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A N INEQUALITY FOR COMPLETE 
SYMMETRIC FUNCTIONS 

BY 

SAMUEL A. ILORI 

Consider the identity 

r i d - v r ^ I Tr(au...,am)tr, 
j = l r=0 

where au ... ,am are positive real numbers. Then for r = 1,2,3, . . . Tr = 
Tr(au . . . , dm) is called the rth complete symmetric function in au . . . , dm 
(T0=l). 

Tr = X a\x - • • ai", 

where the summation is over all permutations (kl9..., fem) satisfying the 
conditions 0<fc t<r ( l < i < m ) and X k* = r- We then define the rth complete 
symmetric mean qr as 

/m + r - l \ - \ 

where (m + r - 1 r) is the number of terms in Tr. Then by Theorems 220 and 
221 in [1] we have the inequalities: 

(1) (qr)
2<qr-iqr+i 

for r = 1,2, 3 , . . . unless all the a are equal, and 

(2) (qr)1/r<(qr+i)1,r+1 

for r = 1,2,3, . . . unless all the a are equal. The inequalities (1) and (2) also 
follow from part (b) of Theorem 2 and its Corollary in [3] where k = - 1 . 

The purpose of this note is to generalize the inequality (1) in the same way as 
Menon did for elementary symmetric functions in [2]. Define for r = 1,2, 3 , . . . 
and 0 < f < l , the functions 

T 
* ( ' ) = ] ' 

rrr 
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where [n k] is the f-binomial coefficient defined by 

k)~-[k\ (l-t)(l-t2)---{l-t 

[n 0 ] = l a n d [ n fc] = 0, for fc<0 (cf. [2]). Note that qr(0) = Tr and qr(l) = qr. 
We then have the following 

THEOREM. For r = 1,2, 3 , . . . and positive real numbers a 1 ; . . . , am we nai>e 

(3) { < î r ( 0 } 2 < ( ^ ) q r - 1 ( 0 q r + i ( 0 , 

(0 < f < 1) unless all the a are equal. 

Proof 

rm + r -2" | rm + r"|/m + r - l \ 2 , 
l r-l JUlJl r )"' 

i + r - l ) ( r + l ) ( l - r + f ) ( l - Q < | ? /r + l \ qg 

+ r ) r ( l - r + r - 1 ) ( l - O q r _ 1 q r + 1 \ r /q , - !q r + 1 ' 

(m + r - ' 
(m + j 

(since 

\-f i A (m + r - l ) ( l - r + r ) A r + 1 , . _ 
— 7 + ï ^ l and v " ' < i < — , (using (1)). 

l-fr+1 (m + r J d - r ^ - 1 ) 

Therefore, 

{*(0}2 . < : + ! 

q r - i (0*+i(0 r 

and this proves (3). 

REMARK. When t = 1, the inequality (3) is less sharp than the inequality (1). 
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