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Abstract

In this paper, the generalised complementarity problem studied by Parida and Sen
[13] is further extended. The extended problem appears to be more general and
unifying. Characterisations of solutions to this extended problem are given. Some
existence results derived by these characterisations are presented. An application
of the extended problem to the quasi-variational inequalities of obstacle type is
considered.

1. Introduction

Let / be a mapping of R" into itself. The classical nonlinear complementarity
problem is to find a vector* e R" such that* > 0, f{x) > Oand (x, f(x)) = 0.
The nonlinear complementarity problem was first introduced and studied in [3]
(See also [4, 5]) where the notion of positively bounded Jacobians was in-
troduced and the proof was constructed in the sense that an algorithm was
employed to compute the unique solution. It is also worth noting that the non-
linear complementarity problem has many applications, for example, in control
and optimisation, economics and transportation equilibrium, contact problems
in elasticity, fluid flow through porous media, game theory, and mathematical
programming.

In recent years, various extensions of the nonlinear complementarity problem
have been proposed and analysed. See, for example, [2, 6, 7, 9, 10, 11, 13,
14]. In [13], Parida and Sen consider and study the following generalised
complementarity problem:
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[2] The complementarity problem 421

Find x e R" and y e F(x) such that

xeK, 9(x,y)€K* and (x,9(x,y)) = 0 (1)

where A" is a closed convex cone in R", K* = {y e R" : (y, x) > 0, to € K]
is the polar cone of K, F is a point-to-set mapping from K into C C Rm and 0
is a point-to-point mapping from K x C into R".

In this paper, we shall consider the following extension of the problem con-
sidered by Parida and Sen [13] by allowing A" to be a point-to-set mapping:

Find a vector x e m(x) + L(x) and a vector y e F(x) such that

e(x,y)eL(xY and (6(x,y),x - m(x)) =0, (2)

where L is a cone-valued point-to-set mapping from a closed convex cone K
into itself and m is a point-to-point mapping from K into itself. We note that
(2) reduces to the problem studied in [2] if 6(x, y) = y and K = C = R".
If we further assume that L(x) = R"+ for all x e R" and F is single-valued,
then (2) reduces to the problem studied in [11]. If m(x) = 0 and L(x) = K
for all * € K, then (2) reduces to the problem studied in [13] and if we further
assume that C — R" and 9(x, y) = y, then (2) reduces to the problem studied
in [14]. Finally, if F is further assumed to be single-valued, then (2) reduces to
the problem studied in [9]. Therefore, it can be seen that (2) is a more general
and more unifying problem.

We also note that a number of Kuhn-Tucker stationary point problems for
nondifferentiable mathematical programming problems such as those studied in
[13], [12] and [15] can be also cast into the form of (2).

In Section 2, we give some preliminaries that will be used throughout this
paper. In Section 3, we first characterise solutions to (2). Some existence results
are then derived from these characterisations. Finally, an application of (2) to
the quasi-variational inequalities of obstacle type is considered.

2. Preliminaries

Let X and Y be metric spaces and F be a point-to-set mapping from X into
Y. The mapping F is said to be upper continuous at x e X [8] if and only if a
sequence {xn} converging to x, and a sequence {yn] with yn e F(xn) converging
to v, implies y e F(x). The mapping F is said to be lower continuous at x e X
[8] if and only if for any sequence {xn} converging t o i e X and y e F(x), there
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exists an n0 such that the sequence [yn] converges to y e Y and yn e F(xn)
for all n > n0. The mapping F is said to be upper (lower) continuous if F
is upper (lower) continuous at every point x e X and F is continuous if it is
both upper and lower continuous. The point-to-set mapping F is said to be
uniformly compact near x [8] if there exists a neighbourhood V of x such that
F(V) — UUIEVF(U) is bounded. We say F is uniformly compact on X if it is
uniformly compact near x for all x e X. For A" c R",int(tf) and dK denote the
interior and boundary of K, respectively. For K, B C R", int/f (fl) and dx(B)
denote the relative interior and relative boundary of B in K, respectively.

REMARK. There are other notions of upper (lower) semicontinuity for point-to-
set mappings introduced by Berge [1] which are different from the notions of
upper (lower) continuity defined above. But if the space Y is compact and F is
upper continuous then F is upper semicontinuous [1].

The following theorem will be needed in the next section.

THEOREM 2.1. Let K C R" be nonempty compact convex and C C Rm be
nonempty closed and convex. Let X be a nonempty convex-valued continu-
ous point-to-set mapping from K into itself and F be a convex-valued upper
continuous and uniformly compact point-to-set mapping from K into C. Let
9 : K x C —> R" be continuous. Then there exist x e X(x) and y e F(x)
such that (9(x, y), u — x) > Ofor all u e X(x).

PROOF. Let H be the closed convex hull of UxeKF(x). Since F is upper
continuous and uniformly compact on K, it follows that H is compact and
convex. For each fixed {x, y) 6 K x H, the set

V(x, y) = {ue X(x) : (9(x, y), u - x) = min {9(x, y), s - x)}
seX(x)

is convex. Let G be a point-to-set mapping from K x H into itself defined by
G(x, y) = (V(x, y), F(x)) for (x, y) e K x H. Then G is upper continuous
and G(x, y) is compact and convex for all (x, y) € K x H. Now we can invoke
the Kakutani Fixed Point Theorem to ensure that G has a fixed point (x, y) from
which the result follows.

REMARK. Throughout the rest of this paper, it will be assumed that

1. K is a closed convex cone in R" and C is a nonempty closed convex subset
ofRm,
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2. m is a point-to-point mapping from K into itself,
3. L is a cone-valued point-to-set mapping from K into itself,
4. F is a point-to-set mapping from K into C,
5. X(x) = m(jc) + L(x) for all x e K,
6. For r > 0, Xr(jc) = X(x) n Br for all x € K, where flr = {* e R" :

11*11 </•},
7. 0 is a continuous point-to-point mapping from K x C into R".

3. The main results

First, we have the following simple but useful lemma.

LEMMA 3.1. Let K be a nonempty convex subset of R" and D be any nonempty
subset of K. If x e intK(D), then for any u e K, there exists a Xo such that
0 < Xo < 1 and Xx + (1 - X)u € D for all Xo < X < 1.

PROOF. Since x e intjr(D), there is an open set U C R" so that * e ^ D U C
kit* (D). The result then follows from the facts that Xx + (1 — X)u converges
to x as X converges to 1 and U is an open neighbourhood of x.

We now have the following characterisations of a solution of (2).

THEOREM 3.2. The following statements are equivalent:
(i) a vector x e K is a solution to (2),

(ii) there exists an r < Osuchthatx e 'm\.X(x)(.Xr(x)) and for some y e F(x)

(9(x, y), u - x) > 0, Vue Xr(x),

(iii) there exists an nonempty convex compact subset B of K such that x e
H B) and for some y € F(x)

(6(x,y),u-x)>0, Vu

(iv) x e X(x) and there is a y e F(;t) 5«C/J
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PROOF, (i) implies (ii). Suppose that x e K solves (2). Then x e X{x) and
there exists y e F{x) such that

6(x, v) <= L(x)* and {9(x,y),x - m(x)} = 0.

Chooser > 0 such that x e int(Br). Then* e X(x)(Mnt(Br) C intxw(
For every u e Xf(x), u = m(x)+z for some z e L(x)*. Since 0(x, y) €
we have (0(*, y), u — x) = (6(x, y), z) > 0. Hence (ii) follows.

(ii) implies (iii). This is clear by letting B = K D Br.
(iii) implies (iv). It follows immediately from the hypothesis that x e X(x).

For any u e X(x), by Lemma 3.1, we can choose A. > OsothatA.jc + (l — X)u e
Xr(x). Then

0 < (0(x, y), kx + (1 - X)« - x) = (1 - A)(0(;t, y), u - x).

Therefore {0{x, y),u-x) >0 for all u e X(x).
(iv)implies(i). Sincex—m{x) e L(x)andL(x)isacone,m(x),2x—m(x) e

X(jr). It then follows from (iv) that (0(x, y), x — m(x)) = 0. Finally, for any
z € L(x), we have

(G(x, y ) , z) = (G(x, y ) , m(x) + z)-x)>0.

It follows that 6(x, y) e L(x)*. Therefore x is a solution to (2).

REMARK. If we consider the following generalised quasi-variational inequality
problem: Find x e X(x) and y e F(x) such that

(0(x,y),u-x)>0, VaeXOc), (3)

then the equivalence of (i) and (iv) in Theorem 3.2 states that both the solution
sets of (3) and (2) are exactly the same. Such a nice relation between the
variational inequality problem and the complementarity problem has already
been investigated in [2], [9], [13] and [14].

Theorem 3.2 combined with Theorem 2.1 can be employed to obtain existence
results for (2). To illustrate this assertion, we derive the following existence
results for (2) by Theorem 3.2 and Theorem 2.1.

THEOREM 3.3. Suppose that there exists an r > 0 such that the following con-
ditions hold:

(i) F is convex-valued, upper continuous and uniformly compact on KC\Br,
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(ii) Xr is a nonempty convex-valued continuous point-to-set mapping on
KDBr,

(iii) for each x e X(x) n Cr, there is a u & X(x) D intK(Br) such that

max (d(x, y), u — x) > 0.
yeF(x)

Then there exists a solution to (2).

PROOF. By Theorem 2.1, there exist x e Xr{x) and y e F{x) such that
{9{x, y), v — x) > 0 for all v e Xr(x). If x e intX(X)(Xr(x)), then the res-
ult follows from Theorem 3.1 (ii). Otherwise, x e X(x) n Cr. By (iii), there
exists a M € X(x) D intK(Br) such that (0(x, >>), u - x) < 0 for all y e F(x). It
follows that {&(x, v), u — x) = 0. For any u G X(x), choose 0 < X < 1 so that
Xu + (1 - X)u e Xr(x). We then have

0 < (6(x, y,), Xu + (1 - X)v -x) = {\- X){d{x, y), v - x).

Thus (9(x, y), v — x) > 0. The result then follows from Theorem 3.2 (iv).

THEOREM 3.4. Suppose that there exists a nonempty compact subset B of K
such that the following conditions hold:

(i) F is convex-valued, upper continuous and uniformly compact on B,
(ii) Y(x) = X(x) D B is a nonempty convex-valued continuous point-to-set

mapping on B,
(iii) foreachx e B andforeachx € X(x)\B, there exists a vector u € Y(x)

such that

max (6(x, y), u - z) < 0.
yeF(x)

Then there exists a solution to (2).

PROOF. By Theorem 2.1, there exists x e Y(x) and y e F{x) such that
(6(x,y),x - x) > 0 for all x e Y(x). Now for x e X(x)\fl, by condi-
tion (iii), there exists a « e y( i ) such that (0(Jc, y),x — u) > 0. On the other
hand, we have {9(x, y), u — x) > 0. By adding the last two inequalities, we
have (9(x, y),x — x) > 0 The result then again follows from Theorem 3.2 (iv).

The following corollary follows immediately from Theorem 3.4 by letting
C = K, X be a constant point-to-set mapping with X(x) = K for all x e K
andd(x,y) = y.
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COROLLARY 3.5. Suppose that there exists a nonempty compact subset B of K
such that the following conditions hold:

(i) F is convex-valued upper continuous and uniformly compact on B,
(ii) for each z € K\B, there exists a vector u € B such that

max (v, u — z) < 0.
yeFM

Then there exist x e K and Y e F(x) such that y e K* and (y, x) = 0.

Corollary 3.5 extends [14, Theorem 2.1] where strict inequality in (ii) is
required. Finally, we have

THEOREM 3.6. Suppose that
(i) F is convex-valued upper continuous and uniformly compact on K,

(ii) there exists a vector x0 e r\xe/( X(x) such that

liminf max {9(x, y), x0 — x) < 0,
\\\\c€X() FW

(iii) there exists an r0 > 0 such that Xr is a nonempty, convex-valued con-
tinuous point-to-set mapping for all r > r0.

Then there exists a solution to (2).

PROOF. By (ii), there exists an r, > 0 such that for any x € X (x) and \\x || > ru

we have
max (6(x, y), x0 — x) < 0. (4)
yeF(x)

Let r > max [r0, rx, ||JCO||}. Then by Theorem 2.1, there exist x e Xr(x) and
y € F(x) such that (9(x, y),u — x) > 0 for all u e Xr(x). It follows from
(4) that x € X(x)d int (fir) C intX(x)(Xr(x)). Consequently, the result follows
from Theorem 3.2 (ii).

In the case where the point-to-set mapping L is constant with L(x) = Lo

for all JC e K, the condition that Xr is continuous on K PI Br for large r is
automatically true if the function m is continuous. We have

THEOREM 3.7. Let LQ be a closed solid cone in R". Suppose that
(i) F is convex-valued upper continuous and uniformly compact on K,

(ii) the function m is continuous on K,
(iii) there exists a vector u0 G K such that UQ — m(x) e Lo, VJC € K,
(iv) liminfw_0O,;teXW maXj,6/rW(0(jc, y), uo - x) < 0.

Then there exists a solution to (2).
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PROOF. Condition (iii) implies that u0 e Dx^KX(x). The fact that Xr is continu-
ous for sufficiently large r can be proved by a standard argument as that in [2,
Theorem 4.2]. Hence the result follows from Theorem 3.6.

Before closing this section, we give an application of (2) to the quasi-
variational inequalities of obstacle type.

Let K be a closed convex cone in R" and <K be the partial order induced
by K, that is, x <K y if and only if x - y e K for all x, y e R". Let / , m
be functions from R" into itself. The quasi-variational inequality problem of
obstacle type is to find x* e R" such that

x*>Km(x*), (f(x),x-x*)>0, Vx<Km{x*). (5)

It is interesting to note that if K = R"+ and m(x) = 0 for all x e R", then
problem (5) is equivalent to a nonlinear complementarity problem. We now
associate with problem (5) the following complementarity problem of form (2).
Let X be a point-to-set mapping from R" into itself defined as X (x) = m(x) + K
for all x € R". Find x* e mix*) + K such that

/(**) e K\ {f(x*), x* - m(x*)) = 0. (6)

It is easy to see that problem (5) is equivalent to problem (6) by Theorem 3.2.
Consequently, we have the following existence result for problem (5).

THEOREM 3.8. Let K be a closed solid convex cone in R". Let f and m be
continuous functions from Rn into itself and X(x) = m{x) + K be a point-to-set
mapping from Rn into itself. Suppose that there exists a vector w0 € R" such
thatu0 -mix) e K, Vx e R" and

liminf (fix), x0 — x) < 0.
\\x\\-*oo,xeX(x)

Then there exists a solution to problem (5).

PROOF. This result follows from Theorem 3.7 and the note above.

We conclude this section by noting that one possible generalisation of the
above results is that the convex-valued assumption of the point-to-set mapping
F can be weakened to be contractible-valued.
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