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A method is demonstrated to rapidly calculate the shapes and properties of
quasi-axisymmetric and quasi-helically symmetric stellarators. In this approach,
optimization is applied to the equations of magnetohydrodynamic equilibrium and
quasisymmetry, expanded in the small distance from the magnetic axis, as formulated
by Garren & Boozer [Phys. Fluids B, vol. 3, 1991, p. 2805]. Due to the reduction of the
equations by the expansion, the computational cost is significantly reduced, to times of the
order of 1 cpu second, enabling wide and high-resolution scans over parameter space. In
contrast to traditional stellarator optimization, here, the cost function serves to maximize
the volume in which the expansion is accurate. A key term in the cost function is ‖∇B‖,
the norm of the magnetic field gradient, to maximize scale lengths in the field. Using
this method, a database of 5 × 105 optimized configurations is calculated and presented.
Quasisymmetric configurations are observed to exist in continuous bands, varying in the
ratio of the magnetic axis length to average major radius. Several qualitatively new types
of configuration are found, including quasi-helically symmetric fields in which the number
of field periods is two or more than six.
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1. Introduction

Stellarators can potentially provide steady-state plasma confinement with minimal
recirculating power, passive stability and no danger of disruptions. However, stellarators
require careful shaping of the field in order to confine trapped particles. This optimization
is challenging because the space of plasma shapes is high-dimensional and known to
contain multiple local minima (Bader et al. 2019). Numerical optimization with local
optimization algorithms is effective at finding individual configurations, but it does not
provide a global picture of the space of solutions. Global optimization is difficult due to
the high number of dimensions, and the dimensionality also makes parameter scans over
the full space of possible shapes infeasible. Due to these challenges, it is not clear that all
the interesting regions of parameter space have been found.
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2 M. Landreman

In this work, we attempt a global view of the space of optimized stellarators by using
approximate magnetohydrodynamic (MHD) equilibria instead of full three-dimensional
(3-D) equilibria, greatly reducing computational cost. In particular, we will use an
expansion about the magnetic axis (Mercier 1964; Solovev & Shafranov 1970; Garren &
Boozer 1991b), a closed field line representing the innermost flux surface. This expansion
reduces the 3-D partial differential equations of MHD equilibrium to 1-D ordinary
differential equations in the toroidal direction, lowering the time required to compute
and diagnose a configuration by several orders of magnitude. It then becomes feasible to
carry out high-resolution multi-dimensional parameter scans, resulting in large databases
of stellarator configurations. While the expansion is approximate, it is necessarily accurate
in the core (out to some minor radius) of any stellarator, even one for which the aspect ratio
of the plasma boundary is low.

In this work we focus on the condition of quasisymmetry, one effective strategy for
confining trapped particles (Boozer 1983; Nührenberg & Zille 1988; Helander 2014).
Quasisymmetry is a condition that the magnitude B = |B| of the magnetic field B is
effectively two-dimensional instead of three-dimensional, with the continuous symmetry
providing a conserved quantity that ensures confinement. Two types of quasisymmetry are
possible near the axis: quasi-axisymmetry (QA), B = B(r, θ), and quasi-helical symmetry
(QH), B = B(r, θ − Nϕ). Here, r is a flux surface label, (θ, ϕ) are the Boozer poloidal and
toroidal angles and N is an integer. Although the weaker condition of omnigenity may be
sufficient for trapped particle confinement, we focus here on quasisymmetry because the
condition is easier to express mathematically, and since the omnigenous generalizations
of QA and QH provide no extra freedom near the magnetic axis (Plunk, Landreman &
Helander 2019).

In the first few orders of the near-axis expansion, it is possible to impose quasisymmetry
directly, without optimization. Yet optimization is still useful, to maximize the minor
radius over which the expansion is accurate. For most parameters of the near-axis
model (which include the axis shape and a few other numbers), the minor radius over
which the expansion is accurate is quite small. Therefore, the next-order terms in which
quasisymmetry is broken are significant unless the plasma has extremely high aspect ratio,
> 10. By optimizing the parameters of the near-axis model, configurations can be obtained
for which the expansion is accurate even at lower aspect ratios, in the range 5–10, typical of
stellarator experiments. These configurations then have quasisymmetry over a significant
volume. Since quasisymmetry is necessarily broken at third order in the expansion (Garren
& Boozer 1991a,b), having good quasisymmetry over a large volume probably requires
that the plasma be accurately described by the lower orders of the expansion (Rodriguez
2022).

The method for generating stellarator configurations in this work is complementary to
traditional stellarator optimization, in which the boundary shape of a finite-aspect-ratio
plasma is the parameter space, and a fully 3-D MHD equilibrium code is run to evaluate
the objective function. The method in this paper is necessarily approximate, but wider
surveys over parameters are feasible. Conventional optimization is more accurate, but
global optimization is more difficult. The two approaches could be used together, with
the near-axis method identifying rough configurations that could be passed as an initial
condition to conventional optimization for refinement.

Optimization has been applied to near-axis expansions in several previous publications.
In Landreman & Sengupta (2019), some results were shown from a preliminary version
of the approach here, but the optimization method was not explained in detail. One
purpose of the present article is to give a detailed presentation. A different approach
for choosing parameters of the near-axis model and mapping the space of solutions was
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Mapping the space of quasisymmetric stellarators 3

proposed in Rodriguez, Sengupta & Bhattacharjee (2022b). Optimization of a near-axis
quasi-isodynamic (QI) stellarator was presented recently in Jorge et al. (2022). Other
optimizations of QI near-axis parameters are shown in Camacho Mata, Plunk & Jorge
(2022).

The near-axis expansion for quasisymmetry has been discussed in detail in previous
publications, but a brief review is given in § 2. In § 3, we describe the optimization problem
for expanding the minor radius over which the expansion is accurate, and for achieving
other desired physics properties. Next, a wide scan over parameters is presented in § 4,
and the space of QA and QH configurations obtained is discussed. A few examples of
configurations found in the scan are shown in § 5. We discuss the results and conclude
in § 6.

2. Garren–Boozer expansion and diagnostics

Here, we give an overview of the near-axis expansion used for optimization, highlighting
the quantities that are inputs and outputs for each stellarator configuration. We use the form
of the expansion introduced by Garren & Boozer (1991a,b), in which the independent
variables are Boozer coordinates. A detailed discussion can also be found in Landreman
& Sengupta (2019). This expansion has also been discussed in Landreman & Jorge (2020)
and Landreman (2021). There are other ways to carry out expansion about the axis in which
the independent variables are not flux coordinates (Mercier 1964; Solovev & Shafranov
1970; Jorge, Sengupta & Landreman 2020), which will not be considered here.

One input to the near-axis equations is the magnetic axis’s shape. The position vector
along the axis r0 can be expressed as a function of the arclength � along the curve. At each
point on the axis, the Frenet frame is defined by

dr0

d�
= t,

dt
d�

= κn,
dn
d�

= −κt + τb,
db
d�

= −τn. (2.1a–d)

Here, (t,n, b) are the tangent, normal and binormal, a set of orthonormal vectors satisfying
t × n = b. Also, κ is the axis curvature, and τ is the axis torsion. It can be shown that, for
quasisymmetric configurations, κ does not vanish, so the Frenet frame is well behaved.

The position vector r of a general point (not necessarily on the axis) can then be written

r(r, ϑ, ϕ) = r0(ϕ)+ X(r, ϑ, ϕ)n(ϕ)+ Y(r, ϑ, ϕ)b(ϕ)+ Z(r, ϑ, ϕ)t(ϕ), (2.2)

where r is a minor radius coordinate, ϕ is a toroidal angle and ϑ is another coordinate.
We specifically define these three coordinates as follows. Letting ψ denote the toroidal
flux divided by 2π, an effective minor radius r can be defined via 2π|ψ | = πr2B0, where
B0 > 0 is the magnetic field strength on the axis, which is constant in quasisymmetry.
Note that r is a flux function, and not identical to the Euclidean distance to the axis or the
magnitude of r. We employ the poloidal and toroidal Boozer angles θ and ϕ, in terms of
which the field is

B = ∇ψ × ∇θ + ι∇ϕ × ∇ψ,
= β∇ψ + I∇θ + G∇ϕ, (2.3)

where I and G are constant on flux surfaces. The remaining coordinate in (2.2) is defined
as ϑ = θ − Nϕ, where N is a constant integer, making ϑ a poloidal or helical angle for
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N = 0 and N �= 0, respectively. Defining ιN = ι− N, then

B = ∇ψ × ∇ϑ + ιN∇ϕ × ∇ψ, (2.4)

= β∇ψ + I∇ϑ + (G + NI)∇ϕ. (2.5)

We now consider r to be small compared with length scales associated with the axis. In
this case we can expand X, Y and Z in (2.2) as

X(r, ϑ, ϕ) = rX1(ϑ, ϕ)+ r2X2(ϑ, ϕ)+ r3X3(ϑ, ϕ)+ · · · . (2.6)

Similar expansions hold for Y and Z. The field strength B and coefficient β can be
expanded in the same way but with an r0 term

B(r, ϑ, ϕ) = B0(ϕ)+ rB1(ϑ, ϕ)+ r2B2(ϑ, ϕ)+ r3B3(ϑ, ϕ)+ · · · . (2.7)

Flux functions (ι, G, I and the pressure p) must be even with respect to r and so their
expansions contain only even powers of r

p(r) = p0 + r2p2 + r4p4 + · · · . (2.8)

The profile I(r) is proportional to the toroidal current inside the flux surface, so I0 = 0.
Considerations of analyticity near the magnetic axis imply that poloidally varying

quantities must have the form

B1(ϑ, ϕ) = B1s(ϕ) sin(ϑ)+ B1c(ϕ) cos(ϑ),
B2(ϑ, ϕ) = B20(ϕ)+ B2s(ϕ) sin(2ϑ)+ B2c(ϕ) cos(2ϑ).

}
(2.9)

(For a more detailed argument see Appendix A of Landreman & Sengupta 2018.) This
same form applies also to X, Y , Z and β.

So far, the position vector has been expressed as a power series in r. Taking derivatives
of this position vector with respect to the three coordinates, the dual relations (D’haeseleer
et al. 2012) can then be used to evaluate ∇ψ , ∇ϑ , and ∇ϕ. The results are substituted into
(2.4) and (2.5). Equating these covariant and contravariant forms of B, powers of r can be
collected at each order. Moreover, the inner product (2.4)·(2.5) yields an expression for the
field strength, B2/(G + ιI) = ∇ψ · ∇ϑ × ∇ϕ, providing an additional equation at each
order in r. One more equation is provided by MHD equilibrium, (∇ × B)× B = μ0∇p.
Here, only the ∇ψ component provides new information. Finally, if quasisymmetry
is desired, the condition B = B(ψ, ϑ) can be imposed. These conditions provide an
increasing number of constraints at each order in r.

The conditions obtained at each order are now summarized, for the case of
quasisymmetry. At leading order, B0 is independent of ϕ. It is also determined that
ϕ = 2π�/L and |G0| = B0L/(2π), where L is the axis length. While B0 can be considered
an input parameter, it merely scales the field strength of the configuration and so does not
provide true flexibility. At next order, B1s can be set to zero using the freedom in the origin
of ϑ , and B1c must be independent of ϕ. Following Garren & Boozer (1991b) we use the
constant η̄ = B1c/B0. The quantity η̄ thus controls how much B varies on a flux surface of
given minor radius, via

B = B0[1 + rη̄ cosϑ + O(r2)]. (2.10)

We consider η̄ to be another input of the calculation. Also, it can be shown that N must
equal the number of times the axis normal vector rotates poloidally about the axis as the
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axis is traversed toroidally. Typically |N| equals either 0 or the number of field periods
nfp, as is the case for all configurations found in this work, though other values of N are
allowed as well.

A key constraint at this order is a Ricatti equation, (2.14) in Landreman & Sengupta
(2019), an ordinary differential equation (ODE) in ϕ. This equation relates κ , τ , ι0, I2, η̄
and the O(r) flux surface shapes. As discussed in the appendix of Landreman, Sengupta
& Plunk (2019), it is convenient to consider as inputs I2 and the deviation from stellarator
symmetry at ϕ = 0, in which case there is a unique solution for ι0 and the first-order
surface shape. Alternatively, ι0 could be considered the input and I2 the output (Rodríguez,
Sengupta & Bhattacharjee 2022c), but we will not do this here. For all work in this paper
we assume stellarator symmetry and no current density on the axis, I2 = 0. (To include I2
and non-stellarator-symmetric configurations, no substantial changes to the methods in this
paper would be required.) Therefore there are no inputs to the model other than η̄ at this
order. At this order, the flux surface shapes are rotated ellipses (in the plane perpendicular
to the magnetic axis) centred on the axis. Generally the elongation varies with ϕ.

Proceeding to next order in r, it was found by Garren & Boozer (1991b) that it is
not possible to fully specify B2 for a general axis shape, meaning it is not possible to
achieve quasisymmetry at this order for most axis shapes. To handle this complication
we proceed as in Landreman & Sengupta (2019), only partially imposing quasisymmetry
at this order. Specifically, we treat B2c and B2s as inputs, but consider B20 an output.
For stellarator symmetry, B2s = 0, so this quantity will not be considered further here.
For quasisymmetry, B2c is constant (independent of ϕ), providing one more scalar input
parameter. Then, B20(ϕ) can be computed from a linear system of ODEs. These equations
and the surface shapes depend on p2, representing the leading behaviour of the pressure
near the axis. The flux surface shapes at this order include triangularity and Shafranov
shift.

It is possible to consider higher-order terms in the expansion. However, we stop here,
at O(r2), for all results in this paper. This order is sufficient for representing realistic
stellarator shapes. If one were to proceed to higher order, quasisymmetry cannot be fully
imposed, and choices would need to be made for other functions of toroidal angle, which
significantly increases the number of parameters in the model. Note also that, in an
asymptotic expansion such as this one, including higher-order terms may decrease rather
than increase accuracy.

To summarize, at the order of interest, the inputs to the near-axis equations are the
shape of the axis and the three scalar parameters η̄, B2c and p2. The outputs of the model
include ι0, B20 and a parameterization of all flux surface shapes in a neighbourhood of
the axis. An efficient numerical method for solving the ODEs to this order is detailed
in § 4.2 of Landreman & Sengupta (2019), which we also adopt in this work. Since
the shapes of the flux surfaces are known, any one surface can be used as the input
to a standard fixed-boundary 3-D MHD equilibrium calculation that does not make a
near-axis expansion. From the result, other standard stellarator codes can be run to check
the accuracy of the near-axis approximations and to evaluate other physics properties.
Examples of this procedure can be seen in Landreman et al. (2019), Landreman &
Sengupta (2019) and Jorge et al. (2022).

Once these near-axis equations are solved for the configuration geometry, some
quantities of interest are known immediately, such as ι0 and the quasisymmetry error
associated with variation of B20. Many other quantities of interest can be computed directly
from the solution at negligible computational cost. One example (Landreman & Jorge
2020) is the vacuum magnetic well d2V/dψ2, where V(ψ) is the flux surface volume.
Another is the Mercier stability criterion DMerc.
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6 M. Landreman

From a solution of the near-axis equations, it is also possible to directly compute all
the geometric quantities appearing in the gyrokinetic equation and the MHD ballooning
equation (Jorge & Landreman 2021). However, this information will not be exploited here.

Other quantities that can be computed include measures for the minor radius over which
the expansion is accurate. A precise measure of this radius has not yet been decisively
identified, but several estimates have been suggested. Here, we will use three estimates.
The first two of these are scale lengths associated with the first and second derivatives of
the magnetic field vector (Landreman 2021)

L∇B = B
√

2/||∇B||2, (2.11)

L∇∇B =
√

4B/||∇∇B||. (2.12)

Here, || · · · || indicates the square root of the sum of the squares of the elements of the
matrix or tensor. In the case of a matrix this is the Frobenius norm. The quantities L∇B and
L∇∇B have dimensions of length, and are each normalized so that in the case of an infinite
straight wire, they give the distance to the wire. The near-axis expansion is expected to
be accurate only if the distance to the axis is small compared with scale lengths in the
magnetic field, i.e. for r � L∇B and r � L∇∇B. Therefore, it is desirable to maximize these
two quantities. Another estimate for the radius over which the expansion is accurate is rc,
defined in § 4 of Landreman (2021). This quantity is the maximum minor radius at which
the second-order flux surface shapes are no longer smooth and nested. The near-axis
expansion has necessarily broken down when r is as large as rc, so rc is a natural target for
maximization.

This near-axis model has a limitation related to the bootstrap current. To the order in r
considered here, the current profile has only a single degree of freedom, I2, corresponding
to a current density that is independent of r. However, realistic bootstrap current profiles
are peaked at mid-radius, going to zero on axis where the pressure gradient vanishes, and
also becoming small at the plasma edge where the collisionality becomes large. Therefore
it is not possible to represent realistic profile shapes of bootstrap current in the near-axis
model used here. Throughout this paper we proceed by choosing I2 = 0, consistent with
the bootstrap current vanishing on the magnetic axis. However, important questions for
future research are whether the near-axis model can be extended to higher order to
incorporate realistic current profile shapes, and whether it is a reasonable approximation
to make I2 equal to a radial average of the current profile.

3. Optimization problem

The motivation for optimization of the near-axis parameters can be seen in figure 1.
The left panel shows a cross-section of flux surfaces computed by the near-axis model
for unoptimized input parameters: an axis shape R(φ) = 1 − 0.12 cos(2φ) and Z(φ) =
0.12 cos(2φ), η̄ = −0.7 and B2c = −0.5. It can be seen that the region of smooth and
nested flux surfaces is small, limiting the configuration to very high aspect ratio. For
comparison, the right panel of figure 1 shows an optimized near-axis configuration
on the same scale. (This configuration will be described in detail in § 5.1). It can be
seen that the region of smooth nested surfaces extends to much lower aspect ratio,
beyond the range shown. Thus, although quasisymmetry can be imposed directly in the
near-axis equations (to O(r)), optimization is still valuable. Optimization is also useful for
achieving quasisymmetry fully through O(r2) since, as mentioned above, for general input
parameters B20 will depend on ϕ.

Let us now present the details of an optimization problem that is effective for
the near-axis quasisymmetry equations. The axis shape is represented in cylindrical
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(a) (b)

FIGURE 1. (a) Generic O(r2) near-axis configurations tend to be limited to very high aspect
ratio before the predicted surface shapes are self-intersecting or non-nested. (b) By optimizing
the axis shape, η̄ and B2c, the volume of smooth nested surfaces can be dramatically increased.
Surfaces shown are r = 0.02, 0.04, . . . , 0.12 m on the left and r = 0.02, 0.04, . . . , 0.2 m on the
right.

coordinates (R, φ,Z) using finite Fourier series

R(φ) =
NF∑

n=0

Rn cos(nfpnφ), Z(φ) =
NF∑

n=1

Zn sin(nfpnφ), (3.1a,b)

where nfp is the number of field periods, and a finite maximum Fourier number NF has been
chosen. Stellarator symmetry has been assumed. Some axis shapes cannot be represented
using (3.1a,b): those for which φ is not monotonic, or those which encircle the Z axis more
than once. However, the choice (3.1a,b) describes every stellarator experiment to date and
so is convenient for this initial study. The parameter space for optimization consists of
{Rn,Zn, η̄,B2c}. The mode R0 is set to 1 and excluded from the parameter space so that the
average major radius is held fixed.

The objective function considered is a sum of terms

f = wLfL + wιfι + w∇f∇ + w∇∇f∇∇ + wB2fB2 + wwellfwell + wMercfMerc, (3.2)

where the scalars wj are weights used to vary the emphasis on the different terms. The
individual terms are

fL = (L − L∗)2, (3.3)

fι = (ι0 − ι∗)2, (3.4)

f∇ = 1
L

∫
d�‖∇B‖2, (3.5)

f∇∇ = 1
L

∫
d� ‖∇∇B‖2, (3.6)

fB2 = 1
L

∫
d�

[
B20 −

(
1
L

∫
d�B20

)]2

, (3.7)
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8 M. Landreman

fwell = max
(

0,
d2V
dψ2

− W∗

)2

, (3.8)

fMerc = max(0,D∗ − DMerc)
2. (3.9)

Here, L is the length of the magnetic axis,
∫

d� indicates an integral over the axis and
quantities with a subscript ∗ indicate specified target values. The motivation for these
terms is as follows.

Minimizing f∇ increases L∇B, which in practice is found to expand the radius of good
quasisymmetry. The term f∇ is the most effective term for this purpose based on experience
so far. Similarly, minimizing f∇∇ increases the radius of good quasisymmetry by increasing
L∇∇B. Note that the term f∇ does not depend on the second-order solution at all, so it does
not directly constrain B2c.

The term fL is included to avoid a problem that otherwise occurs when the initial axis
shape is consistent with QH (i.e. the normal vector makes complete poloidal rotations as
the axis is followed toroidally). In this case, the optimizer can reduce f∇ by making the
helical excursion of the magnetic axis as large as the major radius, so R drops to 0 every
field period. This state is unacceptable, since adequate space is required in the middle
of the torus for the electromagnetic coils and other components. By including fL in the
objective, this problem is avoided. An objective term that penalizes values of R below a
threshold was also considered to avoid this pathology. However, fL has produced better
optima in practice. Through different choices of L∗, the user can parameterize a family of
configurations in which there is a trade-off between the quality of quasisymmetry versus
space in the middle of the torus.

Similarly, the term fι is included to avoid a problem that otherwise occurs when the
initial axis shape is consistent with QA (i.e. the normal vector does not make any complete
poloidal rotations as the axis is followed toroidally). In this case, the optimizer can
reduce f∇ by making the axis axisymmetric. Including fι in the objective with a non-zero
value of ι∗ cures this problem. Because fL and fι are useful for QH and QA symmetry,
respectively, we set wL = 0 when seeking QA configurations and set wι = 0 when seeking
QH configurations.

Minimizing the term fB2 makes B20 (nearly) independent of ϕ. This makes the near-axis
solution fully quasisymmetric through second order in r.

Although we in principle wish to maximize rc, the minor radius at which the
second-order surfaces become singular, we find it not very effective in practice to directly
optimize functions of rc. A possible reason for this can be understood from figure 2. The
horizontal coordinate λ in this figure indicates an interpolation between the optimized
QH configuration of § 5.4 of Landreman & Sengupta (2019), corresponding to λ = 1, and
a typical initial condition, corresponding to λ = 0. Letting a subscript * denote values
for the optimized configuration, the parameters for the intermediate configurations are
Rn = λRn∗ and Zn = λZn∗ for n > 1, Rn = Rn∗ and Zn = Zn∗ for n ≤ 1, η̄ = 1 + λ(η̄∗ − 1)
and B2c = λB2c∗. Therefore, as λ decreases from 1 to 0, the configuration is smoothly
interpolated to one with simplified parameters, such as only Fourier modes with n = 0 or
1 in the axis shape. In optimization, one typically moves in the opposite direction, starting
with an initial guess like the λ = 0 case, and aiming to end up at a configuration like the
λ = 1 case. It can be seen in figure 2 that R0/rc is not monotonic along this path. Due
to the ‘barrier’ in between, it is hard to get from the λ = 0 initial condition to the λ = 1
optimized configuration using the objective R0/rc, even though the final value of R0/rc at
λ = 1 is favourable. In contrast, the figure shows that f∇ is monotonically decreasing with
λ, making it an effective objective function. In short, although minimizing the aspect ratio
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FIGURE 2. Variation of several possible objective function terms as one interpolates between
the optimized QH configuration of Landreman & Sengupta (2019) (λ = 1) and a typical initial
condition (λ = 0) defined by Rn = Zn = 0 for n > 1, η̄ = 1 and B2c = 0. The objective f∇ is
most useful because it varies between these configurations monotonically. The other terms shown
increase with λ before they decrease, making it hard to get from λ = 0 to λ = 1 when they
dominate the objective.

R0/rc is an intuitive goal, it turns out that directly applying minimization to R0/rc is less
effective than minimizing the better-behaved function f∇.

Figure 2 also shows the function f∇∇ has a similar non-monotonic behaviour to R0/rc,
so f∇∇ is ineffective if used as the dominant term in the objective function. However,
adding a small multiple of f∇∇ or R0/rc to f∇ can still be effective. Other potential objective
functions were also explored based on X2, Y2 and their d/dϕ derivatives. These quantities
were found to have non-monotonic behaviour similar to the right two panels of figure 2.
A possible explanation for the different monotonic vs non-monotonic behaviour of the
various objective function terms might be the following. Both f∇∇ and R0/rc depend on
O(r2) quantities whereas f∇ depends only on O(r1) quantities, and the O(r2) quantities are
more sensitive to small changes in the axis shape due to d/dϕ derivatives in the near-axis
equations. In practice, the most effective approach to lower the aspect ratio seems to be
using an objective dominated by f∇, with a small multiple of f∇∇ added after an initial
minimization of f∇.

The term fwell can be included to obtain configurations with a vacuum magnetic
well, d2V/dψ2 < 0. Typically, W∗ is set to a negative value to provide some margin
against instability. Similarly, for configurations with pressure and/or current, fMerc can be
included to obtain Mercier-stable configurations. The value D∗ should be set to a positive
value to provide a stability margin. It is unclear whether magnetic well and/or Mercier
stability should be included in stellarator design, since multiple experiments have reported
operating in unstable regimes without major difficulty (Geiger et al. 2004; Watanabe et al.
2005; Weller et al. 2006; de Aguilera et al. 2015).

Whether an optimization produces a QA or QH configuration is determined by the initial
condition for the axis shape. In a QH configuration with given N, the axis normal vector
rotates poloidally about the axis N times as one traverses the axis toroidally (as discussed
in § 5.2 of Landreman & Sengupta 2018). QA configurations represent the N = 0 case:
the normal vector makes no net rotations about the axis as the axis is traversed toroidally.
If the axis is continuously deformed from one N value to another, the curvature crosses
through zero, causing f∇, f∇∇ and fB2 to diverge. This results in an infinitely steep barrier
in the objective function, which the optimizer will not cross. Hence the symmetry class
(N value) of the optimum will match that of the initial condition.
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The integrals (3.5)–(3.7) are discretized using a uniform grid in the standard toroidal
angle φ with Nφ points. Upon discretization, all the terms in f have the form of a sum of
squares. This is true also for the terms that are integrals over the axis, for instance,

f∇ =
Nφ∑
i=1

3∑
j=1

3∑
k=1

[√
Δφ

L
d�
dφ
(∇B)j,k

]2

. (3.10)

Here, j and k range over the t, n, b components, Δφ is the grid spacing in φ and the
quantity in large square brackets is evaluated at the toroidal grid point i. The other terms
in the objective involving integrals are discretized as

f∇∇ =
Nφ∑
i=1

3∑
j=1

3∑
k=1

3∑
n=1

[√
Δφ

L
d�
dφ
(∇∇B)j,k,n

]2

, (3.11)

and

fB2 =
Nφ∑
i=1

[√
Δφ

L
d�
dφ
(B20 − B̄20)

]2

. (3.12)

Therefore, the discretized problem can be solved using methods for nonlinear least-squares
problems. The quantities in square brackets in (3.10)–(3.12) are the residuals for the
least-squares problem.

It is effective to increase the dimensionality of the parameter space in several steps. For
the first step, a maximum mode number NF = 1 is used, with NF incremented by one each
step. For NF = 1, 2, 3, the weights w∇∇, wwell and wMerc are set to zero, which is found
to make the optimization very robust. These weights are set to non-zero values if desired
for later steps. As the number of Fourier modes in the parameter space is increased, the
number of grid points Nφ can be increased as well (as is done for results here).

We solve the optimization problem using the C++ implementation at https://github.
com/landreman/qsc, also archived at Landreman (2022). Results here are obtained with
the Levenberg–Marquardt algorithm implemented in the GNU scientific library (Galassi
et al. 2009).

4. Parameter scans

Parameter scans are applied to the optimization problem of § 3, to understand the set
of possible quasisymmetric configurations. The parameters scanned include nfp, the wj
weights in (3.2), the target values ι∗, L∗, W∗ and D∗, the pressure p2, whether or not
magnetic well or Mercier stability is imposed, and whether QA or QH is sought. The
number of field periods is scanned from one through 10. In each case, the initial axis
shape before optimization is R(φ) = 1 +Δ cos(nfpφ) and Z(φ) = Δ sin(nfpφ) for a chosen
number Δ. When searching for QA solutions, Δ is chosen < 1/(n2

fp + 1) so the normal
vector does not make complete poloidal rotations, wL is set to 0 and ι∗ is scanned. When
searching for QH solutions, Δ is chosen > 1/(n2

fp + 1) so the normal vector makes nfp
complete poloidal rotations, wι is set to 0 and L∗ is scanned. These conditions on Δ have
been discussed recently by Rodriguez, Sengupta & Bhattacharjee (2022a). The weight w∇
is always 1, since f∇ is the most reliable term to include in the objective, as discussed in
the previous section. The other weights are scanned logarithmically over several orders of
magnitude.
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FIGURE 3. Results from optimizing the near-axis parameters, scanning the weights, targets and
nfp. Each point indicates the result of an optimization. Five representative points are highlighted
with visualizations of the flux surfaces in three dimensions and are discussed in § 5.

For many choices of weights and targets, the configuration at the end of an optimization
may be unacceptable if the volume of good quasisymmetry is too small, the rotational
transform is too low, the elongation is too large, etc. Therefore, as the parameters
are scanned, configurations are saved only if they pass through several filters, i.e.
satisfy several inequalities. One such filter is |ι| > 0.2; sufficient ι is required since the
equilibrium β limit scales ∝ ι2, and the width of banana orbits in QA scales ∝ 1/ι. Other
typical inequalities imposed are L∇B > 0.2R0, L∇∇B > 0.2R0, the variation of B20 is < B0,
elongation in the plane perpendicular to the axis< 10 (computed from the O(r1) elliptical
surfaces) and minimum minor radius rc > 0.15R0. A minimum R(φ)/R0 is enforced, e.g.
> 0.4, to ensure some space for coils near the coordinate origin. The quantities |X20|, |X2s|,
|X2c|, |Y20|, |Y2s|, |Y2c|, |Z20|, |Z2s| and |Z2c| are required to be below a threshold such as
10.0. This constraint is another heuristic method for ensuring the radius of applicability
of the asymptotic series is relatively large, by ensuring the O(r2) terms are not too much
larger than the O(r1) terms. Similarly, the quantities |∂X20/∂ϕ|, |∂X2s/∂ϕ|, |∂X2c/∂ϕ|,
|∂Y20/∂ϕ|, |∂Y2s/∂ϕ|, |∂Y2c/∂ϕ|, |∂Z20/∂ϕ|, |∂Z2s/∂ϕ| and |∂Z2c/∂ϕ| are required to be
below a threshold such as 20.0. The exact values of the thresholds are adjusted from case
to case; for instance it is harder to find high-β configurations with Mercier stability so
generous thresholds are used in this case. In contrast, vacuum configurations without a
magnetic well constraint are comparatively easier to obtain, so more restrictive thresholds
are used in this case to focus on the most interesting solutions.

The results of the parameter scans are shown in figure 3. Each point indicates an
independent optimization for specific choices of weights and target values. The points are
coloured to indicate nfp and QA vs QH symmetry. The horizontal coordinate is the length
of the magnetic axis, normalized so that 1 indicates a circle, while larger values indicate
greater helical excursion of the axis. The axes of the figure were taken to be axis length
vs ι since this choice effectively separates the data into clusters. The apparent stripes at
fixed axis length are an artefact of the grid of target L∗ values in the scans. The database of
configurations includes both vacuum and finite-β cases (i.e. various choices of p2), with
and without magnetic well, and with and without Mercier stability.
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A total of 5 × 105 points are plotted in figure 3. As discussed above, most optimizations
resulted in configurations that were filtered out, so a total of > 107 optimizations were
run to produce the figure. Each optimization involved many evaluations of the objective
function, (3.2), so a total of> 1011 evaluations of the objective were performed to produce
the figure. Each function evaluation typically takes under 1 ms. The speed by which the
near-axis equations can be evaluated makes it possible to evaluate this very large number
of configurations in tens of wallclock hours on a computing cluster.

Many interesting patterns can be seen in the data. The QA solutions are limited to a
single continuous band for each nfp at the lower left, with ι < 1 and relatively circular
magnetic axis. The QH solutions are found at a wide range of ι, from just below 1 up
to >4. The QH solutions for any given nfp also occupy continuous bands with a wide
range of axis lengths. Analogous features have been observed recently by Rodriguez et al.
(2022b).

As with QH symmetry, QA symmetry scans were performed for all values of nfp from
1 through 10. However, no configurations passed the filters for nfp > 3. (For example, for
QA with nfp = 4 and no constraints other than ι > 0.2, the largest rc obtained was only
0.11R0.) These findings are consistent with previous reports of QA only for nfp = 2 and 3.
Furthermore, in the scans here, the QA configurations for nfp = 3 had smaller values
of rc than the nfp = 2 QAs: specifically rc was < 0.2 for nfp = 3, whereas rc attained
values up to 1.0 for nfp = 2. Therefore, in the nfp = 3 configurations, the region of good
quasisymmetry is limited to a higher aspect ratio. This finding is consistent with the
fact that previous optimizations for QA at nfp = 3 (NCSX and ARIES-CS) have had
significant imperfections in the symmetry, whereas excellent QA has been obtained at
nfp = 2 (Giuliani et al. 2022; Landreman & Paul 2022). When nfp = 1, QA solutions were
found that satisfied all constraints, but they resembled nfp = 2 configurations that were
translated or rotated to break two-field-period symmetry. These configurations did not
appear to have an advantage over nfp = 2 configurations and so will not be considered
further.

In contrast, QH solutions were found that passed the filters for all values of nfp attempted
except 1. For QH solutions, the number of field periods for which the axis length can be
minimized is 4, followed closely by 3 and 5. For other values of nfp, QH solutions require
significant helical excursion of the axis and an associated longer axis length.

A related but different parameter scan was shown previously in figure 2 of Boozer
(2020). That previous scan used only the O(r) terms in the expansion rather than O(r2),
and the Fourier modes of the axis were scanned directly, with no optimization applied.
The filters used in the present figure 3 eliminate significant parts of the parameter space
from the earlier scan. This can be seen for example in the more limited ranges of ι for each
value of N in the present figure 3 compared with the previous scan.

For five of the points in figure 3, the flux surface shapes of the associated optimized
configurations are shown in the same figure in three dimensions. These configurations
and others from the scan are discussed in greater detail in § 5. Of these highlighted
configurations, the two on the left are relatively familiar in shape: a two-field-period QA
resembling CFQS (the Chinese First Quasi-axisymmetric Stellarator, Liu et al. 2018), and
a four-field-period QH resembling HSX (the Helically Symmetric eXperiment, Anderson
et al. 1995). One of the other highlighted configurations is a four-field-period QH with
large helical excursion of the axis, more excursion than in previously described QH
stellarators aside from the recent configuration by Rodriguez et al. (2022b). The other
two configurations shown in three dimensions have shapes unlike previously reported
quasisymmetric stellarators. These include QH configurations with unusual numbers of
field periods, two and seven.
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5. Example configurations

We now present several specific configurations obtained using the parameter scans in
§ 4. All input and output files for these configurations and the optimizations that led to
them can be found in the supplemental material on Zenodo (Landreman 2022).

For each configuration, a finite aspect ratio is chosen for the figures. The
finite-aspect-ratio boundary is generated as described in § 4.2 of Landreman et al. (2019).
Namely, a finite value a is chosen for the minor radius variable r, the position vector
(2.2) is evaluated for r = a and the result is converted to Fourier series in cylindrical
coordinates. To evaluate the position vector, some O(r3) terms are included, as detailed
in § 3 of Landreman & Sengupta (2019). For each boundary surface, several definitions of
the aspect ratio are available. In the near-axis equations, a convenient definition of aspect
ratio is R0/a. However, this definition differs from the widely used definition of aspect
ratio in the stellarator community, A = R̄/ā, which is obtained as follows. The effective
minor radius ā is defined by setting the toroidally averaged cross-sectional area of the
shaped boundary equal to the area of a circle with minor radius ā. Then the effective
major radius R̄ is defined by setting the volume of the shaped boundary equal to that of a
circular cross-section axisymmetric torus with major radius R̄. (See p. 12 of Landreman &
Sengupta (2019) for details.)

To confirm the correctness of the near-axis method, each example below is checked
using a fixed-boundary MHD equilibrium calculation that does not make a near-axis
expansion, as follows. Given the constructed boundary, the field inside is computed and
converted to Boozer coordinates with the DESC code (Dudt & Kolemen 2020; Conlin
et al. 2022; Dudt et al. 2022; Panici et al. 2022). Similar checks of near-axis solutions
were done using the VMEC code (Hirshman & Whitson 1983) previously in Landreman
et al. (2019), Plunk et al. (2019), Landreman & Sengupta (2019) and Landreman & Jorge
(2020). It was shown in this previous work that ι, d2V/dψ2, DMerc and Fourier modes
of B for fully 3-D equilibria converged to the values predicted by the near-axis solution
as the aspect ratio increased. No further optimization is applied to the finite-aspect-ratio
configurations here, although this could be done in future work.

For the examples that follow, the finite minor radius a is chosen by hand based on several
considerations. The spectral width of the constructed boundary should be sufficiently
small that the DESC calculations reach acceptable force residuals with poloidal and
toroidal mode numbers ≤ 12. This is easier to achieve for smaller a. Also a is chosen to
be sufficiently small that B from the DESC solution is reasonably similar to the near-axis
prediction.

5.1. Quasi-axisymmetry with two periods
The first configuration is one that is very similar to the QA with magnetic well presented
in Landreman & Paul (2022). That configuration was a two-field-period vacuum field
optimized for ι ∼ 0.42, and so in the near-axis calculation we set p2 = 0 and ι∗ = 0.42.
Other than these values, the near-axis optimization is completely independent of the
configuration and optimization in Landreman & Paul (2022). For the first three steps
of the near-axis optimization, in which the number of Fourier modes is increased from
NF = 1 to NF = 3, the only non-zero weights are w∇ = 1, wι = 100 and wB2 = 0.01.
Then, in steps with NF = 3 − 7, the weights used are w∇ = w∇∇ = wwell = 1, wι = 100
and wB2 = 30. A target magnetic well of W∗ = −20 is used to provide some margin.
(The DESC calculations at finite aspect ratio had less magnetic well than the near-axis
solution, so W∗ = −20 was found to be sufficient to achieve a magnetic well at all radii
in the DESC solution.) For later configurations in this paper, the optimization weights and
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(a) (b)

FIGURE 4. Optimization of near-axis solutions and traditional finite-aspect-ratio optimization,
run completely independently, can yield similar results. Here, both methods are used to
generate a two-field-period vacuum QA with ι ≈ 0.42 and magnetic well at aspect ratio 6.0.
(a) Cross-sections of the results are plotted at three toroidal angles, showing the similar
surface shapes. (b) Views of the same configurations in three dimensions. The finite-aspect-ratio
optimization is from Landreman & Paul (2022).

target values can be found in Landreman (2022). The full multi-stage optimization takes
a total of 0.4 seconds on 1 cpu of a standard MacBook laptop. The flux surface shape at
aspect ratio A = 6 is displayed in figure 4, matching the aspect ratio used in Landreman &
Paul (2022). Cross-sections and 3-D renderings of the same two configurations, scaled
to the same average major radius, are also shown in figure 4. It can be seen that the
surface shape generated by the near-axis method is qualitatively similar to the one
obtained independently by finite-aspect-ratio optimization. The field strength computed
by DESC on the aspect ratio 6 boundary is displayed as a function of the Boozer angles
in figure 5. It can be seen that QA is achieved approximately, although not as accurately
as it is with finite-aspect-ratio optimization. The figure also shows a similar calculation
for the boundary constructed at a higher aspect ratio, 10, showing that the symmetry
improves at higher aspect ratio, as expected. Indeed, as the aspect ratio is increased, QA
can be achieved to any desired precision, as demonstrated in Landreman & Sengupta
(2019). Overall, we can conclude that while the near-axis approach is not as accurate
as finite-aspect-ratio optimization, it can compute qualitatively similar configurations
extremely fast.

5.2. Quasi-helical symmetry with two periods
One noteworthy discovery from the parameter scan is that there are QH solutions with only
two field periods. To our knowledge, two-field-period QH configurations have not been
reported previously. These configurations may be attractive since the number of modular
coils tends to scale with the number of field periods. Therefore a two-field-period QH may
require fewer coils than other QH configurations, reducing cost and enabling greater access
between coils. At the same time, QH configurations can have very good confinement of
energetic particles (Bader et al. 2021; Landreman & Paul 2022; Paul et al. 2022) due to
the thinner banana orbits and related factors.
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FIGURE 5. By computing the field inside the boundary constructed from the near-axis solution,
it can be confirmed that approximate QA symmetry was indeed achieved. The symmetry errors
decrease as the aspect ratio increases, as expected. For comparison, the finite-aspect-ratio
‘QA+well’ optimization from Landreman & Paul (2022) is shown at right.

(a) (b)

FIGURE 6. A two-field-period quasi-helically symmetric stellarator generated from the
near-axis method. (a) Cross-sections. (b) The same configuration is shown from three
perspectives. Colour indicates the field strength, and black curves are field lines.

A two-field-period QH configuration generated by the optimization procedure here is
shown in figure 6. This configuration is a vacuum field with ι = 0.95, and the surface
plotted has a/R0 = 0.12. When viewed from one side, the configuration resembles the
original figure-eight design proposed by Spitzer (1958). However, in contrast to Spitzer’s
design, the new configuration here has a non-circular cross-section yielding QH symmetry,
providing improved confinement. A challenge for this new configuration is that there is not
much space in the middle for coils. An important question for future research is whether
nfp = 2 QH configurations can be found with more space in the middle, and whether
feasible coil solutions exist.

It takes many toroidal Fourier modes to represent this configuration in cylindrical
coordinates due to the strong shaping, with regions at small major radius and with high
inclination with respect to the z = 0 plane. It may be for this reason that nfp = 2 QH
configurations have not been reported previously. Here, for the near-axis calculations, 11
Fourier modes are used to represent R(φ) and Z(φ).

Figure 7 shows a fully 3-D calculation of B for this configuration with a/R0 = 0.05. It
can be seen that the B contours are (mostly) straight and diagonal, confirming the desired
QH symmetry.
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FIGURE 7. Magnetic field strength on the a/R0 = 0.05 surface of the two-field-period
quasi-helically symmetric stellarator, computed by running a fully 3-D fixed-boundary
equilibrium calculation inside the boundary constructed from the near-axis method. The mostly
straight diagonal contours confirm the QH symmetry.

(a) (b)

FIGURE 8. A three-field-period quasi-helically symmetric stellarator generated from the
near-axis method, for β = 0. (a) Cross-sections. (b) The same configuration is shown from three
perspectives. Colour indicates the field strength, and black curves are field lines.

5.3. Quasi-helical symmetry with three field periods
Next, we consider QH configurations in which the number of field periods is
three. Previously, a configuration with these properties, obtained using conventional
finite-aspect-ratio optimization, was reported in Ku & Boozer (2011). Here, we show two
new such configurations obtained with the near-axis method.

First, figure 8 shows a vacuum configuration. The only terms included in the
optimization were fL, f∇, f∇∇, fB2. The rotational transform obtained is ι = 1.25. For
the 3-D views and cross-sections in figure 8, a minor radius of a = 0.15 R0 is used,
corresponding to an aspect ratio A = 5. The field strength in Boozer coordinates on this
boundary computed with DESC is shown in the left panel of figure 9, confirming the
expected QH symmetry.

Second, a finite-β configuration is shown in figure 10. The pressure is introduced
by setting p2 equal to a non-zero value, in this case −2.0 × 106 Pa m−2, with the
negative sign corresponding to a typical peaked profile. Note that, for a given objective
function, optimizations run at non-zero p2 generally result in different axis shapes and
flux surface shapes compared with optimizations with p2 = 0. The rotational transform
for the configuration here is ι = 1.09. Note also that the absolute pressure associated
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FIGURE 9. Magnetic field strength on the surface of the three-field-period quasi-helically
symmetric stellarators, computed by running fully 3-D fixed-boundary equilibrium calculations
inside the boundaries constructed from the near-axis method.

(a) (b)

FIGURE 10. A three-field-period quasi-helically symmetric stellarator generated from the
near-axis method, for 〈β〉 = 4 %. (a) Cross-sections. (b) The same configuration is shown from
three perspectives. Colour indicates the field strength, and black curves are field lines.

with any fixed p2 depends on the aspect ratio. For a pressure profile p(r) = p0 + r2p2
with p = 0 at a boundary r = a, the volume-averaged β is 〈β〉 = 2μ0〈p〉/B2

0, where
〈p〉 = (2/a2)

∫ a
0 pr dr = p0/2 is a volume-averaged pressure, giving 〈β〉 = −μ0p2a2/B2

0.
Hence, for a given p2, a larger minor radius corresponds to a larger averaged β. For the
figures we choose a boundary minor radius a/R0 = 0.13, slightly smaller than for the
vacuum case since the QH symmetry is somewhat worse with finite pressure. At this minor
radius, the aspect ratio is A = 6.5 and 〈β〉 = 4 %. The field strength in Boozer coordinates
on this boundary from a finite-aspect-ratio equilibrium calculation is shown in the right
panel of figure 9, confirming the expected QH symmetry. As discussed previously,
a toroidal current profile I(ψ) = 0 is used for this finite-aspect-ratio equilibrium
calculation.

5.4. Quasi-helical symmetry with four field periods
Next, we consider QH configurations with four field periods. This number of field periods
has been a common choice in previous QH designs (Anderson et al. 1995; Ku & Boozer
2011; Bader et al. 2020; Landreman & Paul 2022). We will show three configurations in
this category.

The first is a configuration with relatively long magnetic axis, L/R0 = 12. This
configuration is relatively far to the right on the band of four-field-period QH data in
figure 3. It is a vacuum field, and the only terms included in the optimization were
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(a) (b)

FIGURE 11. A four-field-period quasi-helically symmetric stellarator generated from the
near-axis method, with large ratio of magnetic axis length to major radius (12.0).
(a) Cross-sections. (b) The same configuration is shown from three perspectives. Colour
indicates the field strength, and black curves are field lines.

FIGURE 12. Magnetic field strength on the boundaries of the four-field-period quasi-helically
symmetric stellarators, computed by running a fully 3-D fixed-boundary equilibrium calculation
inside the boundary constructed from the near-axis method. The mostly straight diagonal
contours confirm the QH symmetry. The configurations correspond to figures 11 and 13.

fL, f∇, f∇∇ and fB2. The rotational transform is ι = 1.78. The plasma shape is shown in
figure 11 for a = 0.13, corresponding to A = 5.8. The axis shape of this configuration
resembles the one in figure 2 of Rodriguez et al. (2022b). Given the boundary computed
by the near-axis equations, the field strength inside is computed with DESC and
displayed in figure 12, showing excellent QH symmetry. This configuration has a magnetic
hill.

Next, we present a vacuum configuration with magnetic well, obtained by including
the fwell term in the objective. This configuration has a magnetic axis length L/R0 = 7.0,
shorter than the previous configuration. The rotational transform is ι = 1.18. The plasma
shape is shown in figure 13 for a = 0.13R0, corresponding this time to A = 7.1. This
plasma shape is fairly similar to previous four-field-period QHs (Anderson et al. 1995; Ku
& Boozer 2011; Bader et al. 2020; Landreman & Paul 2022). The field strength inside this
boundary computed by DESC is shown in figure 12. A QH pattern is apparent, although
the deviations from QH symmetry are larger than in the previous configuration, even
though a is identical and A is larger. This finding, that there is a significant trade-off
between quasisymmetry and magnetic well, was also observed in Landreman & Paul
(2022). The quality of quasisymmetry can be improved to any desired degree by increasing
the aspect ratio. This is shown in the right panel of figure 12, displaying the field
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(a) (b)

FIGURE 13. A four-field-period quasi-helically symmetric stellarator generated from the
near-axis method, with magnetic well. (a) Cross-sections. (b) The same configuration is shown
from three perspectives. Colour indicates the field strength, and black curves are field lines.

strength from DESC when the plasma boundary is constructed for a value of r that is
half as large, giving A = 14. For this higher aspect ratio the B contours are significantly
straighter.

Finally, a four-field-period configuration with finite β and Mercier stability is presented
in figure 14. For this configuration, a finite pressure gradient is included by setting
p2 = −106 Pa m−2, and the fMerc term is included in the objective. The rotational transform
of the configuration is ι = 1.60. Based on experience so far, including fMerc in the
optimization causes a substantial deterioration in the minimum aspect ratio, R0/rc. For
this reason, a small minor radius is chosen for the plots, a = 0.06R0. Almost all optimized
stellarators have a ‘bean-shaped’ cross-section, but figure 14 shows that this configuration
does not. Instead, at the toroidal angle for which the major radius of the magnetic axis is
maximized, this configuration has reversed triangularity. This configuration also is unique
in that it exhibits much stronger magnetic shear (computed from the fully 3-D solution)
than the other configurations in this paper. We have observed similar solutions with
Mercier stability also for nfp = 3. The field strength on the finite-aspect-ratio boundary
computed by DESC is shown in figure 15, displaying the expected quasisymmetry. In the
future it would be valuable to further explore this unusual class of QH configurations that
lack a bean-shaped cross-section. Other important questions for future work are whether
Mercier stability can be obtained with larger values of the minor radius rc, and whether
Mercier stability is in fact necessary or not in experiments.

5.5. Quasi-helical symmetry with seven field periods
To our knowledge, in previously reported QH configurations, the highest number of field
periods has been six (Nührenberg & Zille 1988). With the near-axis method, as already
mentioned, QH solutions were found also for larger numbers of field periods, passing the
filters also for nfp = 7 and 8. A seven-field-period configuration is shown in figure 16,
for a/R0 = 0.15. This configuration is a vacuum field with very large rotational transform,
ι ≈ 3.65. A target axis length L∗/R0 = 14 was used. As with the nfp = 2 QH configuration,
it takes a large number of Fourier modes to represent this configuration in cylindrical
coordinates. This can be understood from the unusual shaping, with sections of the plasma
column that are nearly vertical.

Figure 17 shows the field strength computed with DESC for the surface with
a/R0 = 0.05. The straight B contours in the figure confirm the good QH symmetry.

https://doi.org/10.1017/S0022377822001258 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822001258


20 M. Landreman

(a) (b)

FIGURE 14. A four-field-period quasi-helically symmetric stellarator generated from the
near-axis method, with Mercier stability. This configuration is unique in having a
reversed-triangularity cross-section in place of the usual bean-shaped cross-section. (a)
Cross-sections. (b) The same configuration is shown from three perspectives. Colour indicates
the field strength, and black curves are field lines.

FIGURE 15. Magnetic field strength on the boundary of the four-field-period quasi-helically
symmetric stellarator with Mercier stability, computed by running a fully 3-D fixed-boundary
equilibrium calculation inside the boundary constructed from the near-axis method. The straight
diagonal contours confirm the QH symmetry.

(a) (b)

FIGURE 16. A seven-field-period quasi-helically symmetric stellarator generated from the
near-axis method. (a) Cross-sections. (b) The same configuration is shown from three
perspectives. Colour indicates the field strength, and black curves are field lines.
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FIGURE 17. Magnetic field strength on the a/R0 = 0.05 surface of the seven-field-period
quasi-helically symmetric stellarator, computed by running a fully 3-D fixed-boundary
equilibrium calculation inside the boundary constructed from the near-axis method. The straight
diagonal contours confirm the QH symmetry.

6. Discussion and conclusions

In this work we have demonstrated a method to rapidly compute approximately
quasisymmetric stellarator equilibria, and to map out the space of quasisymmetric
configurations. The approach is based on expanding the relevant equations about the
magnetic axis, and applying optimization to the reduced equations. Optimization is not
required to obtain quasisymmetry when using this expansion, since it can be imposed
directly (to O(r)) in a neighbourhood of the axis. However, it is useful to apply
optimization in practice to the axis shape and other near-axis parameters, to increase the
range of minor radius over which the expansion is accurate. Optimization can also be
used to achieve other potentially desirable properties such as magnetic well or a desired
rotational transform. A large number of diagnostic quantities can be computed directly
within the near-axis expansion and included in the objective function. Due to the reduction
of the equations by the expansion, a complete optimization takes only of the order of a cpu
second. Therefore it is feasible to carry out wide scans over parameter space.

From the parameter scans shown in figure 3, several previous observations about
quasisymmetric stellarators are reproduced, and some new observations can be made.
The QA solutions are best obtained at nfp = 2, with some marginal solutions also for
nfp = 3, and are limited to ι < 1. The QH solutions have ι > 0.9. As recently observed
by Rodriguez et al. (2022b), QH and QA solutions exist in continuous bands along which
the axis length varies. Along the QA bands, ι varies significantly, whereas ι varies more
weakly along the QH bands. QH solutions also exist with many possible values of nfp,
including as few as two.

In the remainder of this section, we list some of the many directions for future work.
First, more could be done to explore patterns in the database of configurations from § 4.
Using other configuration properties besides ι and axis length, the data may be separable
into clusters differently, such as configurations with vs without a bean cross-section (e.g.
figure 14). It would also be valuable to try to understand patterns in the data, such as the
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fact that QA solutions seem limited to nfp = 2 and 3, by applying analytic methods to
the underlying Garren–Boozer equations. Structures in the space of configurations were
recently explored using a different method in Rodriguez et al. (2022b), and hopefully
connections could be drawn between that work and the methods here.

Some of the QH solutions here, such as those in figures 6 and 16, may not have been seen
previously since they require many Fourier modes to represent using the usual boundary
shape representation in cylindrical coordinates. It may therefore be valuable to develop
near-axis and 3-D MHD equilibrium codes that can use other coordinate systems, such as
is being pursued with the code GVEC (Maurer et al. 2020). It would also be advantageous
to modify the workflow used here so the surfaces are constructed using a poloidal angle
other than the Boozer θ , an angle in which the Fourier spectrum of the surface is more
compressed.

We also find in the scans that there is a significant trade-off between the accuracy of
quasisymmetry versus magnetic well (relevant for low β) or Mercier stability (relevant
at finite β). This finding motivates further work on nonlinear MHD stability, to assess
whether these measures of linear stability are in fact necessary constraints to impose on a
design, or whether they can be relaxed.

Compared with the unconstrained local optimizations used in this work, other
optimization methods could be applied to the near-axis model in the future. Algorithms
for optimization with constraints could be used instead of the unconstrained approach
with penalty terms used here. Also, global algorithms could be applied, since there is no
guarantee that the scans here have found all global optima.

There are many other directions for future work. One important question is how to
include the bootstrap current in the near-axis model, given the limited freedom in the
current profile shape at O(r2). Second, the methods here could be further developed for
QI configurations, building on the work in Plunk et al. (2019), Jorge et al. (2022) and
Camacho Mata et al. (2022). Finally, there is potential for using the geometry relevant to
the gyrokinetic equation and ballooning stability, computed from the near-axis quantities
by Jorge & Landreman (2021). Properties of gyrokinetic or ballooning modes could
potentially be targeted in the optimizations.
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