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Abstract

The relation between the fractional integral operator and the fractional maximal operator is investigated
in the framework of Morrey spaces. Applications to the Fefferman–Phong and the Olsen inequalities are
also included.
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1. Introduction

The purpose of this paper is to study certain estimates related to the fractional integral
operator, defined by

Iα f (x)=
∫

Rn

f (y)

|x − y|n(1−α)
dy for 0< α < 1,

and to the fractional maximal operator, defined by

Mα f (x)= sup
Q3x

1

|Q|1−α

∫
Q
| f (y)| dy for 0≤ α < 1,

in the framework of Morrey spaces. Here, the supremum is taken over all cubes Q in
Rn containing x with sides parallel to the coordinate axes. Let 0< p1 ≤ p0 ≤∞. For
an L p1 locally integrable function f on Rn we set

‖ f ‖p0,p1 = sup
Q
|Q|1/p0−1/p1

(∫
Q
| f (x)|p1 dx

)1/p1

= sup
Q
|Q|1/p0

(
1
|Q|

∫
Q
| f (x)|p1 dx

)1/p1

,
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where the supremum is taken over all cubes Q in Rn with sides parallel to the
coordinate axes. We call the Morrey space M p0

p1 the subset of all L p1 locally integrable
functions f on Rn for which ‖ f ‖p0,p1 is finite. Applying Hölder’s inequality, we see
that

‖ f ‖p0,p1 ≥ ‖ f ‖p0,p2 whenever p0 ≥ p1 ≥ p2 > 0.

This tells us that

L p0 =M p0
p0 ⊂M p0

p1 ⊂M p0
p2 whenever p0 ≥ p1 ≥ p2 > 0.

It is well known that the Hardy–Littlewood maximal operator M , M = M0, is bounded
on M p0

p1 when 1< p1 ≤ p0 <∞ and the fractional integral operator Iα is bounded
from M p0

p1 to Mq0
q1 when 1< p1 ≤ p0 <∞, 1< q1 ≤ q0 <∞, 1/q0 = 1/p0 − α and

q1/q0 = p1/p0 (see [3, Theorems 1, 2]). The Morrey spaces, which were introduced
by Morrey in order to study regularity questions which appeared in the calculus of
variations, describe local regularity more precisely than Lebesgue spaces and are
widely used not only in harmonic analysis but also in partial differential equations
(see [6]).

When 1≤ p2 <∞, an l p2-valued function ( fν)ν∈N on Rn is said to be measurable
if each fν is a (real- or complex-valued) measurable function and

∑
ν | fν(x)|

p2 <∞

almost everywhere. For 0< p1 ≤ p0 ≤∞ and 1≤ p2 <∞, we define the space
M p0

p1(l
p2) consisting of all l p2-valued measurable functions ( fν) such that

‖( fν)‖p0,p1,p2 =

∥∥∥∥(∑
ν

| fν |
p2

)1/p2
∥∥∥∥

p0,p1

<∞.

The good-λ inequality of Fefferman and Stein motivated the development of the
theory of capacities for potentials of functions in the Morrey space. Adams and Xiao
observed in [1] the equivalence of the Morrey norms of the fractional integral operator
and the fractional maximal operator, which is an extension of an earlier result of the
Lebesgue space due to Muckenhoupt and Wheeden [8].

THEOREM 1.1 [1, Theorem 4.2]. Let 0< α < 1 and 1< q1 ≤ q0 <∞. Then

C−1
‖Mα f ‖q0,q1 ≤ ‖Iα f ‖q0,q1 ≤ C‖Mα f ‖q0,q1,

where the constant C is independent of f .

It is evident that Mα f ≤ C Iα| f | due to the estimate

1

rn(1−α)

∫
{|x−y|≤r}

| f (y)| dy ≤ Iα| f |(x) ∀x ∈ Rn, r > 0.

However, if f (y)= |y|−nα and x = 0, then the reverse inequality is false. In view
of this, the Morrey norm equivalence of Iα f and Mα f is quite surprising. In this
paper, without using the good-λ inequality of Fefferman and Stein, we shall prove the
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following elementary theorems which link Iα f and Mβ f and contain, as a special
case, the Morrey norm equivalence.

Theorem 1.2 is concerned with Morrey spaces whose parameters are small.

THEOREM 1.2. Let 0< α < 1, 0< q1 ≤ q0 <∞ and 0< r1 ≤ r0 ≤∞. Suppose that
0< q1 ≤ 1, q1 ≤ r1, q0 < r0 and 0≤ β = α − (1/r0) < 1. Then, for any locally
integrable function f such that ‖Mβ f ‖q0,q1 <∞ and for any function g in Mr0

r1 ,

‖g · Iα f ‖q0,q1 ≤ C‖g‖r0,r1‖Mβ f ‖q0,q1,

where the constant C is independent of f and g.

Theorem 1.3 is a vector-valued inequality for the functions in a Morrey space.

THEOREM 1.3. Let 0< α < 1, 1< q1 ≤ q0 <∞, 1< q2 <∞ and 1< r1 ≤ r0 ≤∞.
Suppose that q1, q2 < r1, q0 < r0 and 0≤ β = α − (1/r0) < 1. Then, for any locally
integrable function ( fν) such that ‖(Mβ fν)‖q0,q1,q2 <∞ and for any function (gν)
such that supν ‖gν‖r0,r1 <∞,

‖(gν · Iα fν)‖q0,q1,q2 ≤ C sup
µ
‖gµ‖r0,r1‖(Mβ fν)‖q0,q1,q2,

where the constant C is independent of ( fν) and (gν).

If we let r0 = r1 =∞ and g, gν ≡ 1 then we have the following.

COROLLARY 1.4. Let 0< q1 ≤ q0 <∞. Then, for any locally integrable function f
such that ‖Mα f ‖q0,q1 <∞,

‖Iα f ‖q0,q1 ≤ C‖Mα f ‖q0,q1 .

Corollary 1.4 is an extension of Theorem 1.1 to small parameters.

COROLLARY 1.5. Let 1< q1 ≤ q0 <∞ and 1< q2 <∞. Then, for any locally
integrable functions ( fν) such that ‖(Mα fν)‖q0,q1,q2 <∞,

‖(Iα fν)‖q0,q1,q2 ≤ C‖(Mα fν)‖q0,q1,q2 .

Corollary 1.5 is a vector-valued extension of Theorem 1.1.
Theorems 1.2 and 1.3 can also be thought of as weighted inequalities linking the

fractional integral operator Iα f and the fractional maximal operator Mβ f (see [2,
7, 10, 11] and so on). The methods of proof of these results follow a widely used
argument. We use a dyadic decomposition of the kernel of Iα and a linearization
method. In the last section we will consider some applications of the theorems. The
letter C will be used for constants that may change from one occurrence to another.
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2. Proof of Theorem 1.2

We denote by D the family of all dyadic cubes on Rn . We assume that f and g are
nonnegative. First, we discretize the operator Iα as follows:

Iα f (x) =
∑
µ∈Z

∫
2µ−1<|x−y|≤2µ

f (y)

|x − y|n(1−α)
dy

≤ C
∑
µ∈Z

1

(2µ)n(1−α)

∫
{|x−y|≤2µ}

f (y) dy

≤ C
∑
µ∈Z

∑
Q∈D:

Q3x,|Q|=2nµ

|Q|α

|Q|

∫
3Q

f (y) dy

= C
∑
Q∈D

|Q|α

|Q|

∫
3Q

f (y) dy χQ(x).

To prove the theorem it suffices to show that(∫
Q0

(g(x)Iα f (x))q1 dx

)1/q1

≤ C‖g‖r0,r1‖Mβ f ‖q0,q1 |Q0|
1/q1−1/q0

for all dyadic cubes Q0. Hereafter, we let D(Q0)= {Q ∈D | Q ⊂ Q0} and D̃(Q0)=

{Q ∈D | Q ⊃ Q0}.
We decompose Iα f (x), where x ∈ Q0, according to Q0, that is,

Iα f (x)≤ C(F1(x)+ F2(x)),

F1(x)=
∑

Q∈D(Q0)

|Q|α

|Q|

∫
3Q

f (y) dy χQ(x),

F2(x)=
∑

Q∈D̃(Q0)

|Q|α

|Q|

∫
3Q

f (y) dy χQ(x),

and we evaluate

(1):
(∫

Q0

(g(x)F1(x))
q1 dx

)1/q1

,

(2):
(∫

Q0

(g(x)F2(x))
q1 dx

)1/q1

.

Estimate of (1). We need the following crucial observation.
For a nonnegative function h in L∞(Q0) we let

γ0 =
1
|Q0|

∫
Q0

h(x) dx, a = 2n+1.
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For k = 1, 2, . . . let
Dk =

⋃
Q∈D(Q0):

(1/|Q|)
∫

Q h(x) dx>γ0ak

Q.

Considering the maximal cubes with respect to inclusion, we can write

Dk =
⋃

j

Qk, j ,

where the cubes {Qk, j } ⊂D(Q0) are nonoverlapping. By the maximality of Qk, j we
see that

γ0ak <
1
|Qk, j |

∫
Qk, j

h(x) dx ≤ 2nγ0ak . (2.1)

We need the following properties. Let

E0 = Q0\D1, Ek, j = Qk, j\Dk+1.

Then {E0} ∪ {Ek, j } is a disjoint family of sets which decomposes Q0 and satisfies

|Q0| ≤ 2|E0|, |Qk, j | ≤ 2|Ek, j |. (2.2)

Indeed,

|D1| =
∑

j

|Q1, j |

≤
1
γ0a

∑
j

∫
Q1, j

h(x) dx ≤
1
γ0a

∫
Q0

h(x) dx =
1
a
|Q0| ≤

1
2
|Q0|

and

|Qk, j ∩ Dk+1| =
∑

i : Qk+1,i⊂Qk, j

|Qk+1,i |

≤
1

γ0ak+1

∑
i : Qk+1,i⊂Qk, j

∫
Qk+1,i

h(x) dx

≤
1

γ0ak+1

∫
Qk, j

h(x) dx ≤
2n

a
|Qk, j | =

1
2
|Qk, j |,

where we have used (2.1). Clearly, these imply (2.2).
We set

D0 =

{
Q ∈D(Q0) :

1
|Q|

∫
Q

h(x) dx ≤ γ0a

}
and

Dk, j =

{
Q ∈D(Q0) : Q ⊂ Qk, j , γ0ak <

1
|Q|

∫
Q

h(x) dx ≤ γ0ak+1
}
.
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Then by the definition we obtain

D(Q0)=D0 ∪
⋃
k, j

Dk, j . (2.3)

We now return to the proof. It follows that∫
Q0

(g(x)F1(x))
q1 dx =

∑
Q∈D(Q0)

|Q|α

|Q|

∫
3Q

f (y) dy
∫

Q
g(x)q1 F1(x)

q1−1 dx .

Putting h = gq1 , we apply the relations (2.2) and (2.3) to the estimation of this quantity.
First, we evaluate ∑

Q∈Dk, j

|Q|α

|Q|

∫
3Q

f (y) dy
∫

Q
g(x)q1 F1(x)

q1−1 dx . (∗)

Noticing that q1 − 1≤ 0 and by the definition of F1,

F1(x)
q1−1
≤

(
|Qk, j |

α

|Qk, j |

∫
3Qk, j

f (y) dy

)q1−1

∀x ∈ Qk, j .

This yields

(∗) ≤
(
|Qk, j |

α

|Qk, j |

∫
3Qk, j

f (y) dy

)q1−1 ∑
Q∈Dk, j

|Q|α

|Q|

∫
3Q

f (y) dy
∫

Q
g(x)q1 dx

≤

(
|Qk, j |

α

|Qk, j |

∫
3Qk, j

f (y) dy

)q1−1

γ0ak+1
∑

Q∈Dk, j

|Q|α
∫

3Q
f (y) dy

≤ C

(
|Qk, j |

α

|Qk, j |

∫
3Qk, j

f (y) dy

)q1−1

γ0ak+1
|Qk, j |

α

∫
3Qk, j

f (y) dy

= C

(
|Qk, j |

α

|Qk, j |

∫
3Qk, j

f (y) dy

)q1

|Qk, j |γ0ak+1,

where in the last inequality we have used the support condition and properties of dyadic
cubes.

Recalling that |Qk, j | ≤ 2|Ek, j |, β = α − (1/r0), q1 ≤ r1 and

γ0ak <
1
|Qk, j |

∫
Qk, j

g(x)q1 dx

≤

(
1
|Qk, j |

∫
Qk, j

g(x)r1 dx

)q1/r1

≤ ‖g‖r0,r1
q1 |Qk, j |

−q1/r0,
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we conclude that

(∗) ≤ C‖g‖r0,r1
q1

(
|Qk, j |

β

|Qk, j |

∫
3Qk, j

f (y) dy

)q1

|Ek, j |

≤ C‖g‖r0,r1
q1

∫
Ek, j

Mβ f (x)q1 dx,

where in the last inequality we have used the fact that(
|Qk, j |

β

|Qk, j |

∫
3Qk, j

f (y) dy

)q1

≤ C Mβ f (x)q1 ∀x ∈ Ek, j .

Similarly, ∑
Q∈D0

|Q|α

|Q|

∫
3Q

f (y) dy
∫

Q
g(x)q1 F1(x)

q1−1 dx

≤ C‖g‖r0,r1
q1

∫
E0

Mβ f (x)q1 dx .

Summing up all factors, we conclude that the expression in (1) is less than or
equal to

C‖g‖r0,r1

(∫
Q0

Mβ f (x)q1 dx

)1/q1

≤ C‖g‖r0,r1‖Mβ f ‖q0,q1 |Q0|
1/q1−1/q0,

where we have used (2.3) and the fact that {E0} ∪ {Ek, j } is a disjoint family of sets
which decomposes Q0. This is our desired inequality.

Estimate of (2). By a property of dyadic cubes

F2(x)=
∑

Q∈D̃(Q0)

|Q|α

|Q|

∫
3Q

f (y) dy ∀x ∈ Q0.

Notice that β = α − (1/r0). For all Q ∈ D̃(Q0), it follows that

|Q|α

|Q|

∫
3Q

f (y) dy = |Q|1/r0

(
|Q|β

|Q|

∫
3Q

f (y) dy

)
≤ C |Q|1/r0 inf

y∈Q
Mβ f (y),

inf
y∈Q

Mβ f (y)≤

(
1
|Q|

∫
Q

Mβ f (y)q1 dy

)1/q1

and (
1
|Q|

∫
Q

Mβ f (y)q1 dy

)1/q1

≤ ‖Mβ f ‖q0,q1 |Q|
−1/q0 .
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These imply, by using the fact that (1/r0)− (1/q0) < 0,

F2(x)≤ C‖Mβ f ‖q0,q1

∑
Q∈D̃(Q0)

|Q|1/r0−1/q0 = C‖Mβ f ‖q0,q1 |Q0|
1/r0−1/q0 .

This concludes that the expression in (2) is less than or equal to

C‖Mβ f ‖q0,q1 |Q0|
1/r0−1/q0

(∫
Q0

g(x)q1 dx

)1/q1

= C‖Mβ f ‖q0,q1 |Q0|
1/q1−1/q0+1/r0

(
1
|Q0|

∫
Q0

g(x)q1 dx

)1/q1

≤ C‖g‖r0,r1‖Mβ f ‖q0,q1 |Q0|
1/q1−1/q0 .

This is our desired inequality.

3. Proof of Theorem 1.3

In what follows we shall prove Theorem 1.3. We assume that fν and gν are non-
negative. By the same manipulation as in the previous section, to prove the theorem it
suffices to estimate (∫

Q0

(∑
ν

(gν(x)Fν(x))
q2

)q1/q2

dx

)1/q1

for all dyadic cubes Q0. Here,

Fν(x)=
∑
Q∈D

|Q|α

|Q|

∫
3Q

fν(y) dy χQ(x).

We shall estimate this quantity by way of a duality argument. To this end, we take a
vector-valued weight (wν) supported on Q0 satisfying∫

Q0

(∑
ν

wν(x)
q ′2

)q ′1/q
′

2

dx = 1, (3.1)

and evaluate

(3):
∑
ν∈N

∑
Q∈D(Q0)

|Q|α

|Q|

∫
3Q

fν(y) dy
∫

Q
gν(x)wν(x) dx,

(4):
∑
ν∈N

∑
Q∈D̃(Q0)

|Q|α

|Q|

∫
3Q

fν(y) dy
∫

Q0

gν(x)wν(x) dx .

Estimate of (3). We compute∑
Q∈D(Q0)

|Q|α

|Q|

∫
3Q

fν(y) dy
∫

Q
gν(x)wν(x) dx . (3.2)
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Putting h = gνwν , we apply the relations (2.2) and (2.3) to the estimation of this
quantity. First, we evaluate∑

Q∈Dk, j

|Q|α

|Q|

∫
3Q

fν(y) dy
∫

Q
gν(x)wν(x) dx . (∗∗)

It follows from the same argument as in the previous section that

(∗∗)≤ C
|Qk, j |

α

|Qk, j |

∫
3Qk, j

fν(y) dy
1
|Qk, j |

∫
Qk, j

gν(x)wν(x) dx |Ek, j |.

Using Hölder’s inequality,

(∗∗) ≤ C
|Qk, j |

α

|Qk, j |

∫
3Qk, j

fν(y) dy

×

(
1
|Qk, j |

∫
Qk, j

gν(x)
r1 dx

)1/r1
(

1
|Qk, j |

∫
Qk, j

wν(x)
r ′1 dx

)1/r ′1
|Ek, j |.

Recalling that (
1
|Qk, j |

∫
Qk, j

gν(x)
r1 dx

)1/r1

≤ ‖gν‖r0,r1 |Qk, j |
−1/r0,

we see that

(∗∗) ≤ C‖gν‖r0,r1

|Qk, j |
β

|Qk, j |

∫
3Qk, j

fν(y) dy

(
1
|Qk, j |

∫
Qk, j

wν(x)
r ′1 dx

)1/r ′1
|Ek, j |

≤ C‖gν‖r0,r1

∫
Ek, j

Mβ fν(x)Mwν
r ′1(x)1/r

′

1 dx .

Similarly, ∑
Q∈D0

|Q|α

|Q|

∫
3Q

fν(y) dy
∫

Q
gν(x)wν(x) dx

≤ C‖gν‖r0,r1

∫
E0

Mβ fν(x)Mwν
r ′1(x)1/r

′

1 dx .

Summing up all factors, we conclude that the expression in (3.2) is at most

C‖gν‖r0,r1

∫
Q0

Mβ fν(x)Mwν
r ′1(x)1/r

′

1 dx .

Now we conclude that the expression in (3) is less than or equal to

C
∑
ν

‖gν‖r0,r1

∫
Q0

Mβ fν(x)Mwν
r ′1(x)1/r

′

1 dx

≤ C sup
µ
‖gµ‖r0,r1

∑
ν

∫
Q0

Mβ fν(x)Mwν
r ′1(x)1/r

′

1 dx .
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It follows from using Hölder’s inequality that∑
ν

∫
Q0

Mβ fν(x)Mwν
r ′1(x)1/r

′

1 dx

≤

(∫
Q0

(∑
ν

Mβ fν(x)
q2

)q1/q2

dx

)1/q1

×

(∫
Q0

(∑
ν

Mwν
r ′1(x)q

′

2/r
′

1

)q ′1/q
′

2

dx

)1/q ′1
.

Notice that the condition q1, q2 < r1 implies that q ′1/r ′1, q ′1/r ′1 > 1. These facts and
the boundedness of the vector-valued Hardy–Littlewood maximal operator M (see [5,
p. 498, Corollary 4.3]) yield(∫

Q0

(∑
ν

Mwν
r ′1(x)q

′

2/r
′

1

)q ′1/q
′

2

dx

)r ′1/q
′

1

≤ C

(∫
Q0

(∑
ν

wν(x)
q ′2

)q ′1/q
′

2

dx

)r ′1/q
′

1

≤ C,

where in the last inequality we have used (3.1).
Hence, the expression in (3) is less than or equal to

C sup
µ
‖gµ‖r0,r1‖(Mβ fν)‖q0,q1,q2 |Q0|

1/q1−1/q0 .

This is our desired inequality.

Estimate of (4). In this case we evaluate∑
ν

|Q|α

|Q|

∫
3Q

fν(y) dy
∫

Q0

gν(x)wν(x) dx for Q ∈ D̃(Q0). (3.3)

It follows that∫
Q0

gν(x)wν(x) dx ≤

(∫
Q0

gν(x)
r1 dx

)1/r1
(∫

Q0

wν(x)
r ′1 dx

)1/r ′1

≤ ‖gν‖r0,r1 |Q0|
1/r1−1/r0

(∫
Q0

wν(x)
r ′1 dx

)1/r ′1

and that ∑
ν

|Q|α

|Q|

∫
3Q

fν(y) dy

(∫
Q0

wν(x)
r ′1 dx

)1/r ′1

≤ C |Q|1/r0

(∑
ν

(
|3Q|β

|3Q|

∫
3Q

fν(y) dy

)q2
)1/q2

×

(∑
ν

(∫
Q0

wν(x)
r ′1 dx

)q ′2/r
′

1
)1/q ′2

.
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We see that (∑
ν

(
|3Q|β

|3Q|

∫
3Q

fν(y) dy

)q2
)1/q2

≤
1
|Q|

∫
Q

(∑
ν

Mβ fν(x)
q2

)1/q2

dx

≤

(
1
|Q|

∫
Q

(∑
ν

Mβ fν(x)
q2

)q1/q2

dx

)1/q1

≤ ‖(Mβ fν)‖q0,q1,q2 |Q|
−1/q0

and that (∑
ν

(∫
Q0

wν(x)
r ′1 dx

)q ′2/r
′

1
)1/q ′2

= |Q0|
1/r ′1

(∑
ν

(
1
|Q0|

∫
Q0

wν(x)
r ′1 dx

)q ′2/r
′

1
)1/q ′2

≤ |Q0|
−1/r1

∫
Q0

(∑
ν

Mwν
r ′1(x)q

′

2/r
′

1

)1/q ′2
dx

≤ |Q0|
1/q1−1/r1

(∫
Q0

(∑
ν

Mwν
r ′1(x)q

′

2/r
′

1

)q ′1/q
′

2

dx

)1/q ′1

≤ C |Q0|
1/q1−1/r1,

where in the last inequality we have used the same argument as in the last part of the
previous paragraph.

These imply that the expression in (3.3) is at most

C sup
µ
‖gµ‖r0,r1‖(Mβ fν)‖q0,q1,q2 |Q0|

1/q1−1/r0 |Q|1/r0−1/q0,

and hence the expression in (4) is less than or equal to

C sup
µ
‖gµ‖r0,r1‖(Mβ fν)‖q0,q1,q2 |Q0|

1/q1−1/r0
∑

Q∈D̃(Q0)

|Q|1/r0−1/q0

≤ C sup
µ
‖gµ‖r0,r1‖(Mβ fν)‖q0,q1,q2 |Q0|

1/q1−1/q0 .

This is our desired inequality. Here, we have used the fact that (1/r0)− (1/q0) < 0.

4. Applications to some inequalities

In this section we consider some simple applications of Theorems 1.2 and 1.3. We
need some preparations.
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It is known that, for a smooth function f in C∞0 (R
n) (see [13, p. 125]),

| f (x)| ≤ C
n∑

j=1

I1/n

∣∣∣∣ ∂ f

∂x j

∣∣∣∣(x). (4.1)

Let 0< p0 <∞. We write the weak-L p0 quasi norm of a function as

‖ f ‖L p0,∞ = sup
t>0

t |{x ∈ Rn
: | f (x)|> t}|1/p0 .

LEMMA 4.1 [5, p. 485, Lemma 2.8]. Let 0< p1 < p0 <∞ and, for each measurable
function f , define

Np0,p1( f )= sup
E
|E |1/p0−1/p1

(∫
E
| f (x)|p1 dx

)1/p1

,

where the supremum is taken over all measurable sets E in Rn with 0< |E |<∞.
Then

‖ f ‖L p0,∞ ≤ Np0,p1( f )≤

(
p0

p0 − p1

)1/p1

‖ f ‖L p0,∞ .

LEMMA 4.2. Let 0< p1 < p0 <∞. Then

‖ f ‖p0,p1 ≤

(
p1

p0 − p1

)1/p0

‖ f ‖L p0,∞ .

Fefferman–Phong-type inequalities. We have the following weighted inequalities.

PROPOSITION 4.3. Let 0< q1 ≤ q0 < n and

q1 ≤ r ≤ n if q1 ≤ 1,
q1 < r ≤ n if q1 > 1.

Then, for f ∈ C∞0 (R
n) and a weight function w,

‖ fw‖q0,q1 ≤ C‖w‖n,r‖M |∇ f |‖q0,q1 .

PROOF. Using (4.1), to prove this proposition we merely check all the conditions
of Theorem 1.2 and the scalar-valued case of Theorem 1.3 when r1 = r , r0 = n and
α = 1/n. 2

Proposition 4.3 is an extension of the so-called Fefferman–Phong condition
obtained in [4].

REMARK. For n > 1, the weak-L1 boundedness of M and Lemma 4.2 give us that

‖ fw‖1,q ≤ C‖w‖n,q‖|∇ f |‖L1 for 0< q ≤ 1.

Olsen-type inequalities. It is known (see [12]) that

‖(Mβ fν)‖q0,q1,p2 ≤ C‖( fν)‖p0,p1,p2, (4.2)
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whenever 1< p1 ≤ p0 <∞, 1< p2 <∞, 1< q1 ≤ q0 <∞, 1/q0 = 1/p0 − β and
q1/q0 = p1/p0. This gives the following.

PROPOSITION 4.4. Suppose that 0< α < 1, 1< p1 ≤ p0 <∞, 1< p2 <∞,
1< q1 ≤ q0 <∞ and 1< r1 ≤ r0 ≤∞. Suppose also that q1, p2 < r1, 1/p0 > α,
1/r0 ≤ α, 1/q0 = 1/r0 + 1/p0 − α and q1/q0 = p1/p0. Then

‖(gν · Iα fν)‖q0,q1,p2 ≤ C sup
µ
‖gµ‖r0,r1‖( fν)‖p0,p1,p2 .

Proposition 4.4 is a vector-valued extension of the theorem of Olsen [9, Theorem 2].
The proof of the scalar-valued case of Theorem 1.3 gives a new and simple proof of
Olsen’s theorem.
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