# AN INEQUALITY FOR COMPLETE SYMMETRIC FUNCTIONS 

BY<br>SAMUEL A. ILORI

Consider the identity

$$
\prod_{i=1}^{m}\left(1-a_{j} t\right)^{-1}=\sum_{r=0}^{\infty} T_{r}\left(a_{1}, \ldots, a_{m}\right) t^{r}
$$

where $a_{j}, \ldots, a_{m}$ are positive real numbers. Then for $r=1,2,3, \ldots T_{r}=$ $T_{r}\left(a_{1}, \ldots, a_{m}\right)$ is called the $r$ th complete symmetric function in $a_{1}, \ldots, a_{m}$ ( $T_{0}=1$ ).

$$
T_{r}=\sum a_{1}^{k_{1}} \cdots a_{m}^{k_{m}},
$$

where the summation is over all permutations $\left(k_{1}, \ldots, k_{m}\right)$ satisfying the conditions $0 \leq k_{i} \leq r(1 \leq i \leq m)$ and $\sum k_{i}=r$. We then define the $r$ th complete symmetric mean $q_{r}$ as

$$
q_{r}=\binom{m+r-1}{r}^{-1} T_{r}
$$

where $(m+r-1 \quad r)$ is the number of terms in $T_{r}$. Then by Theorems 220 and 221 in [1] we have the inequalities:

$$
\begin{equation*}
\left(q_{r}\right)^{2}<q_{r-1} q_{r+1} \tag{1}
\end{equation*}
$$

for $r=1,2,3, \ldots$ unless all the $a$ are equal, and

$$
\begin{equation*}
\left(q_{r}\right)^{1 / r}<\left(q_{r+1}\right)^{1 / r+1} \tag{2}
\end{equation*}
$$

for $r=1,2,3, \ldots$ unless all the $a$ are equal. The inequalities (1) and (2) also follow from part (b) of Theorem 2 and its Corollary in [3] where $k=-1$.

The purpose of this note is to generalize the inequality (1) in the same way as Menon did for elementary symmetric functions in [2]. Define for $r=1,2,3, \ldots$ and $0 \leq t \leq 1$, the functions

$$
q_{r}(t)=\frac{T_{r}}{\left[\begin{array}{c}
m+r-1 \\
r
\end{array}\right]}
$$

Received by the editors July 12, 1976.
where $\left[\begin{array}{ll}n & k\end{array}\right]$ is the $t$-binomial coefficient defined by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{\left(1-t^{n}\right)\left(1-t^{n-1}\right) \cdots\left(1-t^{n-k+1}\right)}{(1-t)\left(1-t^{2}\right) \cdots\left(1-t^{k}\right)}
$$

[lll $\left.\begin{array}{ll}n & 0\end{array}\right]=1$ and $\left[\begin{array}{ll}n & k\end{array}\right]=0$, for $k<0$ (cf. [2]). Note that $q_{r}(0)=T_{r}$ and $q_{r}(1)=q_{r}$. We then have the following

Theorem. For $r=1,2,3, \ldots$ and positive real numbers $a_{1}, \ldots, a_{m}$ we have

$$
\begin{equation*}
\left\{q_{r}(t)\right\}^{2}<\left(\frac{r+1}{r}\right) q_{r-1}(t) q_{r+1}(t) \tag{3}
\end{equation*}
$$

( $0 \leq t \leq 1$ ) unless all the a are equal.
Proof

$$
\begin{aligned}
& \frac{\left[\begin{array}{c}
m+r-2 \\
r-1
\end{array}\right]\left[\begin{array}{c}
m+r \\
r+1
\end{array}\right]\binom{m+r-1}{r}^{2} q_{r}^{2}}{\left[\begin{array}{c}
m+r-1 \\
r
\end{array}\right]^{2}\binom{m+r-2}{r-1}\binom{m+r}{r+1} q_{r-1} q_{r+1}} \\
& \quad=\frac{(m+r-1)(r+1)\left(1-t^{m+r}\right)\left(1-t^{r}\right) q_{r}^{2}}{(m+r) r\left(1-t^{m+r-1}\right)\left(1-t^{r+1}\right) q_{r-1} q_{r+1}} \leq\left(\frac{r+1}{r}\right) \frac{q_{r}^{2}}{q_{r-1} q_{r+1}}
\end{aligned}
$$

(since

$$
\left.\frac{1-t^{r}}{1-t^{r+1}} \leq 1 \quad \text { and } \quad \frac{(m+r-1)\left(1-t^{m+r}\right)}{(m+r)\left(1-t^{m+r-1}\right)} \leq 1\right)<\frac{r+1}{r}, \quad \text { (using (1)). }
$$

Therefore,

$$
\frac{\left\{q_{r}(t)\right\}^{2}}{q_{r-1}(t) q_{r+1}(t)}<\frac{r+1}{r}
$$

and this proves (3).
Remark. When $t=1$, the inequality (3) is less sharp than the inequality (1).

## References

1. G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities. Cambridge University Press, New York, 1934.
2. K. V. Menon, An inequality for elementary symmetric functions. Canad. Math. Bull. vol. 15 (1), 1972, 133-135.
3. J. N. Whiteley, A generalization of a Theorem of Newton. Proc. American Math. Soc. 13 (1962), 144-151.

Department of Mathematics<br>University of Ibadan<br>Ibadan, Nigeria

