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1. Introduction. Let M be an n -dimensional connected submanifold in an m-
dimensional Euclidean space Em. Denote by A the Laplacian of M associated with the
induced metric. Then the position vector x and the mean curvature vector H of M in Em

satisfy

Ax = - « / / . (1.1)

This yields the following fact: a submanifold M in Em is minimal if and only if all
coordinate functions of Em, restricted to M, are harmonic functions. In other words,
minimal submanifolds in Em are constructed from eigenfunctions of A with one eigenvalue
0. By using (1.1), T. Takahashi proved that minimal submanifolds of a hypersphere of Em

are constructed from eigenfunctions of A with one eigenvalue A (#0). In [3,4], Chen
initiated the study of submanifolds in Em which are constructed from harmonic functions
and eigenfunctions of A with a nonzero eigenvalue. The position vector x of such a
submanifold admits the following simple spectral decomposition:

x = xo + xq, with Axo = 0 and Axg = kxq • (1.2)

for some non-constant maps x0 and xq, where A is a nonzero constant. He simply calls
such a submanifold a submanifold of null 2-type.

Chen has proved in [3,4] that the only null 2-type surfaces in £ 3 are open portions of
circular cylinders and the only null 2-type surfaces in £"* with constant mean curvature are
open portions of helical cylinders, by which we mean the product surfaces of a straight
line and a circular helix. In this paper we study Chen surfaces of null 2-type and obtain
the following result.

THEOREM. Let M be a {connected) non pseudo-umbilical Chen surface in Em with
constant mean curvature. If M is of null 2-type, then M is flat and lies fully in an afflne
subspace E\ E\ E5 or E6 of Em.

Since circular cylinders in £ 3 and helical cylinders in E4 all are Chen surfaces, the
theorem is a generalization of Chen's results (for the definition of Chen surfaces please
see [2,7] or Section 2). Moreover, some examples will be given in Section 4 for null
2-type Chen surfaces fully in E5 and E6.

2. Preliminaries. Let M be an n -dimensional submanifold in an m -dimensional
Euclidean space Em. We denote by h,A,H,V and D the second fundamental form, the
Weingarten map, the mean curvature vector, the Riemannian connection and the normal
connection of M in Em. We choose an orthonormal local frame {ex,... ,em} on M such
that eu..., en are tangent to M and en+1 is in the direction of H. Denote by {co1,... , com}
the dual frame and w% (A,B = 1,2, . . . , m) the connection forms associated with
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{ei,... ,em}. Then we have the following useful Chen's formula (cf. [2, p.271]):

AH = ADH + X h(e,,AHe,) + 2 tt(ADH) + \nVa2, (2.1)

where ADH is the Laplacian of H with respect to the normal connection D, a = \H\ the
mean curvature of M in Em and Va2 the gradient of a2. Moreover, for the terms in (2.1)
we have

S h{eh AHet) = \\AH+1 f H + a(H), (2.2)
(=i

n m

• tr(ADH) = '2lAD.Hei=An+1Va + a 2 A-(«*+i)#, (2.3)
i = l r=n+2

n

where we put A r = ACr, DiH = De.H, \\An+1\\
2 = tr An+iAn+u (u>r

n+l)#= 2 co^+1(e,)e,- and
(=i

a(H)— S tr(>ln+i>lr)er. A submanifold M in £ m is called a Chen submanifold if
r=n+2

a(H) = 0 identically. Minimal submanifolds, pseudo-umbilical submanifolds and hyper-
surfaces are trivial examples of Chen submanifolds. Non-trivial examples can be found in
[7]. For Chen surfaces of null 2-type, we have the following result.

LEMMA 1. Let M be a Chen surface in Em with constant mean curvature such that M is
not ofl-type. Them M is of null 2-type if and only if the following hold:

= 0; (2.4)

(De3,Der), r = 4 , . . . , m ; (2.5)

\\A3\\
2+ (De3,De3) = c, for some nonzero constant c. (2.6)

Proof. Let M be a surface in Em of null 2-type. From (1.1) and (1.2), we have

AH = \H, for some nonzero constant A. (2.7)

On the other hand, if M is a Chen surface in Em with constant mean curvature, then (2.1)
becomes

m

AH = ADH + \\A3\\
2H + 2a2 Ar(a>r

3)ff, (2.8)

m
where ADH = (De3, De3)H + 2 a{(De3, Der) - tr(Vws)K- Combining (2.7) and (2.8), we

r=4
obtain (2.4)-(2.6) immediately. The converse is clear. •

We also need the following, which is a straightforward generalization of Chen's result
in [3].

LEMMA 2. [8]. A surface M in Em with parallel normalized mean curvature vector is of
null 2-type if and only if M is an open portion of a circular cylinder.

Here the normalized mean curvature vector means the unit vector field in the direction of
the mean curvature vector.
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3. Proof of the theorem. In this section, we shall prove the theorem by the methods
used in [1] and [6].

Let M be a Chen surface of Em. We choose {eue2} which diagonalizes AH and
H = ae3. Suppose that M is not pseudo-umbilical, i.e., the Weingarten map AH is not
proportional to the identity map. Then we have h4

n =... = /in = 0. If the normalized
mean curvature vector e3 is not parallel, i.e., De3 ¥> 0, since M is 2-dimensional, we may
assume that De3 lies in the normal subspace spanned by e4 and e5. Then by a suitable
choice of eit..., em we have

/3 0\ _ / 0 S\ _ / 0 e\ _ / 0 A

0 yh AA~\8 OJ' As~\e o)' 6~\£ oh (3.1)
A-, = ...=Am=0, De3 = co4

3e4 + w5
3e5.

If M is of null 2-type and the mean curvature a of M is constant, then by Lemma 1
we have (2.4), which implies, with the help of (3.1),

8w\(el) + eo%{e,) = 0, i = l,2. (3.2)
This means that

where we put £, = w3(e,)e4 + o>3(e,)e5, / = 1,2. Consequently, if | I A ^ 2 = 0, then
D2e3 = 0, and we may let De3 = w\e5 and choose e4 so that h(eue2) = 8e4. If ^i,
then Dje3 AD2e3 ¥^ 0, and we may let h(e},e2) = &$. Summarising, we have the following.

Case (1)

'0
(3.4)

y/ \t> U/

Case (2)

^ " U yh Ab~\C 07'
A 4 = A 5 = A 1 = . . . = A m = 0, D e 3 = (o4

3e4 + (o5
3e5. (3.5)

But Case (1) can be regarded as Case (2) with w3 = 0. Thus we have the following lemma.

LEMMA 3. Let M be a non pseudo-umbilical Chen surface of Em with constant mean
curvature. If M is of null 2-type and the normalized mean curvature vector is not parallel,
then on M, with respect to a suitable frame field, we have (3.5).

For convenience in the following we will investigate Case (1) and (2) separately.

LEMMA 4. Under the hypothesis of Lemma 3, if Case (1) holds, then M is flat and lies
fully in an affine surface E4 or E5 of Em.

Proof. Suppose that Case (1) holds. Then we have

3 _ o l 3 _ 2 4
 = fi2 6)4 = 8 1

wr
t = 0, for / = 1,2, r = 5 , . . . , m . (3.6)

De3 = co3e5, a)3 - 0, r = 4 , 6 , . . . , m.
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Differentiating w;5 = 0, we have

5 ? 5 ? ( = 1,2. (3.7)

If 5 = 0, (3.7) implies K = f3y = 0, i.e., M is flat, since D e 3 # 0 . Further by taking
exterior differentiation of w3 = 0, r = 4, 6 , . . . , m, we have

0 = da)r
3 = -cjr

SAcol, r = 4 , 6 , . .. ,m. (3.8)

On the other hand, we have from (2.5)

0 = tr(V<uS) = (De3, Der) = £ wfoVfo-), r = 4,6,... , m. (3.9)

Combining (3.8) and (3.9), we find that wr
s = 0 for r = 4 , 6 , . . . , m. Since we have known

in (3.6) that to3 = 0 for r = 4 , 6 , . . . , m , the normal subspace v spanned by {e3,e5} is
parallel with respect to the normal connection D. Thus by a reduction theorem of
submanifolds [5], we may conclude that in fact M lies in an affine subspace £"* of Em,
since the first normal space is just spanned by {e3} and contained in v. Moreover, from
the connection form (wj), A, B = 1,2,3,5 of M in Em, we may also conclude that M lies
fully in E\

If 5 ̂  0, then (3.7) implies

fo §(*) 4(e) = I l(c) (3-10)

Since o^ = 0, (2.5) gives

0 = tr(Vo>4
3) = (De3, De4) = «?(e,)w5(«,) + «i(g2)(w5(c2). (3.11)

Substituting (3.10) into (3.11), we find that (oKe^alfa) = 0. Without loss of generality,
we may choose that col(e2) = 0 and w\{e^)^Q since D e 3 # 0 . Then the exterior
differentiation of wA

3 = 0 gives

«5(e2)«3(e,) = (y - 0)5, (3.12)
and (2.6) becomes

l 2 = c-p2-y2. (3.13)

Combining (3.12) and (3.13), we obtain, with the help of (3.10),

2 = (c-p2-y2)y. (3.14)

Furthermore, taking differentiation of a>\ = fiwi[, a>2 = ya>2, <o\ = Sco2 and w\ = 8o)i, we
have

wiAw1 = dr A a)2 = — d8 AW2,
y-j8 25

(3.15)

Wi AO»2 = dB AW1 = - — d8 AW1,
y - j3 25
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and since M is non pseudo-umbilical and a is constant, we have y - ft ¥= 0 and d/3 = -dy,
and thus from (3.15) we may deduce

rf (3,6,
•y-jS 8

which implies
y - / 3 = * , 5 , (3.17)

where kl is some constant. Now from (3.14), (3.17) and the fact /3 + y = 2a = constant,
we may conclude that /3, y and 8 are all constant. Consequently, it follows from (3.15)
that w\ = 0. Thus M is flat.

Differentiating «; = 0, for i = l ,2 , r = 6,...,m, we find, with the help of (3.6),
a)r

4 = 0, r = 6,. . . , m. Applying (2.5) and (3.8) to cor
3, r = 6 , . . . , m, we may obtain (or

5 = 0,
r = 6, ...,m. Since in (3.6) we have already known w3 = 0, r = 6,...,m, we may
conclude that the normal subspace v spanned by {e3, e4, e5} is parallel. Then similar to the
case of 8 = 0, we may obtain that M lies fully in a E5 of Em. The proof of the lemma is
completed. •

LEMMA 5. Under the hypothesis of Lemma 3, if Case (2) holds, then M is flat and lies
fully in an affine subspace E4, E5 or E6 of Em.

Proof. If Case (2) holds, we have

<i)\ = f}w}, (x)\ = y(o2, a>\ = [(o2, a)2= ^tx)1,

(0r = ot r = 4 , 5 , 7 , . . . , m , (3.18)

De3 = w ^ + wle5, a>r
3 = 0, r = 6,...,m.

Differentiating a>4 = 0 and wf = 0, i = 1,2, we have

=0, for r = 4,5. (3.19)

If £ = 0, (3.19) implies that /3y = 0, since D e 3 ^ 0 . Thus by taking notice of
j8 + y = 2a = constant, we find that ft and y are both constant. Then differentiating
w] = licDl and W2 = yw2, we get that «? = 0. Thus M is flat. Moreover, without loss of
generality we may choose y ^ 0 and /3 = 0; then (3.19) implies that Z),e3 = 0 and
D2e3 = a)l(e2)e4 + (n\{e2)es. After rechoosing the normal frame field we have De3 = f
and the situation turns into Case (1) with 5 = 0. Thus M lies fully in a E4 of Em.

If I * 0,(3.19) gives

K\{e2), w6(e2) jw3(e1), r = 4,5. (3.20)

Since a>3 = 0, we have from (2.5)

0 = t r (V^) = (De3, De6) = t co^edcoKe,) + £ ft,53(c,)«56(c/). (3-21)
i=i 1=1
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Substituting (3.20) into (3.21), we obtain

w4
3(e,)o>4

3(e2) + cos
3(e>!(e2) = 0. (3.22)

It follows that if we choose e4 such that Z)je3 = (x)4
3{ex)e4, then D2e3 = o>3(e2)e5. If one

of (m\{ei) and o»3(e2) vanishes, then the situation turns into Case (1) with 5 ^ 0 , and M is
flat and lies fully in a E5 of Em.

Now suppose that (i)%(e\)a>\(e2)^Q. Differentiating w^/Sw1, (ol=yco3, o)* = £o>2

and a)* = £(o\ and comparing the results, we may obtain, with the help of d/3 = -dy,

y~fi = k2(, (3.23)

where k2 is some constant. Applying (2.5) to w3 = o^e^o)1 and or3 = o)3(e2)o>2, we have

= 0,

\{x)5{i) = 0.

On the other hand, differentiating them, we have

o)3(e1)w?(ei) = o^e^a^ei ) ,

a>\{e2)w\(e2) = 6>l(«j)w5(c2).

Then (3.24) and (3.25) give, with the help of differentiating w\ = £o>2 and o)2 = £w\

eA[{^{e,)f - (wl(e2))
2]U} = 0, i = 1,2, (3.26)

which implies

(a>A
3(el))

2-(<o$
3(e2)f = k3£, (3.27)

where &3 is some constant. Differentiating o>3 = 0, we have

P{o>l{e2)f ~ yicoKe,))2 = C\y ~ P). (3.28)

Moreover, from (2.6) we have

4 2 ^ ? = c-p2-y2. (3.29)

Putting (3.23) and (3.27)-(3.29) together and taking notice of j3 + y = 2a = constant, we
may conclude that j3, y, £, o)3(e]) and o)3(e2) are all constant from which we may deduce
that to2 = 0 as in the proof of Lemma 4. Thus M is flat.

Consequently, applying (2.5) to o>3 and o)3, we have

w5
3(e2)a>5

4(e2) = 0, w4
3(el)co4

5(e1) = 0. (3.30)

Since o)3(ei)o>-3(e2)#0, (3.30) implies

o\ = 0. (3.31)

Differentiating o)/ = 0, i = 1,2, r = 7 , . . . , m, we have

o/6 = 0, r = 7 , . . . ,m. (3.32)
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Then differentiating (3.31) and using (3.20), we have

y a f c i M f o ) - pto\{e2)w\{e2) = 0, r = 7,. .. , m; (3.33)

again from (2.5) we have

wl(e2)w
5

r(e2), r = 6,...,m. (3.34)
(3.33) and (3.34) give

o>5(e,) = 0, o»5(e2) = 0, r = 7, . . . ,m. (3.35)

Thus from (3.20), (3.21) and (3.35) we have

D}e4 = wlfafa, D2e4 = £ wSfote- (3.36)

In (3.36) we see that D2e4 has no component in Span{e3, e4, e5} and we may choose e7 in
such a way that

D2e4 = <u$(e2)e6 + oP4{e2)en. (3.37)

It follows that

« 4 = 0, /- = 8 , . . . , m . (3.38)

On differentiating w-j = 0, r = 7 , . . . , m, we have

0 = da>r
3 = [w4(e2)a>43(e])-^(e1)a>53(e2)]a>1AW2, (r = 7 , . . . , m ) . (3.39)

In particular, we have, with the help of (3.38),

0/5(^ = 0, r = 8 , . . . , m , (3.40)

which with (3.35) gives

a/5 = 0, r = 8 , . . . , » i . (3.41)

Differentiating u>l = a)4(e2)<u2 and a>7
s = w^e^w1, we find

el(a>4
7{e2)) = 0, e2(a.?(e,)) = 0. (3.42)

On the other hand, (3.39) gives for r = 7

"2(e2)ft»&i) - «?(ei)o>53(e2) = 0, (3.43)

from which we may deduce, by differentiation,

e2(o>I(e2)) = 0, el(wl(el)) = 0. (3.44)

Hence we obtain that u>l(e2) and o>s(ei) are both constant, and (3.43) implies that they
either both vanish or both do not. Furthermore, differentiating (3.31), we have, with the
help of (3.18), (3.20) and (3.38),

0 = d(x)5
4 = — (U3 A W4 — O>6 A O)^ ~ W7 A W4

= W\{e2)o>\{ex) - «2(«>fo2) - ^(cVJfo)}*)1 A w2 (3.45)
1
 A co2.
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Then since we know that M is flat, which means that K - /3y - 82 = 0, we may deduce
from (3.45) that w1

A{e2)oi1
5(e{) = 0. Consequently, both of w7

4(e2) and w^e,) must vanish.
Finally, from (3.18), (3.31), (3.32), (3.35)-(3.37) and (3.41), we have

D e 3 = a>4e4 + u)5
3e5, De4 = a>3

4e3 + co6
4e6,

(3.46)
De5 = (x)\e3 + o>5C6, De6 = cj4

6e4 + w5
6e5,

which implies that Span{e3,... , e6} is parallel. Then we may prove that M lies fully in a E6

of Em. This completes the proof of the lemma. •

Proof of the theorem. Combining Lemmas 2-5, we obtain the theorem
immediately. •

4. Examples. In this section we will give some examples of surfaces for the
theorem; each one is flat and fully in E3, E4, E5 or E6.

(a) CIRCULAR CYLINDERS. Chen [3] proved that circular cylinders are the only null
2-type surfaces in E3. It is clear that they are non pseudo-umbilical Chen surface in E3

with constant mean curvature. Thus circular cylinders are also the only examples for the
theorem in E3.

(b) HELICAL CYLINDERS. Chen [4] proved that helical cylinders are the only null
2-type surfaces in E4 with constant mean curvature. For a helical cylinder M in E4, by a
suitable choice of the Euclidean coordinates, its equation takes the following form:

x(u,v) = (u,a cosv,asinv,bv), (4.1)

for some constants a and b. By direct computation, we may confirm that M is a non
pseudo-umbilical Chen surface in E4 with constant mean curvature which is flat and lies
fully in E4. Thus helical cylinders are also the only examples for the theorem in E4.

(c) Let M be a surface in E5 which takes the following form:

x(u, v) - (au, b cos u cos v, b cos u sin u, b sin u cos v, b sin u sin v) (4.2)

for some constant a and b (ab ̂  0). By direct computation, we see that the Laplacian A of
M is given by

A = 1—Ti—2~T2~- (4-3)

We put
*0 = (flu, 0,0,0,0),

(4.4)
xq = (0, b cos u cos v, b cos u sin v, b sin u cos v, b sin u sin v).

Then we have

Axo = 0, Ax9 = \xq, A = ——n + T^- (4.5)

This shows that M is of null 2-type. Furthermore, we may choose orthonormal frame field
{«!,.. . , e5} on M in such a way that

e2 = xv/b, e3 = xuu/b, e4 = xuv/b. (4.6)
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Then, by direct computation, we may obtain

(bl{a2 + b2) 0 \ / 0 l/Va
TTb2~

o i/J' M i M F T F o > * = a (47)

From (4.7) it is easy to see that M is a non pseudo-umbilical Chen surface in E5 with
constant mean curvature which is flat and lies fully in E5. Thus M can serve as an
example for the theorem in E5.

(d) Let M be a surface in E6 which takes the following form:

x(u, v) = (au, cv, b cos u cos v, b cos u sin u, ft sin u cos u, ft sin u sin u), (4.8)

for some constant a, ft, and c (abc ¥= 0). By direct computation, we see that the Laplacian
A of M is given by

A = ~^T^^~?TbW- (49)

We put
xo = (au,cv, 0,0,0,0),

xq = (0,0, b cos u cos v, £> cos u sin u, fc con u cos w, ft sin u sin v).
Then we have

Axo = 0, Ax, = A*,, A = ̂ ^ + ̂ ^ . (4.11)

This shows that M is of null 2-type. We choose an orthonormal frame field {e,,... ,e6}
on M in such a way that

«i =xu/Va2 + b2, e2 = xv/Vc2 + ft2, e3 = xuu/b, e6 = xuv/b. (4.12)

Then, by direct computation, we obtain

(4.13)

0

Now it is clear that if a ¥=c, then M is a non pseudo-umbilical Chen surface in E6 with
constant mean curvature which is flat and lies fully in E6. Thus if a ¥^c, M is an example
for the theorem in E6.
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