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LYNDON WORDS, FREE ALGEBRAS AND SHUFFLES

GUY MELANCON AND CHRISTOPHE REUTENAUER

1. Introduction. A Lyndon word is a primitive word which is minimum in
its conjugation class, for the lexicographical ordering. These words have been
introduced by Lyndon in order to find bases of the quotients of the lower central
series of a free group or, equivalently, bases of the free Lie algebra [2], [7].
They have also many combinatorial properties, with applications to semigroups,
pi-rings and pattern-matching, see [1], [10].

We study here the Poincaré-Birkhoff-Witt basis constructed on the Lyndon
basis (PBWL basis). We give an algorithm to write each word in this basis: it
reads the word from right to left, and the first encountered inversion is either
bracketted, or straightened, and this process is iterated: the point is to show
that each bracketting is a standard one: this we show by introducing a loop
invariant (property (S)) of the algorithm. This algorithm has some analogy with
the collecting process of P. Hall [S], but was never described for the Lyndon
basis, as far we know.

A striking consequence of this algorithm is that any word, when written in
the PBWL basis, has coefficients in N (see Theorem 1). This will be proved
twice in fact, and is similar to the same property for the Shirshov-Hall basis, as
shown by M.P. Schiitzenberger [11].

Our next result is a precise description of the dual basis of the PBWL basis.
The former is denoted (S,,), where w is any word, and we show that

Sw =asS,
if w = au is a Lyndon word beginning with the letter @, and that
Sw=(k!... k)5 0. 08"

if w= l’l‘l ...I% is the decomposition of w into Lyndon words, where o is the
shuffle product and S* means shuffle exponentiation. The latter relation may
also be expressed by the following formula, “a la Hopf algebra”:

Zw Qw = Hexp(S; Q [])
w !

in the complete tensor product Q < A > ® Q < A >>, with the shuffle algebra
on the left, and the concatenation on the right, where the sum is taken over all
words w, and the product over all Lyndon words / in decreasing order, and where
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[/] means the element of the PBWL basis associated to /. This formula holds in
fact in any enveloping algebra, for any basis, as we shall indicate (remark 4).

An application of the previous result is that the elements S; form a transcen-
dance basis of the shuffle algebra Q(A). As a consequence, we prove a theorem
of Radford [9], who shows that the shuffle algebra Z{A) admits as a basis the
set of Lyndon words. More precisely, for each word

— 1k kn
w=1"'..1

decomposed into Lyndon words, the polynomial
kil k) oL otk

has coefficients in N and is of the form w+ smaller words (Section 4). As
a corollary, Z(A) (with the shuffle) is isomorphic to the algebra of integral
exponential polynomials over the set of Lyndon words, hence it is a free Z-
algebra with divided powers.

2. Lyndon words and the free Lie algebra. For properties on Lyndon words
which are not proved here, see [6] Chapter 5. Let A be a totally ordered set.
The elements of A are called letters and the elements of the free monoid A*
generated by A are called words.

We totally order A* as follows: u < v if and only if: (i) there exists a non-
empty word w such that uw = v, or (ii) there exist word x,y,z and letters a, b
such that u = xay, v = xbz and a < b. This is the usual lexicographical order
on A*.

A word u is a factor of a word v if there exist words x, y such that v = xuy;
in case x = 1 is the empty word (resp. y = 1) we say that u is a left (resp.
right) factor of v, proper if y # 1 (resp. x # 1). Two words u, v are said to be
conjugate if there exist words x,y such that u = xy and v = yx. A Lyndon word
may be equivalently defined to be a word w: (i) that is strictly less than any of
its conjugates; or (ii) that is strictly less than any of its proper right factors.

For example a, ab,aabab are Lyndon (a < b). From now on, let L denote
the set of Lyndon words over A. For any Lyndon word w € L — A let m be its
longest proper right factor in L. Then w = Im with [ € L and | < Im < m. The
couple o(w) = (I, m) is called the standard factorization of w. For example, the
standard factorization of aaabab is (a, aabab), and not (aaab, ab). We also have
the following: if /,m € L and / < m then Im € L.

We consider sequences of the form

(1) s = {ul[ua]. .. [u,]

where each u; is a Lyndon word, with the following property:

(S) u; is either a letter, or if (x,y) is its standard factorization, then y is greater
than or equal to any u;,j 2 i.
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Note that if each u; is a letter, then s has property (S). Moreover, if s is
decreasing, that is, u; 2 uy 2 ... 2 u,, then s has also property (S). A sequence
having property () will be called a standard sequence.

We present now a rewriting system on the set of standard sequences: for s as
in (1), s non decreasing, let [u;][u;+1] be the rightmost inversion, that is, i is the
greatest index such that u; < u;4;. Then define

(2) s'= [zl .. [wivin1] . . . (]

3) s" = [unllua] .. (i1 1] . [

As the reader may guess, the brackettings will be interpreted in the sequel as
Lie brackettings. The following key lemma shows that s’,s” are standard and
that the bracketting [u;u;4] is standard.

LemMA 1. Let s,s’,s” be defined by (1), (2), (3). Then, s',s" are standard se-
quences. Moreover, u;u;.y is a Lyndon word, of standard factorization (u;, uj1).

Proof. We prove first the second assertion. If /,m are Lyndon words with
| < m, then Im is a Lyndon word (see [6] Proposition 5.1.3). Hence wu;u;,; is
a Lyndon word. Moreover, either ; is a letter, hence (u;, u;4) is the standard
factorization of u;u;,1; or u; has the standard factorization (I, m); as s is a standard
sequence, we have m 2 u;,; this shows, by [6] Proposition 5.1.4, that (u;, u;4()
is the standard factorization of u;u;,.

We show now that s’, s” are standard sequences. By assumption,

Uis] 2 U2 2 ... 2 Uy,
MOTEOVET, U;y| > U;l;y|, because u;u;,y is Lyndon. This shows that s’ is standard,
because s is already standard. For s”, it is enough to observe that if u;,; is not
a letter and if (x,y) is its standard factorization, then y > u;, because u; < u;y;
by assumption and u;,; <y, because u;y; is Lyndon. Hence s” is standard.

We define a relation — on the set of standard sequences: if s,s’,s” are as
above, we define

s—s and s—s"

Furthermore, — will denote the transitive and reflexive closure of —.

Let Z(A) denote the free associative algebra generated by A over Z. Each
element of Z{A) is simply a Z-linear combination of words on A, and called a
polynomial. Put in another way, A* is a Z-basis of Z{A). As we shall consider
also another product on Z(A), we call the product of the free algebra Z({A) the
concatenation product (because it corresponds to concatenation of words).

Let £ (A) denote be the sub-Lie-algebra of Z(A) generated by the letters in A.
It is known that £ (A) is the free Lie algebra on A and that Z(A) is its enveloping
algebra (see [6] Chapter 5, for this and what follows). An element of L (A) is
called a Lie polynomial, or a Lie element of Z{A).
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Define inductively Lie polynomials [/], for any Lyndon word / (we use again
the notation [/] as above, by a slight abuse, which will not be confusing as
I — [1] is a bijection). For any letter a, let

[a] =a (a€A)
and if u is a Lyndon word of standard factorization (k, /), then
[u] = [[k], (1] = [K]U] — [1](k]
By a theorem of Lyndon, the set
{(nlreL}
is a basis of L(A) over Z. By the Poincaré-Birkhoff-Witt theorem, the set
{tl...lnz 0L €L 2...21,}

is a basis of Z(A), which we call the PBWL basis of Z(A).

Recall that each word in A* may be considered as a standard sequence.

The following result expresses each word in the PBWL basis, using the above
rewriting system.

THEOREM 1. For each word w, one has

w:Zs

*
w—s
s decreasing

where each s appears with its multiplicity.
The theorem is illustrated by the two following examples
Example 1. Let A= {a < b} and w = abba. One has
[abbllal
[abl[b]la] —> [bllablla]
e
[al(b][b]a]
[bllallb]la]l — [bllab]lal
[bl(bllallal

hence by the theorem

abba = [abb][a] + 2[b][ab][a] + [b][P][a]la].
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Example 2. Let A= {1 <2 <3} and w = 123. Then

[123]
(1](23] — [23][1]

(1][21(3]
[132]
\[1][3][2]—) (131(2] i (2](13]
™~ (3](112] — [B31012]
(3121111

hence
123 = [123] + [23][1] + [132] + [2][13] + [31[12] + [3][2][1]-

More generally, it is easy to see that for A = {1 <2 < ... < n}, one has

12...n=Z[w]

weS,

where each w in §,, is considered as a word and where [w] denotes [u] ... [u],
with each u; Lyndon and u; > ... > u. Note that in this case, [w] is just the
Foata transform of w (see [3], p. 92). As a byproduct of the rewriting system,
we have obtained an algorithm to generate each permutation, in Foata form, or
equivalently, in cycle decomposition form.

Proof of Theorem 1. Let s = [u;]...[u:] be a standard sequence, interpreted
as an element of Z{A) (that is, [;] is interpreted as the corresponding Lie
element and s as the product of these polynomials). Let s’,s” be as in (2) and
(3). We have in Z(A),

s=s+s"
because

(i luic1 ) = (L], Dstin 10 + L1 Jai

= [uinirr ] + (w1 )ui].

Now, s’ is shorter that s, and s” has one fewer inversion than s. This allows to
conclude, by an easy induction.

Remark 1. We have shown that in fact Theorem 1 holds for each standard
sequence w.
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Remark 2. The algorithm of Theorem 1 is similar to P. Hall’s “collecting
process” (see [5], or [4] Chapter 11; see also [11]; in fact, the collecting process
works with commutators in the free group, but there exists a version in the
free algebra). However in our algorithm, we look for the first inversion in the
standard sequence; in the collecting process, one looks for the first inversion
involving the smallest term of the sequence. This difference makes it impossible
to find a common generalization of Hall basis and Lyndon basis, with a common
generalization to both algorithms.

3. The dual basis and the shuffle product. In this section, we shall in-
vestigate the dual basis of the PBWL basis. We shall need the shuffle product.
Before this, we recall the following fundamental result on Lyndon words.

THEOREM . ([6], Theorem 5.1.5) Each word w in A* may be uniquely written
as

@  w=1...1,

where each I; is a Lyndon word with I, 2 ... 2 .

We extend the notation [w] to the whole free monoid. Recall that for each
Lyndon word /, the Lie polynomial [/] was defined in Section 2. If w is any
word, decomposed into Lyndon words as in (4), define [w] to be the polynomial

wl=1[h]...[].
With this notation, the PBWL basis is just the set
{[u]|lu € A*}.

Note that the dual space of Z{A) is naturally isomorphic to the set Z < A > of
all formal series. Each formal series is an infinite linear combination of words.
The duality

Z<A> XLA) > T
S,P)—(S,P)

is defined by

(S, P)= D (S, w)(P,w)

weA*

where (S, w) denotes the coefficient of w in S.
The dual basis S,,u € A*, is defined by

w= ) (Su,w)lul

ucA*
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for any word w.

Then we know by Theorem 1, that S, is a polynomial with coefficients in N,
and which is homogeneous of degree length(u).

The shuffle product o is defined inductively for any words u, v and letters a, b
by (1 is the empty word):

lou=uol=u

(au) o (bv) = a(u o (bv)) + b((au) o v)

It is a commutative and associative product, without zero divisors (see [12]).

THEOREM 2. (i) Let 1 be the empty word. Then
S =1

(ii) Let bv be a Lyndon word with first letter b. Then
Spy = bS,.

(iii) Let w be any word, decomposed into Lyndon words as
w=10 L (GELL>L > > ).

Then

— 1 Ik
Sw = = !S,lo...oS,k

11!...lk

where exponentiation means shuffle exponentiation.

Remark 3. 1t is a surprising fact that exactly the same formula hold for the
Hall-Shirshov basis, as shown by M. P. Schiitzenberger (see [11] IV). We have
already indicated that the Lyndon basis is not a particular case of the Hall-
Shirshov basis. However, this analogy is mainly surprising because of (ii) (see
remark 4).

Remark 4. As the proof will show, formulas (iii) hold in any envelopping
algebra. More precisely, let L be any Lie algebra over Q, 4 its enveloping
algebra, (h;);c; a totally ordered basis of L. Then the decreasing products of
h;’s form a basis of 4, by the PBW theorem. Let 4’ denote the dual space of
4, and

A -4
be the usual coproduct of A4 defined by

ch)=h®1+1Qh
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for hin L. Let o be the transpose of c¢: then 4’ with o becomes a commutative
and associative algebra.
Let, foriy,...ix €1, i1 > ... > ip, j1,-. . Jk € N,jl,...,jk =1,

Ty Jk /
Soi],...,ik €A

denote the element of the dual basis of the PBW basis corresponding to
h’,: h{: Hence we have, for any x in 4

x = el h
For simplicity, let ¢; = ¢!. Then theorem 2 (iii) extends to

S 1 . .

JisenJk — N Jk
<pih..‘.’l'k —jl!-‘-jk!spilo”.owik
(with o exponentiation).

Before proving theorem 2, we need a lemma on the rewriting system of

Section 2.

LeEMMA 2. (i) Let s be the standard sequence of Eq. (1) and suppose that
Uy 2 up,...,u, and n 2 2. Then for any sequence t such that s — t, t is of
length at least 2.

(ii) Let s be the standard sequence of Eq. (1) with uy Z ... 2 u,. If uy ... u,
is a Lyndon word, then s - [uy ...u,]| at multiplicity one. Otherwise, s — t
implies that t is of length at least 2.

Proof. (i) (Induction of the length of the derivations s — ¢.) By assumption,
[u1]{u,] is not an inversion. So for the rightmost inversion [u;][u;+], one has
i 2 2. This implies that s’ and s” defined by (2) and (3) are of length = 2.
Moreover, they satisfy to the same condition as s: their first term is greater than
the others. This is clear for s”, and for s’, note that w;u;.; < u;.;, because u;u,
is a Lyndon word. So, one concludes by induction.

(ii) (Induction on n.) If n = 1, there is nothing to prove. Suppose n = 2. If
uy 2 uy, then s is decreasing, and so there is no derivation from s; moreover,
uj ...u, is not a Lyndon word (because n 2 2, and by unicity of decomposition
into Lyndon words). So in this case, we are done, too.

Hence, we may suppose that u; < u,. This will be the rightmost inversion.
So

s — s = [w)lur)[us]...[u,] and

s — 5" = [wua]l[uz) ... [ua].

Note that u; is the greatest term of s’, so by (i), s’ - ¢ implies that ¢ is of length
at least 2. Moreover, s” is shorter than s and satisfies to the same conditions as
s: so we conclude by induction on n.
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Proof of Theorem 2(i), (ii). (i) is clear, because [1] = 1.
(ii) We have just to show that for any word u and any letter a, one has

(Spy, au) = 64p(Sy, u).
We have, by definition of the S’s
u= Z(Sv,u)[v].
vear
This implies that

au = Z(SV’ wyalv].

v

Let v = [;...l, be decomposed into a decreasing product of Lyndon words.
Then the sequence s = [a][/;]...[l,] is standard, hence by remark 1

abhl= > ¢

st
t decreasing

holds in Z{A). By Lemma 2 (ii), the only such ¢ which is of the form ¢ = [/],/
Lyndon, is [av] if av is Lyndon. Thus

alv] = e(@iavl+ Yy ][]

k=2

with e(av) = 1 or 0 according to av € L or av ¢ L.
This shows that

au-Ze(av)(S,,m[avHZ [wr] .. (1]

k=22
= Z(SV, wlavl+ Y.l (]
aveL k22
= Z(Sbva au)lbv] + Z lurl. . [ued.
bvel k22

This proves (ii).
Before proving (iii) we need to develop a little theory. Let p > 1 an integer
and let
cpr Z{A) — L(A)®P

be the homomorphism for the concatenation product defined for all a € by:

Gp@=a®1®..81+1Qa®...Q1+...+1Q1Q...Qa
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where each tensor has p factors. If w € A* we see that
GW) =) m®...0u

where the sum runs over all p-uples of words (uy,...,u,) such that w €
uy o...ou,, with multiplicity. For example,

cy(abb) = abb ® 1+2ab @b +bbR@a+a @ bb+2bRab+ 1R abb.

The following lemmas are welll-known. We give a sketch of proof for sake
of completeness.

LemmaA 3. Let Sy,...,S, €Z K A> and P € L(A); then

(510...08,,P) = (51 ®...® Sp, cp(P)).

Proof. We only have to prove the lemma when the S; and P are words; but
in that case it follows from the remark made above.

Lemma 4. If P is a Lie polynomial, that is, P € L(A), then

GP)=PR1..®1+1®P+..+1®...©1®P.

Proof. The lemma may be proven by proving that the set of polynomials
satisfying the lemma contains the letters, is closed under linear combinations
and is closed under Lie product, hence it contains £ (A).

LemMma 5. Let Ty,...,T; be series in Z < A > with constant terms equal to
zero and let Q,...,Q; be Lie polynomials. Suppose i > j; then

(T10...0T,‘,Q1...Qj):0.

Proof. Write
(Thyo...0T;$,01..0) =T ®...0T;,ci(Q1...0))).
Then the lemma follows from Lemma 4 and by noting that each tensor in

¢i(Q1...Q;)) has a factor equal to one (since i > j) and that each T; has zero
constant term.

LemmA 6. Let Ty,...,T, be series in Z < A > with constant terms equal to
zero and let Qy,...,Qp be Lie polynomials. Then:

(T10...0Tp,01...0p) = Y (T1,Q001) - - Ty, Qo)

where the sum runs over all permutations o of the set {1,...,p}.
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Proof. The result follows directly from Lemma 3 and Lemma 4.

Proof of Theorem 2 (iii). We particularize the result of the preceding lemmas
to the case where the series T; = S, for a word u and the Lie polynomials are
the brackets [/](! € L). Note that each S,,(w # 1) has its constant term equal to
zero. Take uy,...,u, € L withu; 2 ... 2 u, and w € A*; set u = uy ...u,. We
have

Sw, ] .. [u,) = 6u,wv
where 0, is equal to 1 if u = w and to O if not, since [u] = [u;]...[u,]. So in

case w € L and n 2 2 we have (S, [u]) = 0. Now, if wy,...,w; and ui,...,u;
are Lyndon words then Lemma 5 tells us that if i > j we have:

(Swy0...08,,[u]...[u]) =0.

If on the contrary, i < j, the equality remains true; this follows from the fact
that

Sw, 0...08,, [u1]...[4]) = Sw, ® ... Sw,, ci(la] ... [u;])
and by noting that each tensor on the right contains a factors that is a product
of the form [u,]...[u, ] withu, Z...2 u, and s = 2.

So the only possibility for (Sy, o...0S,,,[u1]...[u;]) to be non-zero is when
i = j; and in that case, according to Lemma 6, it is equal to the sum

> Sy oy - S, oy D)

taken over all permutations o of the set {1,...,i}.
Take

_ Jh ik
w=10n .. [

as in the statement of the theorem. Set m = > i, and consider uy,...,u, € L
such that u; 2 ... 2 u,,. We have

(S o...08k [m]... [un])

= Z(Sl, s ey -+ Sty luonyD) - - - Sty [om—i+n)] - - - Sty 5 [tom])

where the sum runs over all permutations o of the set {1,...,m}. This sum is
non-zero if and only if

11 = Uy =...=u,-|,.,.,lk=um4,<k+1 = ...= Up.
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In that case the permutations o for which the product

Sty UoyD - - Sty Woi)D) -+ - Sty Usm—iz ) D - - Sies om)))

is non-zero are the ones permuting the i, factors /, among themselves. For such

a permutation the product evaluates to one and since there are i;!...i! such
permutations, the sum adds up to i;!...i!. We conclude that the two series S,,
and

__1_ Siio. . oSk

——S, °---08;

IREEERT

take the same value on the basis elements [u], so they must be equal. This
completes the proof of Theorem 2.

COROLLARY 1. Let T denote the complete tensor product Q < A > @ Q(A),
where Q < A >> has its shuffle structure and Q(A) the concatenation structure.
Then

> wew=[lews @)

weA* leL

where the product is taken in decreasing order.

Proof. The right-hand side is
1 . .
(3 gsiew)
e \izo ©
1 : . . :
= > ——=Sio...oStel .. k"
AR '3
Lh>. >k

iy eig 21

This is equal, by Lyndon’s theorem, Theorem 2 and our notation [w], to
Z Su @ [u].

Hence, the corollary is equivalent to

W= (S, w)lu]

which is true by definition.

Remark 5. There is an equivalent formulation of Corollary 1 in terms of
Hopf algebras: it says that the identity of Q(A) is the product of exponentials
of special projections, in the algebra End(Q(A)) with the product

(f,8)—h
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with A(w) = mo (f ® g) o co(w) and 7(u ® v) = uv (see [13] p. 71 for the
definition of this product).

4. Basis for the shuffle algebra. We prove a result of D. E. Radford, as a
consequence of Theorem 2.

THEOREM. ([9])(i) Lyndon words form a transcendance basis of the shuffle

algebra Q(A).
(ii) More precisely, for any Lyndon word w, decomposed into Lyndon words

as
w=0 0 (> > gy 2 1)
one has
1 ; ;
N mlil...lk=w+zauu

u<w

where , is some natural integer and I' means shuffle exponentiation.
Part (i) was obtained differently by Perrin, Viennot [8].
Proof. Note that it is enough to prove (ii1); by triangularity, the polynomials
1

P, =— " [
Yo ! k

will form a basis of the Z-module Z{A).

Note first that P,, has integer coefficients: indeed, in /' ... }*, each word has
a coefficient divisible by 7;!...i! The point is to show that w has coefficient
one. By [6] Lemma 5.3.2, we know that for any Lyndon word /, one has

M=1+Y .
u>l
Because of the properties of the lexicographical order, this implies
wl=w+ Z U
u>w
for any word w. By duality, we obtain

5) Sw=w+z*u.

u<w
This implies by theorem 2 (iii) that for w = l;‘ ...lff (Lyndon factorization)

1 i i
©  Se=argrSnos oS =Pt
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where Q has nonnegative coefficients. Comparing (5) and (6), and knowing that
w occurs in P,, with coefficient 2 1, we obtain that this coefficient must be 1.

Remark 6. Another transcendance basis of the shuffie algebra is the set S,/ €
L. Indeed, by duality, each word w may be written

w=" (lul,ws,

UEA*

and one concludes using Theorem 2 (iii).

Part (i) of the previous result is equivalent to the following assertion: the
shuffle algebra Q(A) is isomorphic with the free commutative algebra Q[L]
generated by the set L of Lyndon words over Q. When one is only interested
in the subalgebra Z(A), then one obtains the following result, where we call
algebra of integral exponential polynomials over L, the subalgebra of Q[L]
which is linearly generated over Z by the monomials

i ik
[0

ll!...il!

) ( €L).

CoroLLARY. The shuffle algebra Z{A) is isomorphic with the algebra of inte-
gral exponential polynomials over the set of Lyndon words.

Proof. Let E be the algebra of integral exponential polynomials over Z. De-
fine a Z-linear homomorphism £ — Z({A) by mapping the monomial (8) onto
the polynomial (7) in Z(A). This mapping is well defined and onto, by triangu-
larity of (7). Moreover, it preserves the product of both algebras, hence it is an
isomorphism.
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Added in proof. The first author has recently shown that Theorems 1 and 2
hold — mutatis mutandis — for the bases considered by Viennof (Lecture Notes
Maths. 697 Springer Verlag), which generalize both Lyndon and Hall bases.
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