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ABsTRACT. Water flowing in tubular channels inside a glacier produces frictional heat, which causes melting
of the ice walls. However the channels also have a tendency to close under the overburden pressure. Using the
equilibrium equation that at every cross-section as much ice is melted as flows in, differential equations are
given for steady flow in horizontal, inclined and vertical channels at variable depth and for variable discharge,
ice properties and channel roughness. It is shown that the pressure decreases with increasing discharge, which
proves that water must flow in main arteries. The same argument is used to show that certain glacier lakes
above long flat valley glaciers must form in times of low discharge and empty when the discharge is high, i.c.
when the water head in the subglacial drainage system drops below the lake level, Under the conditions of the
model an ice mass of uniform thickness does not float, i.e. there is no water layer at the bottom, when the bed
is inclined in the down-hill direction, but it can float on a horizontal bed if the exponent n of the law for the
ice creep is small. It is further shown that basal streams (bottom conduits) and lateral streams at the hydraulic
grade line (gradient conduits) can coexist. Time-dependent flow, local topography, ice motion, and sediment
load are not accounted for in the theory, although they may strongly influence the actual course of the water.
Computations have been carried out for the Gornergletscher where the bed topography is known and where
some data are available on subglacial water pressure.

Riisumit.  Pression de Ueau dans les conduites intra- el sous-glaciaires. La condition suivante est admise: le
rétrécissement de la conduite sous-glaciaire da a la pression de la glace est compensé par la fusion provoquée
par la transformation en chaleur des pertes de charge. Des équations différentielles pour I’écoulement station-
naire dans des conduites horizontales, inclinées et verticales en fonction de la profondeur en dessous de la
surface du glacier, du débit, des propriétés de la glace et de la rugosité des parois de la conduite sont indiquées,
Ainsi, il s’est avéré que la pression décroit lorsque le débit augmente, ce qui prouverait que 'eau s’écoule dans
des artéres principales. Une argumentation analogue montre que certains lacs de barrage glaciaire situés
au-dessus d’une langue de glacier étendue doivent se former lorsque le débit est faible et se vident lorsque le
débit est élevé, c’est-a-dire lorsque la ligne de charge du systéme de drainage sous-glaciaire descend en dessous
du niveau du lac. Selon les hypothéses du modéle, une masse de glace d'épaisseur uniforme ne flotte pas, c'est-
a-dire, il n'y a pas de couche d’eau au fond lorsque le lit est incliné vers 'aval mais elle peut flotter sur un lit
horizontal lorsque 'exposant n dans I’équation de fluage de la glace est petit. On montre que 'écoulement
sous-glaciaire au “thalweg” et 'écoulement latéral le long de la ligne de charge peuvent étre stables tous deux
'un a coté de lautre. La variabilité dans le temps du débit ainsi que la topographie locale, les propriétés de
la glace et le transport solide ne font pas partie de la théorie, mais ont certainement une grande influence sur
le site de 'écoulement. Des calculs ont été effectués pour le Gornergletscher ol la topographie du lit est connue
et ou il existe des mesures de la pression d’eau sous-glaciaire.

ZUSAMMENFASSUNG. Wasserdruck in intra- und subglazialen Gerinnen. Das in réhrenformigen Gerinnen im Glet-
scherinnern fliessende Wasser erzeugt Reibungswirme, wodurch an den Wandungen Eis wegschmilzt. Die
Gerinne haben andererseits die Tendenz, sich unter dem Uberlagerungsdruck zu schliessen. Mittels der
Gleichgewichtsbedingung, dass in jedem Querschnitt gleichviel Eis wegschmilzt wie zufliesst werden Differential-
gleichungen hergeleitet, die den Wasserdruck in Funktion der Uberlagerung, der Abflussmenge, der Ziahigkeit
des Eises und der Rauhigkeit des Gerinnes fiir den Fall horizontaler, vertikaler und beliebig geneigter Réhren
im stationdren Zustand zu berechnen erlauben. Es wird gezeigt, dass der Druck mit zunehmender Durch-
flussmenge abnimmt, was bedeutet, dass sich das Wasser in Hauptadern sammeln muss. Aus dem gleichen
Grund werden sich gewisse Gletscherscen oberhalb langer flacher Talgletscher zur Zeit geringen Abflusses
filllen, wihrend die Entleerung bei starkem Abfluss einsetzt, wenn also der Druckspiegel des subglazialen
Drainagesystems unter den Seespiegel fallt. Eine Eismasse konstanter Michtigkeit kann bei den fir die
Modellrechnung getroffenen Voraussetzungen nicht zum schwimmen kommen, d. h. es ist keine durchgehende
Wasserschicht an der Gletscherunterfliche vorhanden, wenn das Gletscherbett talwirts geneigt ist. Bei
horizontalem Bett kénnte sich aber eine solche Wasserschicht bei kleinem Exponenten n des Fliessgesetzes des
Eises einstellen. Die Rechnung zeigt weiter, dass sowohl zentrale Gerinne (an der Basis des Gletschers im
Talweg) als auch laterale Gerinne (lings der Energielinie) nebeneinander bestehen konnen. Weder zeitliche
Anderungen des Abflusses, noch topographische Effekte an der Gletschersohle, Eisbewegung oder Sediment-
fihrung werden dabei in der Theorie beriicksichtigt, obschon diese Faktoren zweifelsohne den wirklichen
Verlauf der subglazialen Wasserldufe mitbestimmen. Fiir den Gornergletscher, von dem ausser dem Sohlen-
profil vereinzelte Werte des subglazialen Wasserdruckes zur Verfiigung standen, sind Berechnungen durchgefiihrt
worden.

* Presented at the Symposium on the Hydrology of Glaciers, 7-13 September 1969, Cambridge, England.
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INTRODUCTION

The question of where and how water circulates within glaciers is of considerable interest
from various points of view. Direct observations at depth are extremely scarce and will
probably be so for some time to come, while morphological features give information only
on certain aspects usually limited to shallow depth. The interpretation of hydrological
data as another alternative is largely ambiguous. The following is an attempt to deduce
some basic laws for water courses within the glacier by applying physical theory to a plausible
model.

In a typical temperate valley glacier a main stream emerges at the lowest point of the
terminus, and there is little doubt that it extends backwards for at least some distance under
the glacier. From the fact that the water carries a fair amount of sediment, it can be further
inferred that the stream is located at the glacier bed. Sometimes the water can be observed
welling up where it leaves the glacier, but very often it does not touch the roof for at least
the last few metres or tens of metres of the channel. Nevertheless it is likely that further in
the whole cross-section carries water in this case as well. Only this latter condition of “flow in
a closed conduit under pressure” is of interest here, and the water pressure as a function
of distance from the portal will be computed (the portal will in this context be taken as the
point where the flow in a closed conduit goes over into open channel flow).

When water is moving through a conduit in ice some melting will occur at the wall
owing to the frictional heat produced in the running water. At the same time the conduit
will tend to close by mechanical deformation if the ice pressure is larger than the pressure
in the water. In the steady-state condition when the discharge does not change with time
anywhere in the system the melting will everywhere be compensated by closure. The steady
flow of water together with the equilibrium of closure and melt rate are the principles used
for the computation of pressure. These principles are equally valid for channels at the
glacier bed or within the ice, so that the conduits are often referred to as located at the bed
in order to facilitate the description of the general situation. However, because the position
at the ice boundary is a complication in the theoretical treatment, a tubular conduit com-
pletely surrounded by ice is assumed for simplicity.

THEORETICAL WATER PRESSURE IN HORIZONTAL CONDUITS SURROUNDED BY ICE

In the basic approach the conduit is assumed to be horizontal and of circular cross-
section with radius r. The water pressure at an arbitrary distance x from the portal is p,
while it is p+dp at x+dx; the water flows in the negative sense of the x-axis. The over-
burden pressure of the glacier is P. The pressure difference P—p (termed the effective
overburden pressure in soil mechanics) is then causing the ice to flow radially towards the
axis of the circular hole (Fig. 1a).

Flow of water Z

e

P=p

-—— psdp

a. Horizontal conduit b. Inclined conduit

Fig. 1. Horizontal and inclined conduit elements
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The volume of ice melt will be computed first. It depends on the frictional heat produced
in the water, usually referred to as the energy loss in hydraulics. For convenience we assume
instantaneous energy transfer from the water to the ice, so that the heat produced in a
conduit element of length dx becomes available for melting within the same element. The
water is then at the pressure melting point throughout. For a given discharge Q and by
neglecting velocity changes we can write for the energy loss per unit time in the conduit
element:

dE = Q dp. (1)

/

Only part of the energy becomes available for melting, however, because the pressure
change involves a temperature change as well, to bring the water to the pressure melting
point. The energy dE from the pressure drop dp is reduced by the amount of energy dE,
needed to adjust the water temperature to the reduced pressure, so that the energy available
for melting becomes:

dEm = dE—dE;. (2)
With the change of pressure melting point with pressure ¢f = —7.5% 103 deg bar—! =
—7.5 <1078 deg J-' m3, the specific heat capacity of water ¢y = 1.0075 cal g~ deg—! =
4.22 % 103 ] kg~ deg—", the density of water at 0°C py = 999.84 kg m—3,
dE; = —ciewpwQ dp = 0.316 Q dp, (3)
hence

dEm = 0.684 Q dp = 0.684 dE. (4)

Roughly § only of the frictional heat becomes available for melting. The volume dVy, of
ice melting per unit time in a channel section of length dx is then given by

s = maps AP (5)
where ¢m, the energy of fusion, = 79.71 cal g=' = 3.34 ¥ 105 J kg~! and p;, the density of
ice, = 917 kg m—3.

The creep of ice expressed as a volume dV, per unit time in the channel element of
length dv is derived from the closure rate given by Nye (1953), which is

e L—pxn N
e ®
This expression is based on the commonly used power law for the relation between strain-

rate and stress, in which n and A are the ice flow parameters to be discussed in more detail
below. From simple geometrical considerations it follows that

p_p n
dVe = orei dx = 2riz (W) dx. (%)
Using now the equilibrium condition dVy,, = d¥V,, the differential equation
d i [P—p\n
dp _ 2mempr (P—p\" ®)
dx 0684 Q\ nd

is obtained. The conduit radius r in this expression is still unknown, but it is related to Q
and dp/dx and can be expressed in terms of these two quantities using appropriate hydraulic
theory. According to the Gauckler-Manning-Strickler formula (Williams, 1970) the mean
velocity for turbulent flow is given by

gt Bt (; , %)”2 (@)
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where k is the roughness coefficient, R the hydraulic radius = r/2, and g the acceleration
due to gravity, thus

24/3ng 3/8 y dp\ -3¢
r: — (T k—3/4 ()3/4 a . (10)
Inserting Equation (10) in Equation (8) and solving for dp/dx gives
% = Bk—fl."][(nA)—Bﬂ.fHQ—Zfll(P_p)snfll’ (“)
x
with
Cmpi

8/11
B = ol2/1172/11 ( ) (pwg)3“‘ = 6_33 % 107 N m—2 m—3/11,

0.684

This differential equation already permits us to draw some basic conclusions. It shows
that the pressure gradient dp/dx increases, as one would expect, with the pressure difference
(P—p), with ease of ice flow (small A means low *“viscosity”), and with channel roughness
(k is small when the channel is rough; »" = 1/k is Manning’s roughness coeflicient). The
dependence on Q is fundamentally important. It is such that the greater the discharge the
lesser the pressure gradient, and therefore, after integration over the distance x, the lesser
the water pressure at a given distance from the snout. If two channels side by side should
compete with each other, the larger one of the two would show the lower head of water
and consequently drain the water away from the smaller one. This is taken as proof that
intra- and subglacial water flows in discrete conduits with a tendency to form main arteries. *
It should be noticed, however, that the dependence on Q is very weak indeed; the rough-
ness factor k is by three orders more important than @, and the factors 4 and (P—p) are
more powerful by as much as 12 orders!

Explicit solutions of the differential Equation (11) can easily be written down for simple
cases, the boundary condition to be observed simply being that p = o when x = 0. The
simplest case, consisting of constant discharge in a horizontal conduit under uniform thick-
ness of ice, will be discussed in some detail; &, n and A4 are assumed to be constant, as is
generally done in this paper, and Q and P are now also constant by definition. Assuming
n = 3, the solution of Equation (11) is

2 5 TI;TBkbn1<3A)zmIQH'I[(P—p)—'S“'—P-m“]- (12)

The function p(x) is a hyperbola with the line p = P as the asymptote parallel to the
abscissa. A set of such hyperbolas is given in Figure 2 for different values of roughness, ice
flow coefficient or discharge. The ordinate on the left gives (P—p) in pressure units. For
a particular value P, the origin of the abscissa is taken on a chosen curve so that x = o for
p = o, as indicated by the arrows in the figure; p can then be read off the curve as a function
of x. The same curve can thereby be used for arbitrary values of ice thickness, i.e. over-
burden pressure P. The curves are drawn in such a way that they go through a common
point, which is the origin of the coordinates when the ice thickness is 250 m, a value arbitrarily
chosen to represent a medium-size glacier. In this case the fixed abscissa is given as well as
a different ordinate which is calibrated in metres of head of water: & = p/pwg. The pressure-
head curves are also referred to as hydraulic grade lines or piezometer lines (Fig. 4, definition
on p. 184). Towards the right, the hyperbolas approach the “water-equivalent line”
asymptotically. This is the height to which a column of water would rise to balance the

* A similar dependence of the pressure gradient on Q is found for laminar flow, though with different
exponents (Equation (42)). The present theory deals primarily with the condition in pre-existing large passages,
where the flow is turbulent.
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Fig. 2. Hydraulic grade lines for constant discharge in horizontal conduits at constant depth; ice surface and distance refer
to a channel at the depth of 250 m. The curves are numbered in accordance with Table I.

hydrostatic pressure of the ice at the channel elevation. The height of the ice surface is
given by H = P/pjg. All curves rise fairly steeply at ice thicknesses larger than the 250 m
chosen in the figure, so that in an extended ice sheet with a flat bottom the head of water
can be expected to be at a lesser depth than 250 m at relatively small distances from the
portal, even when the ice is much thicker, and also regardless of the curve parameters.
The selection of appropriate constants specifying the conduit characteristics and ice-flow
properties is a major difficulty in numerical work. One way is to apply figures from text-
books and literature, the other is to try to fit observational data of water pressure directly.
These two approaches have led to the values of £ and 4 contained in Table I, which were
used to compute the curves of Figure 2 according to the index numbers (1) to (4). A wide
range of values for £ has been introduced, since it is a mere guess whether the conduit at
depth is closer to a very smooth straight tubular opening in ice or a meandering boulder-
strewn torrent at the bed. This question, however, has been found to be of lesser significance,
the determining factor being the ice flow parameter 4. In case (1) the flow constant given

TasLe I. VALUES OF ROUGHNESS COEFFICIENT k£ = 1/n’ OF THE CONDUIT AND ICE FLOW PARAMETER A USED IN THE
COMPUTATIONS FOR FIGURE 2

Curve k n’ Conduit A Value for A
No. m'3s~1 m-Y3s  comparable lo  bar s'/3  bar a'/3 deduced from Reference
(1) 50 o.02  rock tunnel of 727 2.3 glacier flow Lliboutry (1964, Tom 1,
medium . 87)
roughness
(2) 10 0.1 torrent 580 1.84 ice tunnel closure  Nye (1953, fig. 1)
(112 0.0089 smooth pipe 317 1.00)
(3) 10 0.1 torrent 317 1.00  water pressure See text
(4) 10 0.1 torrent 194 0.61  tunnel closure in Nye (1953, fig. 1)

prcSSu[‘(‘. zonc
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by Lliboutry (1964, Tom 1, p. 87) for temperate ice has been used. In case (2) Nye's (1953)
analysis of the closure of the Vesl-Skautbre and Z’Mutt tunnels has served, with the figure
of A — 580 bar s'3 taken from Nye’s graph for n = 3 (it should be noticed that this figure
is different from 489 bar s1/3:97 given in his paper). The same curve is obtained for a rela-
tively smooth tube combined with the more mobile ice of case (3). Although for our
application it seemed particularly appropriate to use ice-tunnel closure rates, it was found
that an even lower value of 4 was necessary in the analysis of the observed water pressure
at the Gornergletscher to obtain agreement between observation and theory (case (3)).
Finally in case (4) the value of 4 fits the closure rate of the Arolla tunnel also shown on
Nye’s graph, assuming again n = 3. (This last case is not realistic, since the strong deviation
of 4 seems to be related to local compressive stress in the glacier, and therefore the assump-
tion of n = g is not justified according to Glen (1958).)

A very large margin of possible pressure heads is included between the extreme cases (1)
and (4). The factor k41142411 in Equation (12) changes by a factor of 43, 2.4 times from
the variation of k and 18 times from a change in 4. The relative importance of A has already
been noted in relation to Equation (11), but naturally the final effect of each parameter
depends on the total margin by which it may vary, not only on the exponent in the equa-
tions. If very smooth conduits were introduced in the discussion, £ would have a somewhat
greater relative importance. However, the basic conclusion that one of the major difficulties
of practical computations arises from the uncertainty of the ice flow properties is not altered.

In comparison with £ and 4, the dependence of p on the discharge Q is relatively weak,
but in practice the range over which Q may vary is tremendous, and so its effect is not
negligible. This is also illustrated in Figure 2. While all the solid lines are based on the
same discharge of O = 10 m3 s~1, curves (2a) and (2b) have been obtained for ) = 100 m3 s~
and 1 m3 s, respectively, for the values of £ and 4 in case (2).

The solution of Equation (11) for constant Q and P may now be written in a more
general form so that n may be varied:

AN .
tICx:(I‘—-p) —1 ifn # 11/8,

whereas (13)
(x= —ln(l—%) if = 11}8;
with a = 8n/11—1 and C = Bk—¢/11(nd)-8n/11Q-2/11Pa,

Fig. 5. Hydraulic grade lines for constant discharge in horizontal conduits at constant depth for different values of n.
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This equation is illustrated in Iigure 3, where the relative water pressure /P as a function
of Cx, the normalized distance, is shown for a few values of n. There is a remarkable differ-
ence between the curves with n = 11/8, which approach the ultimate water pressure P at
infinite distance, and those with n < 11/8 where p becomes equal to P at a finite critical
distance. Beyond the critical distance the water would spread out into a sheet; the ice slab
would be afloat. Although n = g is commonly used in ice mechanics there is experimental
evidence (Butkovich and Landauer, 1960) that n is smaller at small stresses, i.e. when p
approaches P, or also in zones of high strain-rate, as near the bed.

INCLINED CIRCULAR CONDUITS

With the above theory an arbitrarily shaped, two-dimensional glacier surface may be
approximated, but it is not possible to apply it to an arbitrary glacier bed, because pressure
changes are now not only related to the lost energy, but also to elevation changes. Both
surface slope and channel slope will be taken into account in the next step. The channel
will again be assumed to be located at the glacier bed for ease of explanation (and because
actual water courses are likely to take this position), while the complications of the boundary
will be neglected as before, treating the conduit as if it were surrounded by ice. The model
used is thereby primarily one of an arbitrary channel within the glacier; the additional
effects when it is actually located at the bottom will have to be discussed later.

Elevation

L

U u Z

Datum line
f - > X

Distance

Fig. 4. Hydraulic terms and notations :
h = pressure head = piezometric or manomelter height above the conduil.
u = h+< = height of the hydraulic grade line above the datum line = pressure head - position head = hydraulic
head (above the datum line).
H = ice thickness.
S8 = H-+ . = elevation of the glacier surface above the datum line.
U = WL = elevation of the waler-equivalent line above the datum line.
W = water equivalent of ice thickness.
£ = bed elevation above the datum line — elevation head — position head.
tan « — surface slope.
tan § = d/dx = channel slope = bed slope = grade of conduil.
tan ¢ = du/dx = (dh+dg)/dx — hydraulic gradient — ratio of the loss in the sum of the pressure head and position
head to the flow distance.
dh/dx = rate of change of pressure head.
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Some typical hydraulic expressions will be used. For detailed definitions see Betts and
others (1962), but a few explanations will be given on the specific use of terms and notations
in this paper. Figure 4 serves as an illustration. The glacier surface and the conduit at the
glacier bed are shown as well as the water-equivalent line. 'This is the surface obtained if the
ice is replaced by an equal mass of water, column by column, resting on the bed. The
hydraulic grade line (or simply hydraulic grade) is defined as the line joining the elevations to
which water would rise in pipes freely vented and under atmospheric pressure, also referred
to as a hydraulic profile of the piezometric level of water at all points along the line, or
simply piezometer line (Haefeli, 1970). The term pressure head shall be assigned to the piezo-
metric height 4 of the hydraulic grade line above the conduit, while hydraulic head is used
in reference to a horizontal datum line (reference horizon). The hydraulic head u above
the datum line is better suited to the presentation of results, while the pressure head £ is
more directly applicable in the equations. There is a dual meaning connected with the
term “head” in hydraulics, namely height and energy (pressure). In the latter case the
energy is expressed as the vertical height through which a unit weight would have to fall
to release the equivalent of energy. The kinetic energy may therefore also be expressed by
a height, which is called the velocity head. The total head in a hydraulic system is the
sum of pressure head and velocity head, and the line connecting points of total head is the
energy line. Because the kinetic energy is neglected in this paper, the energy line is identical
to the hydraulic line. However, pressure is not expressed generally as head of water here,
but in SI- and related units (N m~2 and bar), and the terms used are: water pressure
p = pwgh, overburden pressure P = pjgH = pwgW, pressure gradient dp/dx = pwg dh/dx;

further,
S = pweu = pwg(h+<J) = p+pwe<,
df du dp dz _
5 = el =P (14)

F = pwgU = pug(W+Z) = P+pug,

where fis the water pressure relative to the datum line, df/dx is the pressure gradient along
the datum line and is, in other words, the gradient of pressure loss due to friction, and I
is the pressure of a column of water at the datum line extending upwards to the water-
equivalent line.

The horizontal conduit element on which the computation for the horizontal channel
has been based is replaced by an inclined element forming the angle 8 with the horizontal
(Fig. 1b), so that tan B = d.J/dx. The length of the conduit element is now ds = dx/cos §.
The x-axis is horizontal and points in the opposite direction to the flow of the water. The
pressure at x is p and at x+dx it is p-|-dp, whence

dp = df—pwg dZ — df—pyg tan B dx. (15)
This relation can also be inferred directly from Figure 1, because when going from x—+-dx
to x the pressure change —dp must be the sum of a gain of pressure pwg d< by gravity and

a loss of pressure df caused by friction. The energy produced per unit time in the conduit
element by friction is in analogy to Equation (1),

dE = Q df, (16)

while the energy dFE; needed to adjust the water temperature to the pressure melting point
is given by Equation (3). The energy available for melting is then

dE, = Q df—o.316 Q dp, (7
and the volume dVy of ice melting per unit time in the channel element is found from
Equation (5):
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AV = —= (df—0.316 dp). (18)
Cmpi

Replacing dx by ds in Equation (7) and dp/dx by df/ds in Equation (10) and using
dV[n = dVe lCadS to
P_p\nfot3, g\3/8 dr\ -8
cfpi(df—o.glﬁ dp) = QW(WP) ( ﬂf g) k—314Q3/4 (d_{) ds, (19)

and with Equation (14) and using ds = dx/cos 8,

d 11/8 d 38 d
(d—i+pwg tan ﬁ) —0.316 (d_i+ pwg tan B) E‘i ue)
== Dk’”“(ﬂA)_”Q_’_'“(COS ﬁ)—l[lB(P_P)H.’
with
D o= ijzvlmcmpi(pwg)sfs = 0.684 B8 — 3.63>< IO'D(N n]—z)nfs m—3/8,

Expressed in terms of df/dx and f this equation becomes

dr\ /s df\as D
(d_{c-) +0.462 pwgtanﬂ(aé) :mk'”"(nA)‘”Qf'“(cosB)*“’S(F—f)‘", (20a)

where F—f = P—p from Equation (14). Evidently for horizontal conduits, where g8 — o and
Z = o, both equations reduce to Equation (11).

Equation (20) has served to obtain p as a function of x by numerical integration, observ-
ing the boundary condition that p = o for x = o0 as before, or some other fixed relation at
a given value of x. P, O and tan § have been inserted as known functions of x (linear
functions in polygonal fashion have been used), while k, n and A have been assumed to be
constant. The Runge-Kutta integration method has been applied.

The results of numerical evaluation of a few simple model cases are presented in Figure
5 for the same constant discharge Q = 1om3 s~ as had been used for the solid lines in
Figure 2. The index numbers (2) and (3) again refer to the channel roughness and ice
flow parameters of Table I, and n = 3 has been assumed as before. The upper and lower
ice boundaries are given with solid lines. The ice bodies in (a) to (c) are simple wedges
showing a linear increase of ice thickness from left to right. The water is flowing in a conduit
at the bottom from right to left, horizontally in (a), descending in (b), and ascending in (c);
case (d) is an inclined sheet of uniform thickness, (e) an ice body with horizontal surface
on a base sloping downward in the flow direction, while in (f) the water-equivalent line is
horizontal and the base is ascending. The light dashed lines in the Figure represent the
water equivalent of the ice bodies, and the heavy dashed ones give the hydraulic grade
lines, which are the result of the computation.

There are cases where the hydraulic grade line remains between the base and the water
equivalent line, but this is not generally true. In some instances it drops below the bed,
which means that p becomes negative (Fig. 5b, e). This is the condition for suction, which
may exist if no air can enter the'conduit. It is, however, limited to atmospheric pressure
less vapour pressure. If the suction reaches the full theoretical value, it accelerates the
closure to the point when the conduit remains in equilibrium. On the contrary, if air enters
there will be open channel flow, because the channel is so steep that an excess of heat is
produced. The result is an over-size cross-section. These two possibilities, cither negative p
or open channel flow (with p = 0) occur when the bed is steep and the ice is thin, and we
can speculate that suction may prevail through part of the year but terminate in the autumn
when the channels start to “dry out”. This might explain why hanging glaciers become
more active at the end of summer. The dotted lines in Figure 5b represent the hydraulic
grade lines when there is open channel flow in the lower part of the ice wedge.
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Another interesting condition arises when the hydraulic grade line reaches the water-
equivalent line and rises above it (Fig. 5f), that is to say when p = P. If the conduit is
located at the bottom of the ice body, p = P obviously means that the water pressure equals
the overburden of the ice and that the ice body is afloat or the water flows in a sheet. The
theory of flow in a conduit is therefore not applicable for a further increase of x. However,
if the conduit is entirely surrounded by ice, the water pressure can locally be higher than
the hydrostatic pressure of the ice, in which case the conduit will expand. A constant
diameter must nevertheless be maintained in spite of the expansion, because of the basic
equilibrium assumption used to develop the equation. The physical meaning can only be
that ice accretion occurs on the conduit wall. This is the case when the frictional energy

Fig. 5. Hydraulic grade lines of some model cases with constanl discharge.

does not suffice to heat up the water to equilibrium témperature: part of the necessary
energy has to be provided by the latent heat of freezing. That this process may occur in
nature is supported by a field observation made by the author where it could be seen that
ice necks had formed around small water spouts spurting out at the surface of the snout of
the Griesgletscher in early summer, when the rim of the glacier was frozen to the ground.

The general trend of the curves of Figure 5 remains to be discussed. A common feature
of all cases, which have a linear change of P in common, is that the hydraulic grade lines
tend to become parallel to the water-equivalent line. It appears that dp/dx ~ dP/dx holds
for large x, where dP[dx = constant, the known rate of change of P. If we replace dp/dx
by dP/dx in Equation (20), the left side becomes constant, therefore the right side must
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also be constant, and the limiting value (P—pim) is readily obtained giving the pressure
difference between water-equivalent and hydraulic grade line for large x. The equation
for the parallel line to the water-equivalent line determined this way satisfies Equation (20)
independently of x, but not in general the boundary condition that p = o for x = 0. The
line is presumably an asymptote (or possibly a tangent) to the hydraulic grade line.

A very simple equation is obtained for g1y in the case of an inclined sheet of uniform
thickness (Fig. 5d), where P = constant, i.e. dp/dx = dP/dx = 0. Itis

ﬁlim —1 P ,D—u‘nk.}“nnA Qu‘a;n(ng Sil’l ,3) ll.’Bn_ (521)

This equation implies that P—piim = o if B = o for any positive value of n, which means
that an ice sheet is nowhere afloat on an inclined bed, i.e. that water moves in channels
rather than in a sheet, unlike the horizontal case for n < 11/8. We may now ask for the
condition that suction or open-channel flow occurs, i.e. that p <~ 0. This is the case when

P > D-vinfsianpd QV4n(pyo sin B)11/8n,
or
pwg sin |3 e Dsnnk—wu(nA)—smuQ /i P8n/iT, (22)
Likewise the condition can be stated which has to be fulfilled for a wedge of the type of

Figure 5c¢ to be “afloat”, i.e. that p = P. This must be so independently of x, therefore
dp/dx = dP|dx, and taking into consideration that B is negative, Equation (20) becomes

dP 11/8 dP 3/8 dP
a_pwg tan ,B) —0.316 E—ng tan .3) CF i B-

There are two solutions,
dpr 3/8
(E—ng tan .8) =0,

and
dr
0.684 PPl tan § = o.

The first one is the trivial case that df/dx = o. The hydraulic gradient is zero, there is no
flow. The hydraulic grade line, being identical with the water-equivalent line by definition,
is horizontal. This is the static case of an ice body being truly afloat. The second solution
gives

P = 1.46 pyg(tan f)x. (23)

P can also be expressed in terms of « and f by

P = xpyg tan B+xpig tan a. (24)
Combining Equations (23) and (24) yields the following relation between o and B:

tan & = 0.46 P—: tan 8 = 0.59 tan B. (25)

If « is larger than that, then the hydraulic grade line is located below the water-equivalent
line, as illustrated in Figure 5¢. In the case of smaller « there would be p > P, but this is
not possible because the ice wedge would be lifted up and become floating. However, the
hydraulic gradient not being zero, the water would then rapidly disappear. It is therefore
not correct in this case when we have a hydraulic gradient to speak of the ice body of being
“afloat”. What one can expect to happen is that the water spreads out at the contact
between ice and rock and moves in a thin film, or sheet, in the way Weertman (1964, 1969)
has anticipated water to move in general at the base of a glacier. As we can now appreciate,
the conditions that this happens in the steady state are rather limited.
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VERTICAL CIRCULAR CONDUITS

In a vertical conduit the integration has to be carried out along the z-axis instead of
the x-axis, and Equation (20) is replaced by

dp 11/8 dp 3/8 dp
i L =i . s e —3/4 —n)-1/4(P_p\n
(dzipw.e) 0.316 (dz:izpwg) 2L — DAy QP (26)

The function P(z) is given by the expression P = P[ T pijgz, where P, is the overburden
pressure at z = o. The upper signs are used when the water is descending, the lower ones
when it is ascending; positive z is taken in the opposite direction of the flow of water in

accord with the previous convention for the x-axis. In terms of df/dz and f = p+pwez,
the differential equation reads

df\rs df\ 38 D
(—) +0.462 pug (d—i) = g ) )R (26)

dz

with F = P,+(pw—pi)gz and F—f = P—p as before. In vertical conduits the (known)
gravitational term can be many times larger than the unknown frictional one, so it is more
appropriate to compute the latter directly using Equation (26a). The same is true for
Equation (20b) in the case of steeply inclined conduits.

The numerical results for a few examples of vertical conduits are given in Figure 6,
where the hydraulic grade line is illustrated by piezometric heights at various depth below
the water line in the conduit. There is a remarkable difference between the hydraulic
gradient of the case where the water is descending and that where it is ascending. In the
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Fig. 6. Piezomelric heights along vertical conduits when waler is moving al a rale of 10 m® s~' between the depth of 250 and
500 m either downward or upward. The relative size of the conduils is also shown, and the diameters are given by
numbers. The numbers (2) and (3) refer to conduil and ice parameters of Table I.
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latter case the gradient is many times larger. This is because energy is gained by cooling
to equilibrium temperature when water descends, while energy is lost when water rises. It
will be shown later that vertical links in a sub- or intraglacial hydraulic system may act in a
similar way to valves.

The numbers in Figure 6 also show the change in diameter with depth as well as the
much larger variation of the diameter from one case to the other.

CHANNELS AT THE HYDRAULIC GRADE LINE (GRADIENT CONDUITS)

It is conceivable that a conduit follows its own hydraulic grade line, i.e. that any piezo-
meter installed along its course reads zero. (It is thereby assumed that the complete cross-
section still carries water.) Although such a channel could hardly prevail in the middle of
a glacier because of the ice movement, it might exist alongside a valley glacier in a lateral
position, as pointed out later. For the following discussion it is however more convenient
to refer to the new channel as being located above the bed in order to use the previous two-
dimensional model. From the condition that p = o at all points it follows immediately
that dp/dx = o throughout. The slope of the channel is the hydraulic gradient tan ¢ by
definition, and for brevity the term gradient conduit will be introduced for such a channel.
Replacing the angle 8 by ¢ in Equation (20) and observing the above conditions for p and
dp/dx leads to

(ng sin (p)tn‘% — Dkfsla(ﬂA)fﬂQﬂmpn. (27)

From Figure 4 it is seen that the ice thickness above the new conduit is (S—u), therefore
P = pig(S—u). Differentiation gives

dr dS du
d__,\‘ = pig a—a = p,-g(tan a—tan (p),
i 4P
tan ¢ = tan rxﬁp—iéa (28)

By eliminating ¢ between Equations (27) and (28), a relation between df/dx and P is
obtained. Integration of the differential equation thus obtained gives P, and thereby the
channel position u, as a function of x. The relation between dP/dx and P is independent
of the total ice thickness H at the bed. Therefore the channel position is also independent
of the bed. It depends only on the surface configuration of the glacier (besides the dis-
charge, channel characteristics and ice characteristics).

For reasons of comparison with former results the equations will now be expressed in
terms of pressure at the glacier bed. The slope of the bed is B. The ice thickness is /1 and
the height of the gradient conduit above the bed is . The ice pressure is given by P* = p;gH,
the water pressure (in a fictional vertical tube to the bed) by p* = pywgh. The overburden
pressure at the channel is now expressed by

P — a5 = P*_,% >, (29)
Substitution in Equation (27) gives
1 pi 8n/11
sin r=— DHI]Ik*&l‘lI(RA)*B'R.’HQTZ/H (P*__P*) ; (30)
pwg Pw
whereas
dg+dA 1 dp*
tan @ = —5— = tan ﬁjL;g - (31)
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Eliminating ¢ between Equations (30) and (31) leads to

Dsmk—cm(nA)—san:zm(P*__ ﬂp*)s’””
= Pw

dx H I pi 8n/11)2]1/2
[I*{— DS.’nkvbll:(nA)fﬁn.J‘nQ—zfn (P*_'_P*) }:l
Pw

Pws
This equation has served to find p* by numerical integration in the same way as Equation
(20) was used to compute p, with k, n, 4 as constants and Q, P* and tan § as functions of x.
Even for the simple case of a horizontal ice sheet of uniform thickness and constant Q,
no explicit solution exists. But in writing tan ¢ = esin ¢ where e varies between 1 and
(1/0.684)8/11 = 1.318 for values of ¢ not exceeding 40.6°, we obtain

—pwgtan B (32)

dp*
f (P*—p[p*'fpw)s'n/” - EDSII:k—ﬁll[(nA)—anllQ—zlllf dx; (33)
e .g.;z_l_l? 3 % D—BhIkﬁfn(HA)B'M”QZ/I113481;7(1).'“ [(I _i . }l;_:)_(sn_”””_ I]. (34)

This equation is used in the following section for comparison with previous findings.

PoSITION OF CONDUITS WITHIN THE GLACIER

Let us first assume an inclined hole in a mass of ice with a horizontal surface. The hole
will be partly filled with water at rest. The pressure difference P—p is then greatest at the
water level and decreases with depth because of the density difference between ice and
water. The hole would therefore close more rapidly at the water level than deeper down,
and at first sight it seems logical to conclude that water would tend to flow at a level as
deep as possible, i.e. in a valley glacier in a main water channel along the thalweg. In
order to test this assumption for flowing water, two extreme channels will be compared
with each other in the simple case of the horizontal ice sheet of uniform thickness. The
channels compared are the one at the bottom and the one at the hydraulic grade line. For
these, the relations between distance x and pressure are expressed in Equations (12) and
(34). The ratio of the values of x given by the two equations gives the ratio of the distances
at which the piezometer pressure is equal in both conduits if p = p*. For n = 3 it is:

Xgradient o Pw ([—Piﬂfpwp)—'y”*l

- 0.6848/11 €pi . (;_pff’)’”"”—l
Let us first assume that /P <€ 1, then

(35)

- et il
gradient B

Hpottom  0.684%11 ¢ =1, for ¢ < 40.6°
This means that at short distances from the portal a certain piezometer pressure is reached
in the bottom channel at a shorter distance than in the gradient channel, i.e. that the
hydraulic grade line of the bottom channel rises above the gradient conduit. Consequently
flow in the gradient channel would be the more stable condition. For long distances, where
0 € p/P < 1 the opposite is true, since Fyragient/Tpottom = 0, if p/P =~ 1.

These findings are confirmed by the numerical results presented in Figure 7, where the
hydraulic grade lines of cases (1), (2) and (4) of Figure 2 (solid lines) are compared with
the positions of channels at the hydraulic grade (dashed lines). The dashed lines lie below
the solid ones in the lower part of the curves, but rise above higher up. It is not difficult
to explain this behaviour. At the beginning the bottom channel shows a larger hydraulic
gradient because of the additional heat which must be produced for temperature adjust-
ment (with the exception of very large gradients where the gradient channel becomes
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sufficiently longer than the bottom one hecause of the great slope). At large distances,
however, the pressure head for the bottom conduit approaches the water-equivalent, while
the gradient channel, not being dependent on ice depth, ultimately reaches the surface.
The fact that the gradient channel is, for a fair distance (11 km for cases (2) in Fig. 7),
lower than the hydraulic grade line of the bottom conduit, is of considerable importance,
since it seems to suggest that water should flow at the grade line rather than at the bottom.
In a valley glacier the gradient channels would probably not be located in an arbitrary
position somewhere in the glacier, but most likely along the borders. Since that is where
large amounts of water are collecting, there is little doubt that lateral channels must exist.
Nevertheless, the analysis shows also that water can circulate at deeper levels, in particular
at the thalweg, at sufficient distance from the portal. It can easily penetrate to that depth
as illustrated by the small hydraulic gradient of vertically descending water (Fig. 6). The
question which now arises is whether or not water, once at the bottom, may well up again

Ice surface

=19)

(m)

Depth

Bottom conduit
— — — Gradient conduit

200

Distance x (km)

Fig. 7. Comparison of the hydraulic grade line of a bottom conduil (solid lines) with the posilion of the gradient conduit
Sfollowing its own grade line (dashed lines) in a horizonlal ice sheel 250 m thick for various assumptions of conduit and ice
characteristics according to Table I.

to the hydraulic grade line further down the glacier. Since it would have to flow from high
to low hydrostatic pressure, the hydraulic gradient would have to be relatively large to
provide the necessary energy for heating the water. In the example presented in Figure 6
together with Figure 7 it can be shown that the pressure difference necessary to keep a
vertical conduit open by ascending water is far greater than the pressure difference between
gradient and basal channels. Even if a hole were drilled and the water could originally
move through it, the hole would close again in time. Since water may pass downward
through an inclined (vertical) conduit at the upper reaches of the glacier, but not keep the
connection open in the lower part, the ice barrier between channels at different levels scems
to act like a valve letting water pass more easily in the downward direction.

Only one interpretation is finally possible, namely that both types of channels, those
at the bottom and those at the hydraulic grade line—the latter ones probably in a lateral
position—may legitimately exist. Whether some intermediate position, like a straight line
from the glacier head to the portal, would be even more favourable has not been investigated.
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SHAPE OF CROSS-SECTION OF BOTTOM CHANNELS

Since the important formulas presented above are based on the closure of a cylindrical
hole by radial ice flow from all sides towards the axis they cannot directly be applied to a
channel at the glacier bed. An attempt will therefore be made to approach the conduit
at the boundary by a different model, consisting of a semi-circular tunnel in the ice with a
flat bottom at the glacier bed.

The closure rate of the half circle is the same as for the full one if the friction of the ice
on the ground is neglected, but the different shape of cross-section causes more resistance
for the flowing water and therefore a larger hydraulic gradient. Developing an equation
analogous to Equation (11), but using V. = ra#dx for the closure by volume and
R = 7r/(2m+4) for the hydraulic radius, the expression

: Q[zl:|(2+ﬂ)4,f11 cmPi 8/11
B r2/11 (0.684 (ng)3“l (36)

is obtained in place of B, so that B" = 1.196 B. It shows that the hydraulic gradient is
larger by some 209, for a basal semi-circular horizontal conduit than for a circular one
entirely within the ice, so that from this argument alone water would be expected to flow
above the bed. This is even more so because a channel on the ground will be rougher than
one completely in ice. However, to neglect the bottom friction of ice is not admissible.
Qualitatively speaking a restricted ice flow can only mean that less heat is needed to keep
the channel open. The result is a reduction of the hydraulic gradient contrary to the other
bottom effects. To apply the equations for conduits of circular cross-section surrounded by
ice to differently shaped channels at the lower ice boundary may not be very wrong after
all. In view of the uncertainty of ice properties and further complications to be discussed
later, like erosion into the bed or sedimentation, it would not seem justified to apply more
sophisticated theory to the boundary effects at this stage.

COMPUTED AND OBSERVED WATER PRESSURE AT THE BED OF THE GORNERGLETSCHER

A suitable example to test the methods of computation has been found in the Gorner-
gletscher, for which some unique information has become available in relation with the
Grande Dixence power project (Bezinge and others, in press). Not only is the bedrock
topography known in great detail, but the Gornergletscher is also one of the very few glaciers
on Earth where subglacial water pressures have actually been measured. The longitudinal
profile through the tongue, based on seismic soundings and drilling results, is given in
Figure 8 (bottom). It has been used to draw a simplified model of the glacier by approxi-
mating the bed and surface profiles by polygons (top of Figure 8). The origin of the
distance scale is chosen where a syphon* of the Grande Dixence scheme crosses the glacier.
This is the site where the water pressure has been measured by means of manometers in
three holes drilled from the power tunnel upwards through the rock to the glacier bed
above,

The pressure measurements are not easy to interpret, but it seems admissible to use only
that part of the results which agrees best with the basic condition of the model, i.e. the
steady state. A fairly stable water head of about 60-70 m above the bedrock persisted
from May till July of 1960, and the head of 60 m has subsequently been used as the basis
for the computations, together with a discharge figure of 10 m3s—t. The discharge of the
torrent leaving the glacier at the time was of this order, with variations from 4 to 20 m3s—*.

The period of stable pressure came to an abrupt end in late July, when, after a sharp
peak in the discharge, the water head dropped close to the glacier bed in two out of three

* An “inverted syphon™ in proper terms.
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holes. The reason is not known, but it is conceivable that warm water had penetrated
along the edge of the glacier, lowering one of the lateral channels all the way to the bottom
of the ice. In any case something irregular seems to have happened, which may well be
neglected in the adjustment of the theory to the observations.

There are further complications, indicated in the longitudinal profile of Figure 8 by a
discrepancy between seismic soundings and drilling. The lower boundary is the one obtained
by the rock drilling from the power tunnel, and it represents the interface between bedrock
and a basal moraine layer. Whether the ground moraine is only a few metres thick as shown
by drillings near the edge, or whether it extends all the way to the seismic horizon is not

Boftom conduit

————— Gradient conduit ice surface

E .
" 2400+
c [
o
°
o |
2 2300
w
!
zzoul»
|
E\OG‘L
(A éGrunﬂe Dixence ftunnel
20000 s I o . . . memofl
_Qfsummer) 0m* 5" . _Mo-cxm'sixinkm) o e _hmhe
Q(winter) O.Im’s" 0.1-0.01x m*s' (x in km) 0.00I m's"
_ Gornergletscher 1
E Gornersee |
§ 2500+ Bodengletscher
E Seismic_soundings
o
T “1°Drilling . ¥ . ey
-1 o ] 2 3 4 5 L3

Distance x (km)

Fig. 8. Top: Longitudinal profile of the Gornergletscher model for computation, with resulting hydraulic grade lines for high
and low discharge. Bottom: Nalural longitudinal profile.

known. Previous thermodrill soundings from the glacier surface have stopped at a level
comparable to the seismic, and the water emptied from the holes, so that a permeable layer
appears to exist some 50 to 8o m above the rock bed even if the intermediate layer between
seismic and drilling horizon should consist mainly of ice. It probably does, otherwise the
sudden pressure drop of late July 1960 would be hard to understand. The bedrock depth
as shown by the rock drilling has been used to draw the idealized profile.

The snout of the glacier below the Grande Dixence tunnel is represented in the idealized
profile by a wedge. A hydraulic grade line had to be found to approximate the value of
60 m at km o, ending tangentially at the bed at some unspecified distance below. This was
done by a trial and error process, varying the combined factors of conduit roughness and
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ice flow properties, using a discharge figure of 10 m#s~'. Assuming a very rough bed the
value of 4 of case (3) in Table I was obtained. The resulting hydraulic grade line is shown
in Figure 8 by the solid line indicated “summer”. For the continuation of the line at
greater distances, a decrease in discharge of 1 m?s~' per km from km o to 4, from 10 to
6 m3 s, and a constant discharge of 1 m? s~* for the steeply inclined bed beyond km 4 have
been assumed. The much smaller discharge in the last section is attributed to a stream
which has its source in the Gornersee and joins the two main bottom streams from the
Gornergletscher and Grenzgletscher in the deepest point of the depression at km 4— at the
junction of the two main glacier branches forming together the Gorner tongue. The lake is
located in the corner of the junction (Bezinge and others, in press).

A second solid line is shown in Figure 8 marked “winter™. This is the hydraulic grade
line obtained with low discharge figures, namely 0.1 m?s~' below km o, between 0.1 and
0.06 m? s~ linearly decreasing at the rate of 0.01 m?s~* km~! from km o0 to 4, and 0.001 m? s~
between km 4 and the lake. Comparing the results for the winter and summer conditions
with each other it is seen that the winter curve runs a few tens of meters above the summer
one. Of particular interest now is the fact that the winter line rises above the lake bottom.
If the theory is correct, this would give an explanation of the periodic filling and emptying
of the Gorner and any similar glacial lake, because after the low water head of summer
the lake will start to form again when the water system adjusts to the low winter discharge,
i.e. the high hydraulic grade line. This should go on as long as the lake level stays below
the winter line, but as soon as it rises above it, the lake would be ready for the next outburst.
This picture is quite inaccurate to begin with, because, during the time when the lake level
is below the theoretical water head in the conduit, there would be no outflow from the lake
and consequently a higher hydraulic grade line would be approached for Q >~ o, unless
some water moves in the reverse direction. Obviously the situation cannot be analysed
satisfactorily by neglecting the time factor. However, it may be concluded that the lake
level might have to rise fairly high before the outburst is triggered, although the connection
in the conduit theoretically never breaks. This may be different in nature, as stressed by
Bezinge and others (in press). Otherwise it would be difficult to explain why the outbreak
occurs at such widely different dates. Even so, the fact remains that a periodic filling of the
lake is inherent in the basic drainage theory.

For comparison the corresponding curves for the position of gradient (lateral) conduits are
included in Figure 8 (dashed lines). It is seen that they end at the lake considerably above
the hydraulic grade lines of the bottom conduits. This indicates that the latter ones should
be operative and that the lake outlet should follow the bottom. This has been verified, at
least to a certain depth. In the fall of 1969 a unique opportunity occurred to inspect the
main subglacial outflow channel from the Gornersee and to observe the water level directly.
After the lake had emptied on 27-28 July, a group of speleologists came across an immense
pothole in the depression of the Gornergletscher adjacent to the main lake in early October.
The pothole gave access to the outlet from the main lake, below the chaos of stranded ice-
bergs at the foot of the ice cliff. It was found that the outlet channel stayed at the bottom
of the ice, with moraine and rock outcrops forming the floor, as illustrated by Figure 11.
On 3 October the group descended to a considerable depth of approximately go m below
the surface but turned back lacking proper equipment. On 22 October one of them guided
a group organized by Grande Dixence under the leadership of Mr A. Bezinge, to penetrate
as deeply as possible, and the author was able to participate. The second visit ended some-
what disappointingly for the participants, less so for the verification of the theory. The
steeply descending tunnel was flooded some 10 m above the lowest point reached three
weeks earlier. Furthermore it was observed that the water level was slowly getting lower
during the morning, but started to rise again around noon when melt water occurred at
the glacier surface. Obviously the conduit was still functioning as a subglacial drainage
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channel (the short-term oscillations do not contradict the theory, because the time involved
is not sufficient for the conduit to adjust to the steady-state condition).

Actually to observe the water level in a subglacial conduit in autumn at a height between
the theoretical summer and winter levels of Figure 8 was more than one could have antici-
pated, considering the many approximations and assumptions made in the computation.
Less satisfactory is the fact that no high winter pressure has been observed at the Grande
Dixence syphon. However, this may be explained by the presence of the permeable ground
moraine, letting part of the water filter through. A noticeable reduction of pressure is
thereby to be expected at low discharge. In other cases a high winter level has indeed been
observed, in particular by Vivian and Zumstein (in press) at the Glacier d’Argentiére where
the ice rests on a bedrock Riegel, and by Mathews (1964) in a lateral position at the South
Leduc Glacier in an exploratory tunnel of a mine.

VARIOUS OTHER COMPUTATIONS

Formulas for the conduit radius r, the mean transit time 7 of water running from x, to
%, and kinetic energy Fy have been included in the computer programme. They are:

—3/16
= QVag—3/8( pg)3/16f-3/8Q3/8 (%) (37)
with
dr 1 p
ds CO%B( g tan '8)
- .Idsi 1r17rd 8
e T o Qcoq ,8 (38)
and y A
B pwQ = PWQ3 \
Bt p—— (39)

As an illustration the results of computations of the diameter 2r are given in Figure g
for the previous example of bottom and gradient channels for summer and winter run-off
at the Gornergletscher. From summer to winter the conduit diameters should reduce by a
factor of about five. It is of some interest to see what time intervals would be needed for
this to happen. The computation would become very involved if the melting by the flowing
water were taken into account, but since there are sections with practically no flow in winter
an estimate of closure time can at least be given for this situation. The time necessary for the
conduit radius to change from r, to r, is

Tt nAd "'1 2
B = P ﬁ n?’z‘ (40)

For a five-fold diameter reduction a time interval of 31 d would be needed for P—p = 8 bar
(some 8o m depth), and 128d for P—p = 5 bar (&~ 50m depth), using n = g and 4 accord-
ing to case (3) in Table I. In a period twice as long the conduit would reduce to 1/25th of
the original width. It is seen that a considerable closure can be expected to take place
between a lake burst and the time the lake fills again in the following spring. The closure
times given here are much shorter than the ones given by Haefeli (1970), because of the
different value of 4.

A less satisfactory result has been obtained with the computation of travel time (Fig. 10).
The surprising thing is the excessive shortness of 7, in particular for the summer discharge.
The total flow time from the Gornersee to the portal has come out at about g h, while
Bezinge and others (in press) have concluded that the water takes about 12 h in the initial
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Fig. g. Conduit diameters for the Gornerglelscher model of Figure 8.

stage of the lake burst.* The computed figure obtained with the channel roughness of an
ordinary torrent thus does not seem to fit the conditions for a subglacial water course. This
will be further discussed below together with various other complications to be expected in

natural flow.
Equation (g9) has merely served to check that neglecting the kinetic energy is justified.
For the case of laminar flow in the inclined circular conduit, Equation (g) is replaced

by
__r df
U= gq; . a},
where 7 = 1.798 x 1073 kg s~ m~" is the viscosity of water at 0°C. In analogy to Equation
(20) the differential equation

(41)

dp 3/z dp 1/2 dp
(a+pwg tan ,8) —0.316 (Ix+pwg tan ﬁ) T
= D'y'/2(nd)~"Q12(cos B)=3/2(P—p)", (42)
is obtained, with

D = 25"277”2(.‘“1;)5.

* Note added in proof: Transit times of the order of 1 to 2 h have nevertheless been observed with dye tracers
at Hintereisferner for a comparable distance of several kilometres by Lang (1966), and his findings were recently
confirmed (personal communication from W. Ambach).

https://doi.org/10.3189/50022143000022188 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000022188

WATER PRESSURE IN INTRA- AND SUBGLACIAL CHANNELS 197

The conduit radius is now expressed by

L (%)m o (‘i—{)m- (43)

For the numerical solution the same computer programme has been used as for the turbulent
case, with different factors and exponents.
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Fig. 10. Mean transil limes of water for the Gornergletscher model of Figure 8. Lower curves for ** summer”, upper curves
JSor “ winter” flow.

LIMITATION OF THEORY AND DISCUSSION OF VARIOUS ADDITIONAL PHENOMENA INFLUENCING
WATER PRESSURE

The theory presented in this paper is developed for a simple model consisting of a
conduit of circular cross-section completely surrounded by ice. It is further based on the
assumption of the steady state for the flow of water and the closure of the conduit by creep.
Even for this simple model various approximations are made in the mathematical treat-
ment.

First of all the kinetic energy is neglected, but this does not seem to introduce a significant
error since the velocity head is only a small fraction of the hydraulic head in most practical
cases. Probably less justified is the assumption of instantaneous heat transfer, at least when
the conduit radius is large as in the case of large discharge. Mathews (in press) has taken
the heat transfer into account in his analysis of the lake burst of Summit lake, and he has
shown that in his case 109, of the heat produced in the water by friction is carried away
by the water, leaving the glacier at a temperature above 0°C, at the discharge of 5 m3 s,
The corresponding figure rises to some 50%, when the discharge reaches about 200 m3 s,
Taking into account in our theory that the ice is melting at a channel section at some distance
down-stream from where it is produced would hardly change the results in 