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THE COHOMOLOGICAL DIMENSION OF A DIRECTED 
SET 

BARRY MITCHELL 

Let R be a ring with identity, and let C be a small, nonempty category. We 
denote the category of right i^-modules by AbR and the category of contra-
variant functors C —> AbR by AbRC*. The limit functor 

colim c : AbBC*->AbB 

is left exact, and its &th right derived functor is denoted by colim*. The 
R-cohomological dimension of C is defined by 

cdRC = supj&lcolimc* F^ 0}. 

If there is a unitary ring homomorphism R—>S, then it is not difficult to 
show that cd5C ^ cd^C 

In this paper we shall obtain the following complete result for the case 
where C is a directed set. For convenience, we let K-i = 1, and we let oo 
denote any infinite ordinal. 

THEOREM A. Let Hn be the smallest cardinal number of a cofinal subset for the 
directed set C ( — 1 ^ n ^ oo). Then 

cdRC = n + 1 

for all nonzero rings R. 

It is perhaps surprising that the result is independent of the ring. This is in 
contrast to the situation for general partially ordered sets, where the difference 
cd z C — cdRC can be arbitrarily large even if C is required to be finite [4, § 34]. 

The totally ordered case of Theorem A was obtained in [4, Corollary 36.9]. 
The general case for finite n will be obtained from the totally ordered case 
using Theorem B below. However, the method does not work for infinite n 
unless Xw is regular, and for the infinite case we revert to a technical lemma of 
Osofsky used in [4]. 

The following theorem was stated without proof by Roos in [6] for the case 
where U is the inclusion of a cofinal subset in a directed set. A proof for this 
case was given by Jensen in [3]. However, Jensen's proof does not work in the 
general case. We shall obtain the theorem as a consequence of an appropriate 
generalization of the l'mapping theorem" of Cartan-Eilenberg [1, p. 150]. 
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234 BARRY MITCHELL 

THEOREM B. Let U : C —> D be a cofinal functor where C (and hence D) is a 
filtered category. Then for each k ^ 0 there is a natural isomorphism 

colim^iV ~ co\imc
kUN 

where N G AbRD*. 

Acknowledgement. My interest in this problem derived from conversations 
with John Moore and Alex Heller, and I take this opportunity to thank them. 
I am also grateful to Dalhousie University for the generous Killam fellowship 
which I held during a portion of the work. 

1. The mapping theorem. Notation and terminology will be for the most 
part as in [4]. In particular, the composition fg is to be read as first / and 
then g. If §1 is a category, then |2l| is its class of objects and 2104, B) is the set 
of morphisms from A to B. An additive category is a category equipped with 
an abelian group structure on each morphism set such that composition is 
bilinear. The additive category of abelian groups is denoted by Ab. By a 
ringoid we mean a small, additive category. If 6 is a ringoid, then a right E-
module is an additive functor M : 6 —* Ab. The category of right 6-modules 
is denoted Ab . However, we shall use the traditional Hom&(M, N) rather 
than Ab (M, N) for the abelian group of natural transformations from 
M to N. If M is a right S-module, C G |S| , x G M(C), and X G 6(C, C), 
then we denote x\ = M(\)(x) G M(C). The category of left ^-modules is the 
category Ab®*'. In this case, we write \x = M(\)(x) G M(C) for x Ç M(C) 
and X G S(C, C). If M is a right S-module and N is a left (5-module, then 
M (x)g N is the abelian group defined by 

M ®&N = 0 M{C) ®ZN(C)/K 
Ce|6| 

where i£ is the subgroup of the numerator generated by all elements of the 
form 

x\ ® y - x (x) X;y, x G M(C), y G N(C), X G 6(C, (7). 

Let U : S —-> 3) be a map of ringoids, or in other words an additive functor. 
Then we have the functor Abu : Ab®* —> Ab®* which composes with U, and 
which has 35 ( , U) ®s as its left adjoint. If Q® is a left 3)-module, then the 
adjunction 

is given by 

^D(ix®y)=ny, y<EQs>(U(C)), » e ®(D, U(Q). 

Now if <2s is a left 6-module and ^ : Q& —> t/Ç® is a map (natural trans-
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formation) of 6-modules, then composing © ( , £ / ) (xfô ^ with e we obtain 
a map 

3)( ,U) ®e<2e^fe 
given explicitly by 

gnin ®x) = ixt(x),x € 0c(O,M € © ( A C7(C)). 

Suppose now that X is a projective resolution for Q&. Then S ( , [/) 0 g l 
is a ©-projective left complex over © ( , £ / ) ®s (?<£> and so if F is a pro­
jective resolution for Q®, then we obtain a map of complexes 

G :S ) ( , £/) <gte-ï-> F 

over g. The map G is unique up to homotopy, and so induces well defined maps 

H(UM (gfc X) = # ( M (8)© ©( , U) ®c X) -> #(Af {gfc F) 

if(Homs)*(F, TV)) ->#(Homs)*(£)( , £/) ®e X, # ) = H(rlom&*(X, UN)), 

or in other words, maps 

Fu : Tor®(UM, (fe) -> Tor®(M, Q©) 

Fv : ExtsD.(QsD, # ) -» Exte*((k, CW) 

for right ©-modules M and left ©-modules iV. 

MAPPING THEOREM. In order that Fu be an isomorphism for all M, it is 
necessary and sufficient that 

0) £:£>( , U) < g t e & ^ G © 
(ii) T o r / ( © ( , U), Q*) = Ofor n > 0. 

If these conditions are satisfied, then Fv is also an isomorphism for all N. 

Proof. Assume Fu is an isomorphism. In particular, taking M = 35(2?, ) 
for any D £ |©|, we obtain conditions (i) and (ii). 

Conversely, assume that (i) and (ii) hold. If X is a projective resolution of 
Qv, then #*(£>( , U) ®G> X) = 0 for n > 0 by (ii), so that ©( , [ / ) ® g I 
is a ©-projective resolution of ©( , U) ®s Q®. Since g is an isomorphism, 
it follows that G is a homotopy equivalence, and so Fu and r u are iso­
morphisms. 

The above proof is copied (needless to say) from Cartan-Eilenberg. However, 
there the theorem is stated only in the "augmented ring" situation, or in other 
words the case where (5 and © are rings, Q<& and Q® are cyclic modules, and \j/ 
takes the generator of Q® to the generator of Q®. All of these conditions are 
too restrictive for our purposes. 

2. Proof of Theorem B. Let C and D be (nonadditive) categories. Recall 
that a functor U : C —» D is cofinal if for each D € |D| the comma category 
(D, U) (whose objects are the elements of D(D, U)) is nonempty and con­
nected. Recall also that a category C is filtered if every pair of objects are 
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domains of morphisms with a common target, and if for every pair of mor-
phisms a, a' with common domain and common target there is a morphism £ 
such that afi = a'fi. 

Now let R be a ring, and let C be a small category. Then we have the 
ringoid RC whose right modules are the same as the C-diagrams of right 
i^-modules [4, § 2]. Furthermore, the colimit functor 

limc : AbRC -> AbR 

is given by 
limc M = M ®RCACR 

where ACR is the constant C*-diagram at the left jR-module R [4, § 16]. 
Similarly, the limit functor 

eolime :AbR*c*->AbR* 
is given by 

colimciV = HomR*c*(AcR, N). 

Consider now a cofinal functor U : C —» D where C (and hence D) is 
filtered. Then we have the induced additive functor RC —» RD which we still 
denote by U. Let us take 6 = RC, 2) = RD, Qç, = ACR, and Q® = ADR in 
the preceding section. Note that ACR is ADR composed with Z7, so that we 
may take \p to be the identity. Since C is filtered, colimc is exact, and so ACR 
is flat. Hence, condition (ii) of the mapping theorem is satisfied. To verify 
condition (i), we consider the map 

gD:RD(D, U) ®RCACR-+R. 

It is given in this case by 

SD(M ®r) =r, M e D(D, U(C)) 

where r is considered as an element of the left i^-module R sitting at C on the 
left and at D on the right. We define 

f:R-+RD(D, U) ®RC ACR 

as follows. Since the comma category (D, U) is nonempty, there is a 
M 6 D(D, U(C)) for some C, and so we can define f(r) = M ®r. Then from 
the fact that (D, U) is connected we see that / is independent of the choice 
of JU, and it follows easily that gDf is the identity. Since fgD is the identity in 
any case, this establishes that g is an isomorphism. Theorem B is, therefore 
a special case of the mapping theorem. 

3. Proof of Theorem A. If n is an ordinal, we let con denote the first ordinal 
of cardinal number X». If X is a directed set, then we define the cofinality 
of X (cof X) to be n where Kw is the smallest cardinal number of a cofinal 
subset. Thus, cof X — — 1 if and only if X has a terminal element, and it is 
easy to see that cof X — 0 if and only if X contains co0 as a (full) cofinal 
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subset. If card X — Xw and each element of X is preceded by only a finite 
number of elements, then cof X = n. In particular, if X is the set of finite 
subsets (ordered by inclusion) of a set of cardinal number Kw, then cof X = n. 
If o)n is regular, then cof œn = n. On the other hand if œn is not regular, then n 
cannot be the cofinality of any totally ordered set. 

LEMMA 3.1. Let X be a directed set of cofinality n. Then there is a cofinal map 
{functor) U : X —» œn. 

Proof. Let {xa\a < cow} be a cofinal subset of X. For x G X, define U(x) to 
be the first a such that x ^ xa. Clearly U is order preserving, and if its image 
were not cofinal in cow, then there would be a cofinal subset of X of smaller 
cardinality. 

From the lemma and Theorem B it follows that cd#X ^ cd^o^ if cof X — n. 
Hence, when œn is regular, we obtain from [4, Corollary 36.9] 

(1) cd*X ^ n + 1. 

Since also cd^X S n + 1 [4, Corollary 16.2], this proves Theorem A in the 
case where œn is regular, and in particular, when n is finite. However, when ain 

is not regular (for example, when n = o>0), this argument breaks down. 
To handle the infinite case, we recall that a directed set of free generators for 

a right ©-module i f is a set X of elements of the values M(C) such that 

0) x\ = o, x e x, x e s => x = o, 
(ii) the set X, ordered by y ^ x if y = xX for some X 6 6, is directed, 

(iii) every element of M is of the form x\ for some x £ X and X 6 E. 
If Y (Z X, P-i(Y) denotes the submodule of M generated by F. The 

following lemma is an immediate consequence of a lemma of Osofsky [5] 
which was written down in the required generality in [4, Lemma 36.4]. 

LEMMA 3.2. Let X be a directed set of free generators for a module M, and 
suppose that cof X > n for some n satisfying 0 ^ n < oo. If hd M S k where 
0 < k < oo, then there is a directed subset Y Ç^ X such that cof Y = n and 
such that hd P-i(Y) ^ k. 

We need one more easy lemma concerning general preordered sets. A 
subset U of a preordered set X is open if x Ç U, y S x =$ y Ç f/. 

LEMMA 3.3. Le/ X be a preordered set and let U be an open subset. Let 
E : AbEU* —> AbRX* be the functor which extends a diagram by adding zeros. 
Then hd F = hd E(F) for all F G AbRU*. 

Proof. E is the left adjoint of the restriction functor T. Since E and T are 
both exact and ET is the identity on AbRU*, we see that E(P) is projective 
if and only if P is projective. Hence, E preserves projective resolutions, and 
the first projective kernel in a projective resolution for F occurs at exactly 
the same point where the first projective kernel appears in the corresponding 
projective resolution for E(F). 
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Now let X be any directed set, and consider the right i?X*-module AXR 
where R is any nonzero ring. Then AXR has a directed set of free generators 
which is isomorphic to X as a directed set, namely, the identity elements of R 
sitting at the various objects of X. We shall identify this directed set of free 
generators with X. If cof X = oo, we wish to show that cdRX = oo, or in 
other words that hd AXR = oo. Suppose that hd AXR = n < oo. By Lemma 
3.2, there is a directed set Y C X of cofinality n such that h d P _ i ( F ) ^ n. 
But P_i ( Y) is the diagram which has R at every element of the smallest open 
set U containing Y, and zeros elsewhere. Hence, by Lemma 3.3 its homo-
logical dimension is that of AVR, or in other words cdRU. But this is contrary 
to inequality (1), since cof U = cof Y = n. This completes the proof of 
Theorem A. 
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