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Abstract

The most frequently described drugs in the treatment of mood disorders are selective serotonin reuptake and monoamine oxidase (MAO)

inhibitors, enhancing serotonin levels in the brain. However, side-effects have been reported for these drugs. Because serotonin levels in

the brain are dependent on the availability of the food-derived precursor tryptophan, foods such as chicken, soyabeans, cereals, tuna, nuts

and bananas may serve as an alternative to improve mood and cognition. Here we discuss the effects of high- or low-tryptophan-

containing food, as well as plant extracts with a modest monoamine reuptake and MAO-A inhibition functional profile, on mood and

cognition in healthy and vulnerable human subjects and rodents. Together the studies suggest that there is an inverted U-shaped curve

for plasma tryptophan levels, with low and too high tryptophan levels impairing cognition, and moderate to high tryptophan levels

improving cognition. This relationship is found for both healthy and vulnerable subjects. Whereas this relationship may also exist for

mood, the inverted U-shaped curve for plasma tryptophan levels and mood may be based on different tryptophan concentrations in

healthy v. vulnerable individuals. Animal studies are emerging and allow further understanding of effects and the mode of action of

food-derived serotonergic components on mood, cognition and mechanisms. Ultimately, insight into the concentrations of tryptophan

and other serotonergic components in food having beneficial effects on mood and cognition in healthy, but particularly vulnerable,

subjects may support well-being in our highly demanding society.
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Introduction

Food is a primary requirement to live. Yet, even when food

is abundantly available, food could also be used as a

powerful tool to increase mental well-being. Stress-related

mental disorders such as mood or anxiety disorders are the

most prevalent (10 to 25 % women and 5 to 12 % men are

being diagnosed each year(1)), and burdensome, psychia-

tric disorders. They are characterised by low mood states

and cognitive impairments such as reduced learning and

memory(1). Thus, the exploitation of resilience or mood/

cognition-enhancing food is of extreme value. Yet,

whereas pharmacological manipulations have been abun-

dantly applied, surprisingly little is known about the effects

of food on mood and cognition.

The monoamine systems are strongly tied to stress

resilience and the (patho)physiology of mood and mood

disorders. As such, tricyclic antidepressants (inhibiting sero-

tonin and noradrenaline reuptake) and selective serotonin

reuptake inhibitors (SSRI) are frequently prescribed drugs

in the treatment of these disorders. To a limited extend

these agents also inhibit dopamine reuptake. Whereas anti-

depressant drugs are considered as healthy drugs, their

uncontrolled intake is not without risks. For instance, at

a young age these drugs may affect brain development

and increase suicide(2). Furthermore, triple monoamine

reuptake inhibition corresponds to the function of cocaine,

which is a powerful psychostimulant with abuse potential.

In addition to monoamine reuptake inhibitors, also drugs

that inhibit the breakdown of monoamines are used to

improve mood, particularly monoamine oxidase A (MAO-A)

inhibitors. However, these agents are also associated with

substantial side effects. A major risk is the serotonin

syndrome; too high levels of serotonin are toxic. Hence,

whereas monoamine reuptake inhibitors and MAO-A

inhibitors improve mood, particularly in individuals with a

low mood state, their use is not without risks.
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To improve mood by other means, food with high

tryptophan (Trp) availability and modest monoamine

reuptake and MAO-A inhibition functional profile may be

effective. The serotonin precursor Trp is an essential

amino acid that in mammals can only be derived from

food(3). Therefore, Trp levels in food appear to be an

essential link in the relationship between food intake and

our mood state. Accordingly, high-Trp-containing foods

(for example, chicken, soyabeans, cereals, tuna, nuts and

bananas) are presented on the Internet as food to improve

mood. Furthermore, sometimes unknowingly, the Trp

content of food has been increased. For instance, Neolithic

Mesopotamia-cultivated chickpeas contained more Trp

than wild varieties(4). Another example is the treatment

of maize with alkali by various cultures in America,

which enhances the bioavailability of Trp(5,6). More

recently, research into a-lactalbumin has revealed that

this whey-derived protein has the highest Trp content of

all proteins found in food and therefore is added to

infant milk formulas(7). Finally, an even more promising

source of Trp is egg protein hydrolysate(8). Pharmacologi-

cal studies have confirmed that products that increase

Trp levels increase serotonin levels in the brain, and appar-

ently modulate processing in the neurocircuits regulating

mood to enhance mood(9,10). Trp depletion, on the other

hand, is well known to affect mood negatively(11).

Hence, controlling the amount of Trp in food has substan-

tial effects on mood regulation and well-being, although

data as discussed in the present review indicate that the

relationship between Trp levels and mood is less

straightforward than we tend to think. Foods having

triple monoamine reuptake and MAO-A inhibitor function

have been less extensively investigated, even though they

may offer another natural source to boost mood. Indeed,

these foods have significant anti-depressive and anxiolytic

effects in rats which are comparable with the effects of

antidepressant reference drugs(12).

The aim of the present review is to provide an update

about foods influencing the serotonergic system that have

potential to increase stress resilience and thereby our

well-being. Rather than applying pharmacological drugs

when pathology has developed, prevention by healthy

foods may decrease the burden associated with mood dis-

orders. An important consideration is the heterogeneity of

mood disorders, caused by genetic or other biological

factors. Along with the fact that there are large individual

differences in vulnerability to mood disorders, there are

large individual differences in responsivity to antidepress-

ant agents(13), as well as in responsivity to serotonergic

food components. These individual differences play a lead-

ing role in our discussion of the effects of serotonergic

foods on mood. In sum, the present review discusses the

serotonergic system, and the influence of serotonergic

food components on mood and cognition in healthy,

genetically vulnerable and clinically depressed and recov-

ered populations, as well as (genetic) rodent models.

The serotonergic system

Serotonin, or 5-hydroxytryptamine (5-HT), is an ancient

monoamine, as even some unicellular organisms are able

to synthesise it. Furthermore, it is found in basically all

animal species and various plants such as stinging nettles

and walnuts. Apart from its roles in the cardiovascular and

digestive systems, 5-HT is an important neurotransmitter

with a wide variety of actions in different brain regions.

Because 5-HT as a hydrophilic molecule is unable to cross

the blood–brain barrier, it is synthesised in the brain, specifi-

cally the serotonergic neurons in the raphe nuclei itself,

by the enzyme tryptophan hydroxylase 2 (TpH2). TpH2 is

also expressed in myenteric neurons in the gut(14). TpH2

is distinct from tryptophan hydroxylase 1 (Tph1), the

enzyme that is responsible for the 5-HT system in the periph-

eral system, mainly the gut. The synthesis of 5-HT in the

brain takes place in the axon terminals of serotonergic neur-

ons where TpH2 exerts the first rate-limiting step. TpH2

hydroxylates L-tryptophan and forms 5-hydroxytryptophan.

This molecule is subsequently decarboxylated by aromatic

L-amino acid decarboxylase to form 5-HT. The 5-HT mol-

ecules are stored in vesicles in the serotonergic neurons.

Upon an action potential, 5-HT is released from axon term-

inals of serotonergic neurons into the synaptic cleft where it

binds to its receptors on the postsynaptic neuron. Its activity

is terminated by the serotonin transporter (5-HTT) in the

membrane of the presynaptic neuron that transports 5-HT

back into the cell. This allows recycling of 5-HT, although

stored/released 5-HT is also degraded by MAO-A. Fine-

tuning of the postsynaptic response to the release of 5-HT

is achieved through a host of different receptors and cells

and/or brain area-specific receptor profiles, thereby facilitat-

ing the different roles that 5-HT plays in physiological and

behavioural functions.

Serotonergic cell bodies are located in the raphe nuclei,

a cluster of nuclei in the brain stem projecting to almost all

brain regions(15), including lateral cortical regions, the

amygdala and the hypothalamus, which are all involved in

processing emotions and stress. Because TpH2, 5-HTT and

MAO-A are expressed in these and other brain areas(16–18),

agents acting through TpH2, 5-HTT and MAO-A will have

a global effect on 5-HT neurotransmission.

Although the precise role of 5-HT in mood disorders such

as depression, obsessive-compulsive disorder and anxiety is

not fully understood, it is evident that the 5-HT system is per-

turbed in these disorders. The synthesis, release, reuptake

and/or metabolism of 5-HT(19,20), as well as the functionality

of the 5-HT1A and 5-HT2 serotonin receptors(21,22), are to

different extents affected in anxiety and depression. The

general view is that there is an inverse relationship between

depression and 5-HT levels, based on the antidepressive

properties of serotonin-enhancing drugs(23). In terms of

food, a positive association between the consumption of

maize, which contains less Trp compared with other food

staples, and homicide rates has been found(24). Moreover,
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another cross-national study revealed a negative correlation

between dietary Trp and suicide rates(25).

There is also evidence that genetic variation in the sero-

tonergic system increases vulnerability to anxiety- and

depression-related disorders(26–29). A common polymorph-

ism in the promoter region of the 5-HTT (SLC6A4) gene

(abbreviated: 5-HTTLPR; serotonin-transporter-linked

polymorphic region) is associated with trait anxiety(30),

and in the context of (early-life) stress, this polymorphism

increases risk for depression(31). Paradoxically, it is the

low-activity short (s) allelic variant that increases

vulnerability. Although human studies could not provide

evidence, studies employing 5-HTT knockout mice and

rats have revealed that reduced 5-HTT expression is associ-

ated with increased synaptic 5-HT levels(32). Hence, whereas

SSRI-induced increases in 5-HT levels reduce depressive

symptoms, genetically induced constitutive high 5-HT

levels appear to increase these symptoms. Furthermore,

whereas 5-HTTLPR s-allele carriers are at risk for depression

if exposed to stress, those that are depressed suffer from

decreased responsivity to SSRI. Intuitively, decreased

5-HTT expression leaves a smaller window of opportunity

for SSRI to exert their maximum effects.

In 1998, gene mapping of the X-chromosomal MAO-A

gene revealed a functional polymorphism in the upstream

promoter region, consisting of a variable number of

tandem repeats (u-VNTR). The different lengths of these

variants was found to influence protein transcription and

thus enzymic activity(33). Others linked the alleles which

confer high enzymic activity (three, four and five repeats)

to several anxiety- and depression-related disorders(34–37),

as well as reduced responsiveness to antidepressant

treatment(37,38).

Finally a number of different TpH2 SNP have been

reported in several ethnical cohorts which are thought to

cause, through either lower enzymic activity or loss of

function, lower extracellular 5-HT levels. Zhang et al.(39)

showed that an 80 % loss of function TpH2 G1463A SNP

found in a geriatric sample in North Carolina (USA) was

more prevalent in the cohort diagnosed with unipolar

depression compared with the matching control cohort.

Another study revealed in Taiwanese Han Chinese subjects

a possible association between bipolar disorder and TpH2

C2755A, which leads to a reduction of 5-HT synthesis when

expressed in cells(40), and TpH2 Pro206Ser (conferring a

30 % reduction in enzymic activity) was found to be signifi-

cantly higher expressed in a cohort of German patients

suffering from bipolar disorder compared with controls(41).

In addition to these SNP, the study on Taiwanese Han

Chinese also reported that the 2703G/2473A haplotype

(a TpH2 promoter variant associated with bipolar disorder)

resulted in reduced transcription of the TpH2 gene as well

as reduced affinity for the transcription factor POU3F2(40).

Because 5-HTT, Thp2 and/or MAO-A polymorphisms

affect the functioning of the serotonergic system, it is to

be expected that they influence the effects of serotonergic

food components, either through reduced capacity to con-

vert Trp into 5-HT (due to reduced TpH2 function),

reduced sensitivity of the serotonergic system to elevated

5-HT levels (due to reduced 5-HTT function) or enhanced

degradation of 5-HT (due to elevated MAO-A activity).

Tryptophan

Since 5-HT cannot cross the blood–brain barrier due to its

hydrophilic properties the synthesis of the neurotransmitter

takes place in the axon terminals of serotonergic neurons.

The precursor Trp is absorbed from food into the blood-

stream. When a meal containing protein is consumed a

large proportion of Trp entering the portal vein is metab-

olised in the liver, which does not happen with the other

large neutral amino acids (LNAA)(42). Thus the amount of

Trp entering the circulation is much less compared with

other LNAA, if the amounts consumed are the same. How-

ever, the secretion of insulin in response to the intake of

carbohydrates in the meal reduces the plasma concen-

trations of all LNAA except Trp, which binds to albumin

and thereby can circulate throughout the body(43,44).

Whether a meal increases the ratio of plasma Trp levels

compared with the plasma levels of other LNAA (the

TRP:LNAA ratio) depends on the amount of protein

digested and the release of insulin(45,46). When Trp in the

circulation reaches the brain capillaries it is transported

across the blood–brain barrier. Here Trp has to compete

with other LNAA for active transport across the cell

membranes of the epithelial cells lining the capillaries.

Therefore, not the plasma level of Trp alone, but the

TRP:LNAA ratio determines its rate of transport across the

blood–brain barrier(45). Once inside the brain, Trp is

taken up by the serotonergic cells of the raphe nuclei

and via two enzymic reactions it is converted into 5-HT

(see the section on the serotonergic system).

Acute tryptophan depletion

Since there is a direct relationship between dietary Trp and

brain 5-HT synthesis, the supply of 5-HT in the brain can

be exhausted by decreasing the availability of Trp. A stan-

dardised procedure to drastically decrease the levels of

5-HT is acute tryptophan depletion (ATD). In short, a

diet low in Trp is eaten by the subjects for 24 h, after

which they fast overnight and during the test day except

for a shake which contains all amino acids excluding

Trp. This in itself causes a drop in the plasma TRP:LNAA

ratio. Furthermore, protein synthesis is stimulated by the

intake of high-protein foods or drinks. A protein-rich

low-carbohydrate diet results in a decreased amount of

Trp in the brain since the TRP:LNAA ratio in normal protein

is very low. Therefore, a protein-rich low-carbohydrate diet

results in more competition for the transport system over

the blood–brain barrier and consequently less transport

of Trp into the brain. As a consequence, Trp needed for
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protein synthesis during the diet and test day must be sup-

plied by the reserves in the body. Inevitably these reserves

will be drained to the point that they cannot maintain

plasma Trp levels, causing the TRP:LNAA ratio to drop

even further, to about 15 % within 5·5 h. Brain Trp levels

drop to 5 % several hours later, which hampers brain

5-HT synthesis(47–49). The effects of ATD in healthy volun-

teers and vulnerable subjects are described in the following

sections.

Effects of acute tryptophan depletion on mood and
cognitive functions in healthy subjects

Mood. In line with the increased incidence of depression

in women, it has been reported that the mood of healthy

female volunteers but not of healthy male volunteers

dropped after ATD (about 80–90 % reduction in plasma

Trp)(50,51). In male subjects, effects of ATD on mood

were either small(52,53) or fully absent (about 70–90 %

reduction in plasma Trp)(50,51,54,55). positron emission

tomography (PET) imaging showed that there may be

differences in 5-HT synthesis and metabolism between

the sexes, which could explain the difference in response

to ATD(48). Other studies reported that the performance

of men in the Stroop Color Word Test, testing selective

attention and response inhibition, improved following

ATD (about 60–80 % reduction in plasma Trp)(56,57). How-

ever, the effects of ATD on recognition of emotional faces

are inconsistent; some observed a decrease in recognition

of facial emotions following ATD (no complete data on

plasma Trp) in women(58), others found an increase in

the recognition of happy faces by women (plasma Trp

reduced by 55 %)(59), and still others reported no effects

in both men and women following a Trp reduction of

65 %(60,61). Thus, whereas ATD impairs mood in women,

there are conflicting results concerning the effects of ATD

on the recognition of emotional faces.

Cognition. Apart from mood, ATD has been found

to affect a number of cognitive functions in healthy

individuals. Memory consolidation was impaired when

the learning of a list of words took place during the Trp-

depleted state (about 60–80 % reduction in plasma Trp),

whereas the recall of word lists learned before the ATD

procedure was not affected(56,62). Moreover, McAllister

et al.(63) showed that ATD leading to a plasma Trp

reduction of 85 % significantly impaired source memory

recall. In sum, research consistently shows memory impair-

ment following ATD.

Effects of acute tryptophan depletion on mood and
cognitive functions in vulnerable subjects

Mood. In vulnerable and subclinical subjects more

consistent evidence has been found pointing towards a

lowering of mood and alterations in cognitive functioning

in response to ATD. For instance, healthy subjects with a

multigenerational family history of affective disorders

showed a reduction in mood as measured the by the Pro-

file of Mood States scale following ATD (about 70–90 %

reduction in plasma Trp)(64,65). The same is true for

patients who are remitted from a depressive episode and

responded to SSRI treatment (Trp plasma reduced by

about 50–90 %)(66–69); however, see Leyton et al.(70). In

remitted depressed patients, ATD impaired attention to

positive stimuli (about 55–64 % reduction in plasma

Trp)(71) and decreased the recognition of fearful and

happy faces (plasma Trp reduced by 55–84 %)(59,72). Fur-

thermore, in otherwise healthy women as well as remitted

major depression patients carrying the 5-HTTLPR ss or ls

genotype it was found that ATD significantly lowered

mood compared with l-allele carriers (about 70–85 %

reduction in plasma Trp)(73–75). Interestingly, men carrying

the same genotype did not experience a lower mood, but

instead showed increased impulsivity after ATD (plasma

Trp reduced by about 75–85 %)(75,76). When ATD (77 %

reduction in plasma Trp) was combined with a stressor,

mood deteriorated even further in 5-HTTLPR ss subjects,

while no further reduction was found in individuals homo-

zygous for the l allele(77). In summary, a vulnerable seroto-

nergic system, whether due to genetic background or a

(family) history of affective disorders, seems to enhance

the mood-deteriorating effects of ATD.

Cognition. Subclinical subjects tend to suffer from

instable cognitive function, which increases the risk of cog-

nitive impairments when cognitive capacities are too low

to properly deal with environmental challenges, like

stress, but also unhealthy food. In their pooled analysis

of nine separate ATD trials, Sambeth et al.(78) discovered

that the memory impairment effect of ATD (63–97 %

reduction in plasma Trp) was more prominent in women

than in men(78). ATD (plasma Trp reduced by 69 %) also

lowered incentive motivation in 5-HTTLPR s-allele car-

riers(79). In remitted depressed patients, ATD impaired

immediate verbal recall as well as immediate and delayed

recall of lists of spoken words (plasma Trp reduced by

55–71 %)(59,80,81). However, it improved attention to neu-

tral stimuli (about 55–64 % reduction in plasma Trp)(71).

Effects of acute and (sub-)chronic tryptophan depletion
in animal models

While the behavioural effects of ATD on human subjects

are well documented, research on the effects of Trp

depletion in animal models can offer further insight into

the role of 5-HT in mood and cognitive processes and

enable researchers to examine the effects of (sub-)chronic

Trp depletion. For instance, sub-chronic Trp depletion

(SCTD) (57 % reduction in plasma Trp, prefrontal cortex

5-HT levels reduced by 34 %) in Sprague–Dawley rats

led to depression-related behaviour in the forced swim

test as well as an increase in corticosterone, aldosterone,

5-HT receptor density and increased N-methyl-D-aspartate
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(NMDA) signalling(82). In another study reward learning

was impaired without an effect on motivation, assessed

by effort discounting and reversal learning tasks, following

SCTD (no data on plasma Trp levels, ventromedial frontal

cortex 5-HT levels reduced to about 50 % of control) in

Long Evans rats(83). SCTD (no data on plasma Trp levels,

prefrontal cortex 5-HT levels reduced to 39 % of control)

in Wistar rats also resulted in enhanced proneness to

gamble and poor decision making in the rodent Iowa

Gambling Task(84). Interestingly, also in macaques per-

forming a gambling task, ATD (about 65 % reduction in

plasma Trp) increased risky decision making(85). Chronic

Trp depletion in Lister hooded rats (40–50 % reduction

of 5-HT levels in the hippocampus, frontal cortex and

striatum) impaired object recognition in the novel object-

recognition paradigm, which was reversed by administer-

ing the atypical antipsychotic risperidone(86). ATD studies

in rats have also revealed that the effects of ATD (about

50 % reduction in plasma Trp) on hippocampal and frontal

cortex 5-HT levels were more pronounced in homozygous

serotonin transporter knockout Wistar rats compared with

heterozygous knockout rats and wild-type controls(87).

Finally, the circadian rhythm of locomotor activity as well

as the sleep–wake cycle were found to be disturbed in

Sprague–Dawley rats by ATD (99 % reduction in plasma

Trp, 85 % decrease in 5-HT brain levels)(88). In conclusion,

animal studies have provided evidence that Trp depletion

indeed lowers 5-HT levels in brain areas that are involved

in several cognitive functions and mood, thus reinforcing

the conclusions drawn from human ATD studies and

providing further insight into the underlying processes.

However, some care should be taken when reviewing

these studies on Trp depletion in rats, as not all strains

respond in the same manner to Trp depletion(89).

Summary of acute tryptophan depletion

In healthy subjects the negative effects of ATD on memory

are the most profound, while it seems to enhance selective

attention and inhibition of response. Interestingly, the low-

ering of mood by ATD in healthy subjects is only consistently

found in females. This sex effect may be a consequence of

lower 5-HT synthesis in females than in males(48), making

females more vulnerable to manipulation of the serotonergic

system. This is also true for subjects that have a vulnerable

serotonergic system as a result of genetic or (family) history

of affective disorder, as is seen in the enhanced lowering of

mood and negative effects on several cognitive functions in

these vulnerable subpopulations.

Acute tryptophan supplementation

Whereas consumption of a high-protein low-carbohydrate

diet lowers Trp levels(90), consumption of a diet high in

carbohydrates increases the Trp:LNNA ratio in blood

and the brain(44,91). The intake of a high amount of

carbohydrates triggers the release of insulin that in turn

stimulates the uptake of LNAA into muscle tissue, with

the exception of Trp, which is loosely bound by free albu-

min. Combined with a low intake of protein, the plasma

TRP:LNAA ratio shifts in favour of Trp and therefore

increases the transport of Trp over the blood–brain barrier.

This method, however, only mildly elevates Trp levels in

the brain, rarely exceeding an elevation of 25 % over base-

line. Furthermore, most typical diets high in carbohydrates

are high in protein as well, negating their effect on

plasma Trp levels(92). A valid alternative is the adminis-

tration of pure Trp via intravenous injection in which the

precise elevation of pure Trp levels can be observed.

This method, however, proves to be quite invasive and

inconvenient as a regular event. Yet another approach is

oral administration of a drink high in a-lactalbumin

retrieved from whey which is high in Trp(7) and therefore

can increase plasma Trp without increasing the amount

of competing LNAA. In several studies, a-lactalbumin was

administered as a chocolate-flavoured drink; thus this

method is much more feasible for a continued adminis-

tration and even rather pleasant for the test subject,

although the increase in Trp via this method is limited

and significantly lower than via intravenous injection(93,94).

More recently hydrolysed protein and egg protein hydroly-

sate in the form of a sweetened drink have been found to

raise brain Trp up to 255 %, so oral administration does not

necessarily produce a smaller increase in plasma Trp than

pure intravenous injections(8,9). Independent of the

method, an increased amount of Trp in the brain results

directly in an increase in 5-HT synthesis since the rate-

limiting enzyme TpH2 is only half saturated under

normal circumstances and 5-HTP aromatic L-amino acid

decarboxylase is a highly active enzyme(9).

In the last decades, there have been many studies on the

effects of acute Trp supplementation (ATS) on mood and

cognition, utilising either amino acid drinks containing

pure Trp, a-lactalbumin, hydrolysed protein or egg protein

hydrolysate. Because there is no standardised protocol for

ATS, the obtained Trp:LNAA levels after digestion of the

ATS mixture or diet can differ greatly between studies.

Nonetheless, significant effects of ATS have been observed

in both healthy and (sub)clinical populations. In the next

sections modulation of various cognitive functions and

mood by ATS in healthy and vulnerable subjects will be

discussed.

Effects of acute tryptophan supplementation on mood
and cognitive functions in healthy subjects

Mood. ATS seems to modulate emotional processing in

healthy subjects, in a dose-dependent manner. An oral

dose of 1·8 g Trp (600 % increase in TRP:LNAA) increased

the recognition of fearful and happy faces in females(95).

Murphy et al.(96) found increased recognition of happy

facial expressions, and a decreased recognition of
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expressions of disgust after 14 d of 3 g Trp/d (no data on

TRP:LNAA ratio) in healthy female subjects. In another

study, drinks containing a hydrolysed egg-white protein,

which increases plasma TRP:LNAA by 191–255 %,

improved mood(9). However, carbohydrate-rich protein-

poor diets or drinks containing a-lactalbumin that increase

plasma TRP:LNAA by 21–67 % did not have an effect on

mood(9,93,97–100). Furthermore, unphysiologically high

increases in TRP:LNAA ratios negatively affected mood,

as was reported after an intravenous injection of 7 g pure

Trp (1500 % increase in TRP:LNAA)(101,102). Thus, there

may be an inverted U-shaped relationship between

TRP:LNAA ratios and mood in healthy subjects.

Cognition. Considering that memory consolidation and

recall are impaired after ATD and in depression(56,62,63),

ATS may enhance these cognitive functions. Indeed, it

has been reported that an increase of 21 % in TRP:LNAA

following the administration of two a-lactalbumin-rich

drinks improved abstract visual memory in healthy

subjects(100). However, Sobczak et al.(102) found that an

intravenous injection of 7 g Trp had an adverse effect on

performance in memory tests. Given that extreme elevation

of TRP:LNAA (1500 %) caused significant sedation in the

test subjects(102,103), these detrimental effects could well

be due to sedation and not a direct effect of increased

5-HT levels. For instance, ATS (770 % increase in plasma

free Trp, no data on TRP:LNAA ratio) has been found

to increase reaction times(96,104) and subjective fatigue(105)

in both healthy subpopulations. Thus, ATS-induced

TRP:LNAA increases of 21–43 % have beneficial effects

on memory functions, whereas higher increases impair

memory, potentially due to sedative effects.

Effects of acute tryptophan supplementation on mood and
cognitive functions in vulnerable subjects

Mood. In contrast to ATS effects on mood in healthy sub-

jects, an increase in the plasma TRP:LNAA ratio of 41–48 %

following ATS was sufficient to improve mood as well as

vigor in high-stress-vulnerable subjects undergoing labora-

tory stress(93,97). Other studies found that in women with

premenstrual complaints, ATS (29 % increase in Trp:LNAA)

improved mood during the premenstrual stage(106,107). Fur-

thermore, in 5-HTTLPR s-allele, but not l-allele, carriers,

ATS (increase in plasma TRP:LNAA of 190 %) was found

to have positive effects on mood and vigor after exposure

to laboratory stress(108). It has also been reported that ATS

(no data on TRP:LNAA levels) was without effect on mood

in 5-HTTLPR s- and l-allele carriers, but lowered hypothala-

mic–pituitary–adrenal axis activity in individuals being

homozygous for the s allele(109). In addition, ATS reduced

food intake in dieting females regardless of their

5-HTTLPR genotype, while increasing mood and emotional

eating solely in l/l subjects (plasma TRP:LNAA ratio

increased by 70 %)(110). However, it has also been demon-

strated that an a-lactalbumin-enhanced diet (21 % increase

in TRP:LNAA) failed to modulate mood or vigor in recov-

ered depressed subjects(98,100), and an increase of 21 % in

TRP:LNAA following the administration of two a-lactalbu-

min-rich drinks had no effect on mood in recovered

depressed patients(100). Perhaps these TRP:LNAA ratios of

about 20 % are too low to improve mood in vulnerable

subjects. Overall, ATS seems to have more profound effects

on mood in vulnerable populations than in healthy sub-

jects. Potentially, factors such as lower baseline levels of

5-HT and reduced capacity to clear released 5-HT from

the synaptic cleft may help to clarify whether ATS has ben-

eficial effects in individuals with mood disturbances.

Cognition. An increase of 21 % in TRP:LNAA following

the administration of two a-lactalbumin-rich drinks

improved abstract visual memory in both healthy controls

and recovered depressed patients(100). Another study

found that in women with premenstrual complaints, ATS

improved memory for abstract figures (29 % increase in

TRP:LNAA) and word recognition (6–25 % increase in

TRP:LNAA) during the premenstrual stage(106,107). Further-

more, Markus et al.(111) reported an enhanced short-term

memory scanning in healthy high-stress-prone subjects

following laboratory stress and after consumption of a

high-carbohydrate low-protein diet (TRP:LNAA ratio

increased by 42 %) or after consumption of a diet enriched

with a-lactalbumin (Trp:LNAA ratio increased by 43 %)(112).

Together these data suggest that also in vulnerable subjects

ATS improves memory-related processes, at rather low

increases in plasma TRP:LNAA ratios. As to whether the

high Trp-induced sedative effects on cognition as observed

in healthy subjects also take place in vulnerable subjects

needs to be investigated.

Effects of acute and (sub-)chronic tryptophan
supplementation in animal models

As in the case of Trp depletion, the added value of study-

ing Trp supplementation in animals lies in the ability to

provide direct 5-HT level read-outs from the whole brain

or specific brain areas and assess (sub-)chronic effects of

Trp supplementation. Feurté et al.(113) showed that chronic

supplementation of the diet of rats with a-lactalbumin

leads to a stable increase of 40 % in plasma TRP:LNAA.

Increasing plasma TRP:LNAA levels in rats were found

to increase brain 5-HT levels, as dietary sub-chronic Trp

supplementation (30 % increase in brain TRP:LNAA) in

Sprague–Dawley rats resulted in an increase of 92 % in

extracellular 5-HT levels in the dorsal hippocampus. More-

over, the effect of the 5-HT-releasing agent fenfluramine

was enhanced as was performance in a differential

reinforcement of low rate responding condition (mimick-

ing SSRI treatment)(114). Collins et al.(115) showed that

supplementation of an egg white protein hydrolysate

replenished brain serotonin stores, even after pharmaco-

logical depletion of serotonin from the brain by 3,4-methy-

lenedioxymethamphetamine(115). In Wistar rats chronic
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treatment with Trp by oral administration (about 60 %

increase in plasma Trp:LNAA) was shown to increase

5-HT levels in the hippocampus by 57 %, in the cortex by

46 % and by 72 % in the rest of the brain, as well as boost-

ing performance in the radial arm maze test and water

maze test, indicating improvement in both short- and

long-term memory(116,117). However, a 7 d Trp treatment

in mice suppressed food intake significantly and, more

worryingly, increased brain thiobarbituric acid-reactive

substances (a measure for oxidative stress)(118). Taken

together, these data show that it might be worthwhile to

investigate whether the positive effects of ATS in human

subjects could be maintained when diet is supplemented

with Trp over a longer period of time. Although some

care should be taken, the increase in oxidative stress fol-

lowing chronic Trp supplementation in mice should not

be taken lightly.

Summary of acute tryptophan supplementation

ATS seems to improve mood and cognition in both healthy

and vulnerable subjects. Effects of ATS on cognition are

more consistent and require lower increases in the

plasma TRP:LNAA ratios than needed to improve mood.

Yet, for both mood and cognition it has been shown that

too high increases in Trp levels result in poorer perform-

ances. As serotonin synthesis can theoretically only be

increased to a maximum of 200 % due to saturation of

TpH2 (see the acute tryptophan supplementation section),

it is not likely that the poor performance results from

local negative responses to elevated serotonin levels like

sensitisation. However, a possible explanation could be

sedation, which was reported in one study(105), caused

by the subsequent synthesis of melatonin from serotonin

by serotonin-N-acetyltransferase and hydroxyindole-O-

methyltransferase(119). Taken together, these data suggest

that there is an inverted U-shaped curve for plasma

Trp levels and mood/cognition. Finally, research in

animal models has provided results that seem to justify

further investigation of chronic Trp supplementation in

human subjects.

Triple monoamine inhibitors

Unbeknownst to the individuals of ancient and medieval

times, some of the medicinal herbs they used actually con-

tained monoamine reuptake transporter inhibitors. During

the previous decade a number of studies focused on the

antidepressant-like effects of extracts from several subspe-

cies of St John’s wort (Hypericum perfoliatum), which was

traditionally used to treat wounds, eczema and disorders of

the central nervous system(120). Not only did these studies

reveal replicable antidepressant effects in mice(121–124),

analysis of monoamine uptake by rat synaptosomes

showed that uptake of all three monoamines was inhibited

by these extracts(121,124). In addition to St John’s wort, the

presence of monoamine reuptake inhibitors was shown

in the extracts of Siphocampylus verticillatus (a Brazilian

medicinal plant)(125), in Fructus Akebiae (a traditional

Chinese cure for depressive disorders)(126) and Sideritis

scardica (used as a tea, flavouring agent and universal

remedy around the Mediterranean)(127).

Perhaps even more surprising is the presence of mono-

amine transporter inhibitors in regular foods. In 2003, a

group of researchers reported on a group of isoflavans

and isoflavenes, which are present in licorice, with seroto-

nin transporter (SERT)-inhibiting properties(128). After 7 d

of oral injections with the extract of the roots of Glycyr-

rhiza glabra (from which licorice is made), mice showed

enhanced learning and memory performance in the

passive avoidance paradigm and reduced anxiety in the

elevated plus maze(129), as well as reduced immobility

in the forced swim and tail suspension tests for

depression(130). These findings suggest that the extract

from G. glabra possesses antidepressant potentials.

Recently, Mechan et al.(12) demonstrated that a supercritical

CO2 oregano extract acting as a moderate noradrenaline,

serotonin and dopamine reuptake inhibitor and MAO

inhibitor exerted antidepressant-like and anxiolytic effects

in mice. In the same study, the researchers used in vivo

microdialysis in rats to confirm that extracellular 5-HT

levels were indeed higher after a dose of the oregano

extract, albeit more slightly compared with the antidepress-

ant fluoxetine. Moreover, electroencephalogram measure-

ments after acute oral supplementation in freely moving

rats showed that this extract may exhibit antidepressant

and neuroprotective activities(131). Taken together, the

results of these studies seem to justify further investigation

into possible other dietary sources of monoamine reuptake

inhibitors, as well as studies testing whether the beneficial

behavioural effects of these plant extracts found in mice

can be replicated in human subjects. An important fact to

note is that the half maximal inhibitory concentration

(IC50s) of these plant-derived monoamine reuptake inhibi-

tors are about 1000-fold lower than those of pharmacologi-

cal compounds, making the chances of detrimental side

effects much lower(12). In addition, a recent study investi-

gating the attitudes of the general public and general prac-

titioners towards enhancement of mood and cognition in

healthy individuals by either pharmaceuticals or natural

compounds showed that the public, especially, tends to

be more favourable towards natural compounds(132).

Summary and conclusion

While the serotonergic system is an important target for

many pharmacological agents applied in psychiatry, this

system is also amenable to influences of food. Indeed,

food containing a low TRP:LNAA ratio tends to reduce

mood and cognition, and food that increases this ratio

may increase mood and cognition in humans. However,

as we reviewed, the relationship between Trp intake and
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behavioural performance is not unequivocal. In part this is

because methods that have been used to lower or increase

the plasma TRP:LNAA ratio differ considerably across

studies. Nonetheless, there may be an inverted U-shaped

relationship between central 5-HT levels and optimal

mood/cognition; low and too high Trp levels impair

mood/cognition, and moderate to high Trp levels

improve mood/cognition. Regarding cognition this

relationship is found for both healthy and vulnerable sub-

jects (Fig. 1(a)). However, regarding mood, effects of ATD

and ATS seem to depend on the functioning of the

serotonergic system of vulnerable or subclinical subjects,

with a much more profound decrease in mood of vulner-

able subjects compared with healthy subjects in the

lower brain Trp range (Fig. 1(b)). However, if brain Trp

levels are in the optimum range, mood in vulnerable sub-

jects is comparable with mood in healthy subjects. In

healthy individuals an increase in plasma TRP:LNAA of

67 % does not modulate mood, while in vulnerable subjects

an increase of 20–50 % is sufficient to normalise their brain

Trp levels and thus produce positive effects on mood. Such

positive effects on mood are only seen in healthy subjects

following a 191–255 % increase in plasma TRP:LNAA

levels. When plasma Trp levels are elevated beyond that

range, mood in both healthy and vulnerable subjects is

negatively affected. Given that Western and new world

societies are increasingly demanding and food is generally

abundantly available in these societies, insight in beneficial

TRP:LNAA ratios in food for specific target groups may

help the nutrition industry to adapt food to support our

mood and cognition.

One group of individuals that is vulnerable to manipula-

tions of the serotonergic system is the one that carries the s

allele of the 5-HTTLPR polymorphism. Studies employing

5-HTT knockout mice and rats as a model have revealed

that reduced 5-HTT expression (as hypothesised for

5-HTTLPR s-allele carriers) is associated with increased extra-

cellular 5-HT levels, reduced intra-neuronal 5-HT levels

and increased 5-HT synthesis. Also, various 5-HT receptors

are down-regulated(32). As to whether Trp levels or its

transport over the blood–brain barrier is affected by the

5-HTTLPR genotype is unknown to date. Nonetheless, if

5-HT synthesis is enhanced to compensate lower 5-HT

tissue levels, it may not be surprising that 5-HTTLPR

s-allele carriers are more sensitive to Trp depletion(74), an

effect that has also been observed in 5-HTT knockout

rats(87). In contrast to ATD, ATS has a positive effect on

mood, vigor and cortisol response after exposure to labora-

tory stress in ss subjects(108,109). 5-HTTLPR s-allele carriers

are more sensitive to stress(133) and are more prone to

develop depression after adverse life events(31). Given

that ATS has been reported to dampen the negative effects

on mood invoked by stress(108,109), it is of interest to

test whether (chronic) ATS improves stress coping and

decreases risk for depression in s-allele carriers. Finally,

to date, no studies on the effects of chronic Trp

supplementation in human subjects have been conducted.

With the recent discovery of powerful tools for enhancing

available Trp through diet, such as hydrolysed protein or

egg protein hydrolysate(8,9), and promising data from ATS

studies, chronic Trp supplementation studies in human

subjects are warranted. Ultimately, enhancing available

Trp in food such as cereals, maize and milk formulas

may represent an efficient and cost-effective way of

increasing mood and cognition, and thus our general
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Fig. 1. Relationship between brain tryptophan (Trp) levels and cognition/

mood. In both healthy and vulnerable subjects too low and too high brain Trp

levels result in impaired cognitive ability. This indicates that in the case of cog-

nition, brain Trp levels should lie within an optimum range (a). The effects of

small increases or decreases in brain Trp levels on the mood of healthy sub-

jects is negligible (b, ). Only large increases in brain Trp levels are able to

improve mood significantly in these subjects. Conversely, in vulnerable sub-

jects (b, ) relatively small increases in brain Trp result in an improved

mood. Unphysiologically high increases in brain Trp lead to negative effects

on mood in both healthy and vulnerable subjects. (A colour version of this

figure can be found online at http://www.journals.cambridge.org/nrr)
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well-being in the current increasingly demanding society.

Specifically, insight into beneficial Trp:LNAA ratios in

food for specific target groups – as presented here –

may help the nutrition industry to increase the functionality

of our food. Specifically, contrary to popular belief, most

common foods high in Trp do not increase the plasma

TRP:LNAA ratio enough to exert any positive effects on

mood/cognition, because they also contain large amounts

of other LNAA. Hence, functional foods have to be

designed containing much higher levels of Trp compared

with other LNAA. With about 10 % of the population over

12 years of age taking antidepressants in the USA

alone(134) and the numerous side effects associated with

their use, consumption of these functional foods to prevent

depression in the first place is alluring for both clinicians

and the general public.
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