∈ R) of root vectors satisfying the classical as-
sumption that [Xα , X−α] = Hα for all α. (A diòerent sign convention is used in [2].)
Denote by UZ the Z-subalgebra of the enveloping algebra of g generated by all

Xr
α/r! with α ∈ R and r ∈ N, and byU−

Z the Z-subalgebra generated by all Xr
−α/r! with

α ∈ R+ and r ∈ N. One now constructs for each λ ∈ X+ a Z-lattice V(λ)Z in V(λ) by
choosing a highest weight vector vλ in V(λ) and by setting

V(λ)Z = UZvλ = U−
Zvλ .

_is is a freeZ-module of ûnite rank; anyZ-basis forV(λ)Z is also aC-basis forV(λ).
FurthermoreV(λ)Z is the direct sum of its weight spacesV(λ)Z,µ = V(λ)Z∩V(λ)µ .
Denote by ( ⋅ , ⋅ ) the contravariant formonV(λ)normalised such that (vλ , vλ) = 1.

_is is a symmetric bilinear form on V(λ) satisfying

(Xαv , v′) = (v , X−αv′) for all α ∈ R and all v , v′ ∈ V(λ).

_is form takes integer values onV(λ)Z×V(λ)Z; distinct weight spaces are orthogo-
nal with respect to this form. It is positive deûnite on the real span of V(λ)Z (because
it is invariant under a compact real form of g).

3.2 Now the Weyl module with highest weight λ for Gk can be constructed as V(λ)k =

V(λ)Z ⊗Z k. _e (Z-valued) contravariant form on V(λ)Z yields a k-bilinear form
( ⋅ , ⋅ )k onV(λ)k . _en the uniquemaximal submodule radV(λ)k ofV(λ)k is equal
to the radical of the form ( ⋅ , ⋅ )k . In particular, V(λ)k is simple if and only if ( ⋅ , ⋅ )k
is non-degenerate on V(λ)k .
By the orthogonality of distinct weight spaces we have for any weight µ of V(λ):

the µ-weight space of the simple Gk-module with highest weight λ is the quotient of
V(λ)Z,µ ⊗ k by the radical of the form ( ⋅ , ⋅ )k restricted to this space. _erefore, the
dimension of L(λ)k ,µ is equal to the rank a�er reduction modulo Char k of the Gram
matrix for a Z-basis of V(λ)Z,µ . So we have dim L(λ)k ,µ < dimV(λ)µ if and only if
Char k divides the determinant of this Gram matrix.

If µ ∈ X+ is maximal among the dominant weights less than λ, then (2.1) implies
that [V(λ)k ∶L(µ)k] > 0 if and only if Char k divides the determinant of the Gram
matrix for a Z-basis of V(λ)Z,µ .

3.3 For any weight ν ∈ Wλ the weight space V(λ)ν has dimension 1, so we can choose a
basis vector vν (unique up to sign) such thatV(λ)Z,ν = Z vν . We then have (vν , vν) = 1
for all ν ∈ Wλ. _is holds, e.g., since also L(λ)k ,ν has dimension 1, so ( ⋅ , ⋅ )k is non-
degenerate on V(λ)k ,ν ; this implies that the image of (vν , vν) in k is non-zero. As
this holds for all k ,this means that no prime number divides (vν , vν); now the claim
follows from the positivity of the form.
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3.4 Let ν ∈ Wλ and α ∈ S with r = ⟨ν, α∨⟩ > 0. We then have ν − rα = sα(ν) ∈ Wλ. Any
ν + mα with m > 0 is not a weight of V(λ). It follows that Xm

α vν = 0 for any m > 0,
and we get (by using a standard commutator formula, see [6, Lemma 26.2])

(
Xr
−α
r!

vν ,
Xr
−α
r!

vν) = (vν ,
Xr
α

r!
Xr
−α
r!

vν) = (vν , (
Hα

r
)vν) = (

⟨ν, α∨⟩
r

) = 1.

Since (Xr
−α/r!) vν belongs to V(λ)Z,ν−rα = Zvν−rα , this yields the ûrst claim in

(3.1)
X⟨ν ,α

∨⟩
−α

⟨ν, α∨⟩!
vν = ±vν−⟨ν ,α∨⟩α and

X⟨ν ,α
∨⟩

α

⟨ν, α∨⟩!
vν−⟨ν ,α∨⟩α = ±vν .

_e second one follows symmetrically; one can also use that (Xr
α/r!) (Xr

−α/r!) vν =

vν .

3.5 _e Z-algebra U−
Z is generated already by all Xr

−α/r! with α ∈ S and r ∈ N. (_is was
observed by Verma, cf. [7, Satz I.7].) It follows that

V(λ)Z,µ = ∑
α∈S
∑
r>0

Xr
−α
r!

V(λ)Z,µ+rα

for any weight µ < λ.

3.6 We now return to the situation where µ is maximal among the dominant weights less
than λ.

Lemma Let ν ∈ X with µ < ν. _en ν is a weight of V(λ) if and only if ν ∈Wλ.

Proof If ν is a weight of V(λ), then so is the unique dominant weight ν+ ∈ Wν.
Now µ < ν ≤ ν+ ≤ λ and the maximality of µ imply λ = ν+, hence ν ∈ Wλ. _e other
direction is obvious.

3.7 Set
S0 = {α ∈ S ∣ µ + α ∈Wλ}.

Set zα = X−αvµ+α ∈ V(λ)Z,µ for all α ∈ S0. Note that we can replace vµ+α by −vµ+α if
we so wish; hence we can replace zα by −zα .

Lemma _eZ-module V(λ)Z,µ is spanned by all zα with α ∈ S0. We have (zα , zα) =
⟨µ, α∨⟩ + 2 for all α ∈ S0.

Proof Let α ∈ S; suppose that µ+rα is a weight ofV(λ) for some r > 0. _e α-string
of all weights of V(λ) of the form µ + sα with s ∈ Z contains µ and does not admit
any holes. So µ + α has to be a weight of V(λ), and thus α ∈ S0 by Lemma 3.6.

Let α ∈ S0. _en µ + α ∈ Wλ is an extremal weight of V(λ), hence at the top or
the bottom of its α-string. Since µ = (µ+α)−α is a weight, µ+α has to be at the top;
so no µ + rα with r > 1 is a weight of V(λ). Now Subsection 3.5 implies

V(λ)Z,µ = ∑
α∈S0

X−αV(λ)µ+α = ∑
α∈S0

Z zα .
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Furthermore, V(λ)µ+2α = 0 yields Xαvµ+α = 0 for all α ∈ S0, hence

(zα , zα) = (X−αvµ+α , X−αvµ+α) = (vµ+α , XαX−αvµ+α) = (vµ+α ,Hαvµ+α)

= ⟨µ + α, α∨⟩ = ⟨µ, α∨⟩ + 2.

3.8 We are going to prove the following proposition.

Proposition All zα with α ∈ S0 form a Z-basis for V(λ)Z,µ . _e determinant of the
Grammatrix of all (zα , zβ) is a positive integer; it is equal to 1 only if R has type E8 with
S = S0 and µ = 0.

Note that this proposition implies _eorem 1.4: One uses the facts from Subsec-
tion 3.2 and notes that µ = 0 and S = S0 imply λ ∈ Wα for all α ∈ S, hence that λ is
the (unique) dominant root.

3.9 Let ( ⋅ ∣ ⋅ ) be a positive deûnite bilinear formon∑α∈R R α = ∑ν∈X R ν that is invariant
under the Weyl group W . We then have ⟨ν, α∨⟩ = 2 (ν ∣ α)/(α ∣ α) for all ν ∈ X and
α ∈ R.

Lemma Let α, β ∈ S0 with α /= β. _en we have µ + α + β ∈ Wλ if and only if
(α ∣ β) < 0 and ⟨µ + α, β∨⟩ = −1 = ⟨µ + β, α∨⟩.

Proof If ⟨µ+α, β∨⟩ = −1, then µ+α+β = sβ(µ+α) ∈Wλ. _is yields one direction.
Suppose on the other hand that µ+α+β ∈Wλ. _e invariance of ( ⋅ ∣ ⋅ ) underW

implies

(λ ∣ λ) = (µ + α ∣ µ + α) = (µ + β ∣ µ + β) = (µ + α + β ∣ µ + α + β).

Now

(µ + α + β ∣ µ + α + β) = (µ + α ∣ µ + α) + (β ∣ β) + 2 (µ + α ∣ β)

yields (β ∣ β)+2 (µ+α ∣ β) = 0, hence 1+⟨µ+α, β∨⟩ = 0. We thus get ⟨µ+α, β∨⟩ = −1
and by symmetry also ⟨µ + β, α∨⟩ = −1. Furthermore, µ ∈ X+ implies ⟨µ, β∨⟩ ≥ 0,
hence ⟨α, β∨⟩ < 0.

3.10

Lemma (i) Let α, β ∈ S0 with α /= β. If µ + α + β ∉ Wλ, then (zα , zβ) = 0. If
µ + α + β ∈Wλ, then (zα , zβ) = ±1.

(ii) We can choose the elements zα (α ∈ S0) such that (zα , zβ) = −1 for all α, β ∈ S0
with α /= β and µ + α + β ∈Wλ.

Proof (i) We have

(3.2) (zα , zβ) = (X−αvµ+α , X−βvµ+β) = (vµ+α , XαX−βvµ+β) = (vµ+α , X−βXαvµ+β).

If µ + α + β ∉ Wλ, then µ + α + β is not a weight of V(λ), hence Xαvµ+β = 0 and
(zα , zβ) = 0.
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If µ + α + β ∈ Wλ, then Lemma 3.9 implies ⟨µ + α + β, α∨⟩ = 1 = ⟨µ + α + β, β∨⟩.
Now (3.1) yields Xαvµ+β = ±vµ+α+β and X−βvµ+α+β = ±vµ+α . Plugging this into (3.2)
shows (zα , zβ) = ±(vµ+α , vµ+α) = ±1.

(ii) Recall fromSubsection 3.7 thatwe can replace any zα by−zα if we sowish. Since
the Coxeter graph of S is a tree, we can choose a numbering α1 , α2 , . . . , αn of S such
that for each i there is atmost one j < i with (α j ∣ α i) < 0. We now inductivelymodify
all zα i with α i ∈ S0 as follows: If there is no j < i with α j ∈ S0 and µ + α i + α j ∈ Wλ,
then we do not change zα i . If there is a j < i with α j ∈ S0 and µ + α i + α j ∈ Wλ,
then (α j ∣ α i) < 0 by Lemma 3.9, so j is unique by our choice of numbering. We have
(zα j , zα i ) = ±1 by (i), and now replace zα i by ∓zα i so to get (zα j , zα i ) = −1. (Note that
these sign changes do not change the determinant of the Gram matrix in 3.8 or the
basis property there.)

3.11 We shall need an auxiliary result. If A = (a i j) ∈ Mn(R) is a symmetric (n ×

n)-matrix with real entries, then we denote by qA the quadratic form on Rn given
by qA(x1 , x2 , . . . , xn) = ∑

n
i=1∑

n
j=1 a i jx ix j .

Lemma Let A, B ∈ Mn(R) be symmetric matrices, A = (a i j) and B = (b i j), such
that a i j = b i j whenever i /= j and b i i ≥ a i i for all i. If qA is positive deûnite, then so
is qB , and we have detB ≥ detAwith equality only for B = A.

Proof Assume that qA is positive deûnite. We have for all x = (x1 , x2 , . . . , xn) ∈ Rn ,

qB(x) − qA(x) =
n

∑
i=1

(b i i − a i i) x2
i ≥ 0.

So also qB is positive deûnite.
In order to prove the claim on the determinants we can assume n > 1; we want to

use induction on the number of i, 1 ≤ i ≤ n, with b i i > a i i . Suppose that B /= A and
ûx an index i with b i i > a i i . For any t ∈ R denote by A(t) ∈ Mn(R) the symmetric
matrix with (i , i)-entry equal to t and all other entries equal to the corresponding
entry in A. Note that A(a i i) = A.

_ere exists a constant c such that detA(t) = A i i t+ c where A i i is the (i , i)-minor
ofA. We haveA i i > 0, since qA is positive deûnite. _erefore, detA(t) is an increasing
function of t; we get detA(b i i) > detA(a i i) = detA.

_e ûrst part of the proof shows that qA(t) is positive deûnite for t ≥ a i i . _erefore,
the pair (A(b i i), B) satisûes the same assumptions as (A, B). Now induction yields
detB ≥ detA(b i i) > detA.

3.12 Proof of Proposition 3.8

Wewant to apply Lemma 3.11 with B equal to thematrix of all (zα , zβ)where we work
with an arbitrary numbering of S0 and where we assume that Lemma 3.10(ii) holds.
We set A equal to thematrix we get from B by replacing all diagonal entries by 2. Since
µ is dominant, we have ⟨µ, α∨⟩ ≥ 0 for all α ∈ S0, hence (zα , zα) = ⟨µ, α∨⟩ + 2 ≥ 2. So
the general assumptions of Lemma 3.11 are satisûed.
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We can regard A as the Cartan matrix associated with a Dynkin diagram with ver-
tices S0 where two vertices α /= β are joined by an edge if and only if (zα , zβ) = −1,
and in that case they are joined be a single edge. We know by Lemmas 3.9 and 3.10
that (zα , zβ) = −1 implies (α ∣ β) < 0. So we get the new Dynkin diagram from the
one of R by removing the vertices not in S and by removing some edges; in particu-
lar, a double or triple edge is either removed or replaced by a single edge. It follows
that each connected component of the new Dynkin diagram is of type A, D, or E.
Furthermore, we can get a component of type E8 only if R has type E8 and S = S0.

Now detA is the product of the determinants of the Cartan matrices of the con-
nected components of the new diagram. Each factor is a positive integer; it is equal
to 1 only if the component has type E8. It follows that detB ≥ detA is a positive in-
teger. We get detB = 1 only if B = A and if all components of the new diagram have
type E8. _e latter conditionmeans that R has type E8 and S = S0, while B = A implies
⟨µ, α∨⟩ = 0 for all α ∈ S0, hence (combined with S = S0) that µ = 0.

Note ûnally that since detB > 0, theGrammatrix of all (zα , zβ), is non-zero, the zα
have to be linearly independent; hence by Lemma 3.7 they form aZ-basis forV(λ)Z,µ .

3.13 _e preceding subsection completes the proof of _eorem 1.4 that relies only on the
classiûcation of Dynkin diagrams. _e method used here turns out also to yield a
uniform approach to the multiplicities in Cases (I)–(V) from Proposition 2.2.

Note ûrst that

S0 =
⎧⎪⎪
⎨
⎪⎪⎩

S in Cases (I), (III), and (V),
{ all short simple roots} in Cases (II) and (IV).

One checks this by inspection.
Assuming that we are in one of these cases, we can improve on Lemma 3.9.

Lemma Let α, β ∈ S0 with (α ∣ β) < 0. _en µ + α + β ∈Wλ.

Proof We have to do this by inspection in our ûve cases. We can switch α and β
and thus assume that ⟨α, β∨⟩ = −1. According to Lemma 3.9 we have to check that
⟨µ, β∨⟩ = 0. _is is obvious in Case (II). In Cases (III) and (V), β will be a long root
and the long roots indeed satisfy ⟨µ, β∨⟩ = 0. We have ∣S0∣ = 1 in Cases (I) and (IV),
so they do not arise here.

Remark It follows that we can reûne Lemma 3.10 and get for α, β ∈ S0 with (α ∣

β) < 0,

(zα , zβ) =
⎧⎪⎪
⎨
⎪⎪⎩

−1 if ⟨β, α∨⟩ < 0,
0 if ⟨β, α∨⟩ = 0,

having made the same normalisation as in Lemma 3.10(ii).

3.14

Proposition In the cases from Proposition 2.2 the determinant of the Gram matrix of
all (zα , zβ) is given as follows:
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(I) ⟨λ, α∨1 ⟩;
(II) for R of type An/Bn/Cn/Dn/E6/E7/E8/F4/G2, it is n + 1/2/n/4/3/2/1/3/2;
(III) 2n + 1;
(IV) 3;
(V) 7.

Proof In Cases (I) and (IV), we have ∣S0∣ = 1, say S0 = {α}, so the determinant is
equal to ⟨µ, α∨⟩ + 2 which yields the claim in these cases.

In Case (II), if R has typeAn ,Dn , or En , then ourGrammatrix is the Cartanmatrix
of R, so the determinant is equal to the (known) index of connection of R. If R has
type Bn , Cn , F4, or G2, then the Gram matrix is equal to the Cartan matrix of a root
system of type Am with m = ∣S0∣, hence has determinant m + 1. And the value of m is
1, n − 1, 2, 1 in these cases.

In Case (III), one gets the Gram matrix from the Cartan matrix for the root sys-
tem An by replacing the last diagonal 2 by 3. Expanding the determinant a�er the last
row, one gets 3 n − (n − 1) = 2 n + 1.

In Case (V), the matrix is

(
4 −1
−1 2) .

3.15

Proposition Let (λ, µ) be one of the pairs from Proposition 2.2. We have
[V(λ)k ∶L(µ)k] > 0 if and only if Char k divides the determinant corresponding to
(λ, µ); if so, then we have [V(λ)k ∶L(µ)k] = 1 except in Case (II) for R of type Dn with
n even, where [V(ϖ2)k ∶L(0)k] = 2 when Char(k) = 2.

Proof _e ûrst claim follows from the general discussion in Subsection 3.2. Set m =

∣S0∣ = dimV(λ)µ . Suppose that p = Char k divides the determinant. By (2.1) we have
to show that dim L(λ)k ,µ = m − 1, hence that the rank of the Gram matrix reduced
modulo p is equal to m − 1. _is is obvious when m = 1, so suppose now that m > 1.

If we exclude for the moment types Dn and En , then we can ûnd a numbering
α1 , . . . , αm of S0 such that (α i ∣ α j) < 0 if and only if ∣ j − i∣ = 1. _en for each i < m
the i-th row has (i + 1)-st entry −1, and all entries to the right are 0. _is shows that
the ûrst m − 1 rows in the Gram matrix are linearly independent modulo any prime,
hence that the rank is at least m − 1.

In the Dn-case one checks that the rank of the Cartan matrix modulo 2 is equal to
the rank of the embedded Cartan matrix of type An−1. In type E6 one notes that the
determinant of the Cartan matrix is coprime with the determinant of the embedded
Cartan matrix of type D5. And in type E7 one uses the embedded Cartan matrix of
type E6.
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