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Abstract

I describe two candidate representations of a mixture. The first, which I call the standard
representation, is not a good representation of a mixture in spite of its widespread popularity.
The second, which I call Gibbs’s representation, is less widely adopted but is, I argue, a much
better representation. I show that once we have a precise mathematical structure that can be
used to represent thermodynamic systems, and once an adequate perspective on represen-
tation is adopted, Gibbs’s representation trumps the standard representation.

1. Introduction
We all have an intuitive idea of what mixtures are; air is primarily a mixture of
nitrogen and oxygen, and a martini is a mixture of gin and vermouth. But what sort
of mathematical structure best describes a mixture?1 This question is an example of
the well-known philosophical problem of determining the models that best represent
the target physical system. In the case of mixtures, I identify two main candidates.
The first, which I call the standard representation, is not a good representation of
a mixture in spite of its widespread popularity. The second, which I call Gibbs’s
representation, is less widely adopted2 but is, I argue, a much better representation.
My argument will turn on a particular philosophical perspective concerning the
representational capacities of mathematical structures. I will show that once an
adequate perspective on representation is adopted, Gibbs’s representation leads to
a deflationary view of the notion of “partial pressure” and of some associated ther-
modynamic results, Dalton’s law concerning the pressure of a mixture, and Gibbs’s
theorem concerning the entropy of a mixture.

The topic of this article is intimately linked with Gibbs’s paradox in thermody-
namics,3 which concerns the entropy increase of mixing different gases. Briefly,
one version of the paradox is that the calculation of the entropy increase does
not appear to depend on whether the gases are different or the same, and so we

© The Author(s), 2023. Published by Cambridge University Press on behalf of the Philosophy of Science Association.

1 As I hope these introductory comments indicate, I want to briefly head off a potential semantic
confusion: this paper is about everyday mixtures as opposed to quantum mixtures.

2 A notable exception is Callen (1960), who follows Gibbs’s presentation of thermodynamics as a whole.
3 See (Gibbs 1878, 227—29) and Jaynes (1992), van Kampen (1984), Saunders (2018), van Lith (2018),

Darrigol (2018) for the physics, philosophy, and history of the Gibbs paradox.
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get a nonzero entropy increase even for identical gases. Another version is that there
is a discontinuous change in the entropy from some positive value to zero as the
gases “become indistinguishable.” Philosophical discussions of this paradox have
taken place in the context of the philosophy of identity, usually focused on discerning
the precise notion of indistinguishability at play in statements and solutions of the
paradox. The discussion in this article focuses on an issue taken for granted in discus-
sions of the paradox: the definition and representation of the mixture for which we
are calculating the entropy increase. If we can purportedly derive a paradox
by making certain assumptions about the model we use to represent mixtures,
then the representation of mixtures is relevant and important to discussions of
the paradox.

However, although I anticipate that the arguments in this article will have relevant
consequences for Gibbs’s paradox, the paradox itself is not my main concern.
Studying the representation of mixtures is philosophically interesting on a more
general level because it highlights general principles of representation used to formu-
late our models for physical systems. In particular, there are two main philosophical
payoffs of my argument:

1. The identification of ambiguity in how physicists model mixtures in thermody-
namics and its resolution in a rigorous and philosophically well-motivated way

2. The explication of the interpretative consequences of each model and the
commitments one makes in using them to represent mixtures

I begin in section 2.1 by setting out two philosophical principles I will use to adju-
dicate between the two candidate representations. In section 2.2, I set out a mathe-
matically precise formulation of thermodynamics and a proposal for what it means to
adequately represent physical systems as thermodynamic models. This will set the
philosophical and formal background needed to compare the two candidate represen-
tations of a mixture. In section 3, I argue that adopting the standard representation
involves rejecting the two philosophical principles from section 2.1. If we accept the
principles and adopt Gibbs’s representation, then two objections need to be
addressed: (1) the ubiquitous use of the notion of “partial pressure” in the context
of mixtures, which appears to be absent in Gibbs’s representation, and (2) the absence
of a representation of a mixing process based on Gibbs’s representation. I address
these objections in sections 4 and 5.

2. Models of thermodynamics

2.1. Adequate representations in thermodynamics
When physicists study physical systems, they represent those systems using the
formal mathematical structures of some theory. For example, when we study the
hydrogen atom, we study its representation as a quantum mechanical model, and
when we study the motion of the planets in the solar system, we often study its repre-
sentation as a model of classical gravitation. The same goes for the present case: when
we study mixtures, we represent them using thermodynamic models. We should
therefore aim to formulate the concept of a thermodynamic model in a way that
is appropriate for representing mixtures.
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But what are thermodynamic models? Compare: a model of Hamiltonian
mechanics is a symplectic manifold; a model of quantum mechanics is a Hilbert space
with an algebra of observables; and a model of general relativity is a Lorentzian mani-
fold M; gab

� �
. The fact that there are mathematically rigorous formal models available

to represent these physical systems ensures that we have an adequate grip on what
the structures of those physical systems are like. By contrast, it is striking that the
thermodynamics literature reveals precious few mathematical definitions of a ther-
modynamic model.

A thermodynamic system is sometimes vaguely characterized as a “portion of the
universe” that we select for investigation (Adkins 1983; Sears and Salinger 1975).
Textbooks on orthodox thermodynamics more commonly emphasize the distinction
between a system and its environment. For example, Kondepudi and Prigogine (1998,
4) write: “Thermodynamic description of natural processes usually begins by dividing
the world into a ‘system’ and its ‘exterior’, which is the rest of the world.”

Other commentators in the thermodynamics literature achieve slightly more
mathematical enlightenment on this issue. Callen (1960, 8) defines simple systems
in thermodynamics as those that are “macroscopically homogeneous, isotropic,
uncharged, and chemically inert, that are sufficiently large that surface effects can
be neglected, and that are not acted on by electric, magnetic, or gravitational fields.”
Callen’s definition introduces the property of being macroscopically homogeneous as
an essential property of thermodynamic systems. This is certainly a step toward
greater conceptual precision, but it is still not adequately formalized for our purposes.

In contrast, Tisza (1961, 7) defines a thermodynamic simple system as “a finite region
in space specified by a set of variables X0;X1; . . . ;Xk.” In other words, the system is
specified by the thermodynamic state, which in turn is specified by the variables Xi for
i � 1; . . . k. Lieb and Yngvason (1999, 14) take a similar view: “From the mathematical
point of view a system is just a collection of points called a state space.” In a similar
way, Jaynes (1992, 5) may be read as defining a thermodynamic system by defining its
states: “A thermodynamic state is defined by specifying a small number of macro-
scopic quantities : : : which are observed and/or controlled by the experimenter.”
Jaynes’s definition may be seen as an extension of Tisza’s and Lieb and Yngavason’s
in the sense that it is specified how the variables specifying the state are constrained.
These definitions are a step in the right direction, but they do not include the
homogeneity of the thermodynamic system, something Tisza himself emphasized
elsewhere (Tisza 1961, 23).

Perhaps the most precise definition is to be found in the formulation of geometric
thermodynamics using contact geometry.4 This formulation’s definition is extremely
rich and requires a detailed understanding of contact structure. We shall not delve

4 See Arnold (1990), Mrugała (2000, 1978), Burke (1985), Hermann (1973). To briefly introduce it: Begin
by defining a contact manifold to be a pair N; θ� �. Here, N is the thermodynamic phase space, a 2k� 1� �-
dimensional manfiold, and θ is a one-form defining a smooth field of tangent hyperplanes by the require-
ment that θ ξ� � � 0 for each vector ξ in one of the hyperplanes at a point. This one-form is also required
to satisfy a nondegeneracy condition, that the rank of dθ is maximal, and θ is then called a contact
structure. By a “contact version” of Darboux’s theorem, it can be expressed in local coordinates as
θ � dU � TdS�Pk

i�2 PiXi. Now let I be a k-dimensional submanifold of N and ϕ : I ! N the embed-
ding of I into N. We say that I is an integral submanifold if ϕ�θ � 0. A thermodynamic system is
represented in a contact manifold by the k-dimensional integral submanifold of θ � 0.
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into the intricate details of contact geometry because the full-blown machinery is not
necessary for our purposes. The point of mentioning it is to demonstrate that it is
possible to achieve a characterization of thermodynamic systems to the same degree
of precision as our characterization of classical, quantum, or general relativistic
systems. In order to have an adequate understanding of the structure of thermal
systems, we should aspire to represent them by adopting a precise formal definition
of a thermodynamic model. In section 2.2, I will give the necessary formal background
to formulate a minimal mathematical definition of a thermodynamic model. The
approach I will take is inspired by the precision achieved in contact geometry but
is significantly easier to understand while still retaining its essential content.

Before we proceed, it is worth reflecting on why precise mathematical definitions
of our theoretical models can be useful.5 What physical or philosophical advantage
does the existence of such formal models in classical, quantum, or gravitation physics
give us over the candidates for thermodynamic models described in this section?

The first advantage afforded to us by formal models is their usefulness to us as
modelers: the clear structure afforded to us by formal models allows us to see which
aspects of the model represent particular aspects of the physical system. If a feature
of a physical system is relevant in a particular context, then our model for it in that
context had better be able to represent that physical feature. My point is better illus-
trated by the case I am concerned with in this article: representing a mixture as a
thermodynamic model. At the very least, this will mean that the thermodynamic
model ought to represent all properties of the mixture deemed thermodynamically
relevant. It follows that if the thermodynamic model does not represent some
thermodynamically relevant property, then it is not an adequate thermodynamic
representation of that system. More concisely, a model is not an adequate represen-
tation of a target if it fails to represent a property of the target it “should’’ represent.
Let us express this adequacy criterion more succinctly as follows:

Representational adequacy (RA). Model X adequately represents target T in
context C if and only if X possesses a property Xi that can be interpreted as repre-
senting some property Ti of T, for all Ti deemed relevant in context C.

I do not wish to commit to a more precise version of this criterion because doing so
would involve adopting a particular (possibly controversial) account of scientific
representation. I anticipate that most perspectives on representation will deem this
criterion to be reasonable and that it can be formulated in whichever account of
scientific representation one adopts.6

As this principle is formulated, there is nothing to constrain what kind of thing the
model X is; it may be a concrete scale model just as well as a mathematical structure.
In my discussion, I am interested in the specific application of this principle where X

5 This is not to say that invoking ever more sophisticated formal methods is the only way of making
progress in the philosophy of physics. In pursuing my line of thought, I am following in a particular
tradition that explores the extent to which formal methods may help us achieve conceptual clarity.
Halvorson (2019) is one recent work that may be seen as following in this tradition.

6 An example of a precise account in which the principle might be formulated is that by Frigg and
Nguyen (2020).
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is a mathematical structure. Such structures have clearly identifiable properties Xi

that can be used to represent relevant properties Ti of the target. Looking ahead, I
will show that the standard representation of mixtures violates this adequacy crite-
rion because it does not represent a feature of mixtures that is thermodynamically
relevant, namely, the volume of the mixture. Thus, if one accepts this criterion of
representational adequacy and one thinks that the volume of the mixture is thermo-
dynamically relevant, then one ought to reject the standard representation.

The second advantage afforded to us by formal models is their usefulness to us as
philosophers. It is our responsibility as philosophers to contemplate the interpreta-
tions of our mathematically formulated physical theories. Part of this investigation is
to answer questions concerning, for example, the kind of mathematical models we
take to represent physical systems, as well as the appropriate standard of equivalence
of those models. Recent literature in the general philosophy of science (e.g., the
formal logic approach of Halvorson Halvorson [2019]), particularly in the context
of the “hole argument” of general relativity (e.g., Weatherall 2018; Fletcher 2020;
Roberts 2020), has illustrated how progress may be made on such questions if we first
get clear on the mathematical structure lying at the foundations of a theory. Given
the fruitfulness of this approach to philosophical problems in these areas, I would like
to consider the extent to which such formal approaches may be fruitful in thermo-
dynamics.7 My view—and argument in this article—is that they can be. It is from this
perspective that I approach the formalization of thermodynamics in this article.

One important step made in recent philosophical literature has been to draw
attention to a principle concerning the capacity of mathematical models to represent
physical situations. This principle was applied by Weatherall (2018) in the context of
the hole argument:

[I]somorphic mathematical models in physics should be taken to have the same
representational capacities. By this I mean that if a particular mathematical
model may be used to represent a given physical situation, then any isomorphic
model may be used to represent that situation equally well. Weatherall
(2018,332)

Further discussion of this principle is undertaken by Fletcher (2020), who
expresses it as follows:

Representational Equivalence by Mathematical Equivalence (REME). If two
models of a physical theory are mathematically equivalent, then they have
the same representational capacities. Fletcher (2020, 5)

7 It should be noted that formal approaches to thermodynamics are not totally absent and have not
gone unappreciated. Lieb and Yngvason (1999) authored perhaps the most well-known work in formal
thermodynamics and have made significant contributions to our understanding of its mathematical
structure. However, they choose to follow in the axiomatic tradition of formalizing physical theories.
This is not the only approach we can take because the geometric approach is also available. This work
should therefore be seen as a step toward looking at the foundations of thermodynamics from a different
angle in a way that complements other approaches.
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Roughly speaking, the notion of the “representational capacities” of a scientific
model is taken to mean “the states of affairs that that model may be used to represent
well” (Fletcher 2020, 3). Although this notion may seem intuitive, no precise defini-
tion of representational capacity exists, and its definition will surely depend on one’s
account of scientific representation. Fletcher avoids giving such a definition, on the
basis that structural questions about, for example, how the mathematical equivalence
of models constrains their representational capacities are independent of one’s defi-
nition of capacities. It will be similarly unnecessary for me to give a precise definition
of representational capacities because the example I am concerned with is stark
enough that it should be accommodated by any definition.

I am not concerned with giving a defense of REME or related principles here.8

Instead, I shall content myself with defending the following conditional claim: if
one accepts REME, then one ought to reject the standard representation in favor
of the Gibbs’s representation of mixtures.

In the following sections, I will set out what I take to be the formal structure of a
thermodynamic model. I will then use this formalism to compare two candidate
mixture representations against the same formal background. I will argue that the
standard representation violates REME and the criterion for representational
adequacy and that we should therefore seek another representation.

2.2. Formal background
I will now set out what I take to be the formal structure of a thermodynamic system,
which is a simplified version of the geometric approach.9 The assumptions we work
with are the following:

1. The possible states of a thermodynamic system in equilibrium are represented
by points in the k� 1� �-dimensional smooth real manifold M with global coor-
dinates (X0; . . . ;Xk).

2. These variables are related by a smooth function f such that

X0 � f X1; . . . ;Xk� �; (2.1)

which is called the fundamental relation. This defines a k-dimensional surface in M.

3. f is a homogeneous first-order function of X1; . . . ;Xk:

f λX1; . . . ; λXk� � � λf X1; . . . ; Xk� � (2.2)

for every positive real number λ and for all X1; . . . ;Xk.

The variables Xi will be taken to represent thermodynamic properties, such as
energy, entropy, volume, and mole number, and are known as the extensive variables.

8 Fletcher defends the principle in the context of spacetime physics; it has been criticized by Belot
(2018), Pooley (2021), and Roberts (2020), among others.

9 The presentation here largely follows Callen (1960), who in turn is following the formulation of
thermodynamics first presented by Gibbs (1878).
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We will shortly demonstrate that the function f, when expressed in differential form,
turns out to express what is known as the first law of thermodynamics.

Using these assumptions, I now propose the following minimal definition of
a thermodynamic model.10

Thermodynamic model. A thermodynamic model is a pair M; f� �, where:

i. M is a k� 1� �-dimensional manifold with global coordinates X0; . . . ;Xk.
ii. X0 � f X1; . . . ;Xk� � is the fundamental relation defining a k-dimensional surface

in M, where f is first-order homogeneous.

Equivalently, we have a k-dimensional manifold N that is given coordinates Y1; . . . ; Yk
and a function f : N ! R, where we can smoothly embed N into a k� 1� �-
dimensional manifold M via the map Φ : N ! M. Then we can think of f as defining
a k-dimensional surface in M whose coordinates are given by X0; ::; Xk, where
Xi Φ p

� �� �
:� Yi p

� �
for i � 1; . . . ; k and X0 Φ p

� �� �
:� f p

� �
.

This definition of a thermodynamic model is intended to be analogous to models in
other theories that aim to represent physical systems. But my proposal for defining a
thermodynamic model is not to be found in typical presentations of the thermodynamic
formalism, so it is worth spending some time illustrating how this formalism gives rise
to the more familiar expressions of thermodynamics using the simple case of the ideal
gas. In this case, we assume the manifold has dimension n � 4 and coordinates that can
be interpreted as S (the entropy), U (the internal energy), V (the volume), and N (the
mole number). The fundamental relation in assumption 2 then takes the form

S � f U;V;N� �; (2.3)

and the homogeneity in assumption 3 says that

λS � λf U;V;N� � � f λU; λV; λN� � (2.4)

for all values of U;V;N and for all positive values of λ. Equation (2.4) is often inter-
preted as the claim that entropy is extensive, a term typically used to describe vari-
ables that scale with the “size” of the system.11

To make contact with a more familiar expression of thermodynamics, we write the
fundamental relation in differential form as

df � dS � @S
@U

dU � @S
@V

dV � @S
@N

dN: (2.5)

Now adopt the following definitions to denote the partial derivatives occurring in
this equation:

10 Other assumptions, such as convexity properties, are often included as well, for example, in the
formulation of the second law, but these give rise to a more complicated definition and are not necessary
for my purposes here.

11 This framework offers a precise way of defining what extensive variables are in terms of the scaling
symmetry of the fundamental relation. In short, we will say that a collection of thermodynamic variables
is “extensive” when we impose the first-order homogeneous property on the fundamental relation.
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@f
@U

≡ 1
T
;

@f
@V

≡ p
T
;

@f
@N

≡ � µ

T
; (2.6)

where T, interpreted as the temperature; p, the pressure; and µ, the chemical poten-
tial, are known as the system’s intensive parameters.12 These intensive parameters are
clearly functions of the extensive parameters U;V;N. Relationships expressing the
intensive parameters as functions of the extensive parameters are known as equations
of state.13

Writing the fundamental relation in differential form, we now arrive at what is
commonly referred to as the first law:14

dS � 1
T
dU � p

T
dV � µ

T
dN: (2.7)

It follows from Euler’s theorem on homogeneous functions that15

S � 1
T
U � p

T
V � µ

T
N: (2.8)

This equation is known as the Euler relation and may be used to find the entropy of the
ideal gas as a function of the extensive parameters U;V;N, provided we know 1=T,
p=T, and µ=T, each as a function of U;V;N. From empirical investigations, we know
the first two can be expressed in terms of a constant R, called the ideal gas constant, as

12 The intensive parameters are often characterized as those that do not scale with the size of the
system. This may be understood more precisely as follows. In the formal setup presented here, the inten-
sive parameters are defined to be the partial derivatives of the fundamental relation with respect to the
other extensive parameters. Because they are derivatives of one extensive parameter with respect to
another, the intensive parameters are invariant under the scaling of the extensive configuration
variables.

13 It is yet another advantage of this formulation of thermodynamics that it puts the equations of
state, familiar to all students of thermodynamics, in their proper conceptual place in the foundations.
Although important, they are actually derivative from the fundamental relation. An individual equation
of state is not sufficient to capture all the thermodynamic information about a system. Adopting all the
equations of state, however, is equivalent to adopting the fundamental relation itself and hence is
sufficient.

14 It will be noticed immediately by readers familiar with thermodynamics that there is no “heat”
term (denoted Q) in this equation. As it is typically presented, the first law of thermodynamics states
that dU � đQ � đW, where the notation đ indicates that Q and W are inexact differentials (their inte-
gral around a closed loop is not necessarily zero). Heat may be deemed, in some sense, “fundamental,”
and entropy S is then a derived quantity in this approach to thermodynamics. By contrast, in this simpli-
fied version of the geometric approach, entropy is deemed fundamental, and heat is a derived quantity.
This may be objected to on the grounds that it is an egregious case of “putting the cart before the horse”
or of “theft over honest toil”; whereas this approach simply assumes the existence of an entropy func-
tion, the orthodox approach of Kelvin and Clausius and Planck takes great care to derive it. However, this
is not entirely fair. In the geometric formulation, entropy is not simply introduced without further
comment; considerable effort is expended in justifying its inclusion as one of the configuration variables
with a special interpretation: an aggregate variable of the unobserved degrees of freedom (this inter-
pretation of entropy in the geometric formulation is discussed in detail by Wills [2022, ch. 2]).
Furthermore, entropy being a derived concept in orthodox thermodynamics does not necessarily make
it a “better” theory. Different formulations of the same science are different theories with the ability to
ask and answer different types of questions. A similar point is made by Tisza (1966, article 2, §1).

15 For a proof of this, see Callen (1960, 47).
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1=T � 3NR=2U; p=T � NR=V: (2.9)

These are the familiar equations of state for the ideal gas. We can then work out
an explicit expression for µ=T from equations (2.9) using the Gibbs–Duhem relation.16

By a simple combination of these three equations, µ=T is found to be

µ

T
� Rln

N5=2

U3=2V

� �
� K; (2.10)

where K is a constant. By substituting the expressions for the pressure, temperature,
and chemical potential into the Euler relation, we now derive the fundamental
relation of the ideal gas to be

S � 3
2
R
N
U

� �
U � NR

V

� �
V � Rln

N5=2

VU3=2

� �
� K

� �
N: (2.11)

This equation may be simplified, and substitutions of the equations of state may be
made to express the entropy as a function of the other variables. This formulation has
the merit of exhibiting the homogeneity of the fundamental relation and emphasizing
the conceptual place of the equations of state as the derivatives of S with respect to
U, V, and N. Note that the fundamental relation’s explicit form is given by the package
consisting of the Euler relation and all the intensive parameters as a function of
the extensive variables. In the rest of the article, I will present the two candidate
representations of mixtures like this.

We now turn to using this formulation of thermodynamics and the associated
definition of the thermodynamic model to discuss thermodynamic representations
of gas mixtures.

3. Representing a mixture in thermodynamics
Intuitively, mixtures are made by combining two or more different substances in the
very same volume without any chemical reaction happening. The challenge is to
construct a mathematical representation of mixtures in thermodynamics so that
we may model mixtures and their properties. In this section, I will discuss and
compare two candidates for such a representation: the standard representation
and Gibbs’s representation.

The standard representation is inspired by many discussions of thermodynamic
mixtures, which all treat the “partial pressures” of the gases as proper thermody-
namic intensive variables (i.e., as partial derivatives of the fundamental relation with
respect to volume variables).17 The existence of partial pressures in the model is
necessary for a popular representation of the mixing process based on semipermeable
membranes: each membrane feels the partial pressure from a gas to which it is imper-
meable. This allows the gases to “expand into each other” in the container. In

16 To derive the Gibbs–Duhem relation, we take the derivative of the Euler relation in equation (2.8)
and subtract from it equation (2.5), the differential form of the first law. This yields
0 � Sd 1=T

� �� Vd p=T
� � � Nd µ=T

� �
, which allows us to calculate the expression for µ=T using equation

(2.9).
17 This representation is adopted (often implicitly because many commentators do not use the

formalism presented here) by Adkins (1983), Dieks (2018), Saunders (2018), van Kampen (1984), and
Planck (1903, 16).
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contrast, Gibbs’s representation is, as its namesake suggests, based on a description of
a mixture from Gibbs’s 1878 work, which does not make explicit use of partial pres-
sures as thermodynamic variables.

In the following section, I describe how the two representation principles require
that we reject the standard representation in favor of Gibbs’s representation. In short,
my argument is this. If one thinks that the volume of the mixture is a relevant
thermodynamic property that ought to be represented in the thermodynamic model,
then, by RA, we should reject the standard representation in favor of Gibbs’s. On the
other hand, one might think that the partial pressures ought to be represented in the
thermodynamic model. In this case, by RA, we should reject Gibbs’s representation in
favor of the standard representation. However, if we follow this path, we violate
REME, and we may satisfy it by rejecting the standard representation in favor of
Gibbs’s representation. Therefore, if one accepts both RA and REME, we arrive at
Gibbs’s representation.

Sections 4 and 5 detail the consequences of accepting Gibbs’s representation for
Dalton’s law, Gibbs’s theorem, and the mixing process. First, though, we will examine
each representation in detail.

3.1. The standard representation
I will argue that if one accepts both of the adequacy principles for representation set
out previously, then one ought to reject the standard representation.

For simplicity, let us consider an ideal gas mixture of two component gases,
denoted 1 and 2. The standard representation of an ideal gas mixture is a thermody-
namic system that I denote Ms; fs� �, where Ms can be given coordinates
U;V1;V2;N1;N2� � and where the fundamental relation is

S � fs U;V1;V2;N1;N2� � � 1
T
U � p1

T
V1 �

p2
T
V2 �

µ1

T
N1 �

µ2

T
N2; (3.1)

with

1
T
� 3

2
R
N1 � N2

U
;

pi
T
� R

Ni

Vi
;

µi

T
� Rln

Ni�N1 � N2�3=2
ViU3=2

� �
� Ki: (3.2)

The model Ms; fs� � is used to represent a mixture when the variables are given the
following interpretations: S and U are the entropy and energy, respectively; V1 and V2

are the volumes occupied, respectively, by gases 1 and 2; and N1 and N2 are the mole
numbers of gases 1 and 2, respectively, in those volumes. However, with this inter-
pretation, there are only coordinate variables for the individual gas volumes and not
for the “volume of the mixture” as a whole. Similarly, although the variables p1 and p2
are often interpreted18 as the “partial pressures” of gases 1 and 2, there is no coordi-
nate variable among the intensive variables of state space that represents the “total
pressure.” If one adopts the view that the volume and total pressure of a mixture are
key physical features of the system that merit representation in the model, then this

18 Some examples of authors who seem to adopt partial pressures as genuine thermodynamic vari-
ables of a mixture, and hence would adopt this standard representation of a mixture, are Planck (1903,
11—12), van Kampen (1984), and Adkins (1983, 217).
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model fails to do it. Hence, Ms; fs� � violates the RA, and we ought to seek a model that
does account for this key physical feature.

One response to this argument is to claim that it is the ‘’partial pressures” rather
than the total volume that merit representation in the model. Then, by RA, we should
reject Gibbs’s representation and accept the standard representation. This is a
perfectly valid argument. However, I will now show that this position ends up
violating our second representational principle, REME.

The key thing to realize is that Ms; fs� � can only represent the volume of the
mixture so long as we stipulate that V1 and V2 have the same value, say, V, and that
they “overlap,” or refer to the very same place in physical space. Let me refer to this
assumption as volume overlap. This view is often implicit in discussions of mixtures
when the concepts of “volume of gas 1” or “volume of gas 2” are used in the context
of describing mixtures as thermodynamic systems.

However, there is a problem with this view. Along with the interpretation of p1 and
p2 as the partial pressures comes an interpretation of V1 and V2 as the “volume of the
individual gases” because pi :� @f =@Vi. Therefore, it is perfectly possible to use
Ms; fs� � to represent the physical system consisting of two spatially separate, indepen-
dent volumes V1 and V2. As soon as one chooses not to model the volume of the
mixture but rather the volumes of the individual gases, there is nothing about the
mathematical model that makes it a representation of a mixture as opposed to a
representation of a system with two spatially separate volumes. The formalism does
allow us to assert that volumes V1 and V2 have the same value, but it does not have the
capacity to represent volume overlap. What makes Ms; fs� � a representation of a
mixture as opposed to a representation of a physical system of two separate volumes
is not any mathematical structure in the formal model but rather the informal
volume-overlap assumption.

In sum, the model of a mixture is actually different from the model of two separate
volumes; the model that represents the mixture is “ Ms; fs� � � volume overlap,” and
the model that represents the two separate volumes is just Ms; fs� �. But if we are
limited to the representational capacities of the thermodynamic formalism, the
models are one and the same. We may understand the problem of representing
mixtures as Ms; fs� � � volume overlap in a different light as a violation of REME.

If we let M1 � Ms; fs� � � volume overlap and M2 � Ms; fs� �, then we have the situ-
ation where M1 has the capacity to represent mixtures but M2 does not. They are
mathematically equivalent (in fact, they are identical) in thermodynamics because
the volume-overlap assumption is not manifested formally in the model, but they
have different representational capacities, in clear violation of REME. It follows that
using M1 violates this criterion for formal representation. Because M1 and M2

have different representational capacities, they had better not be mathematically
equivalent.

To fix this problem and abide by REME, we can implement volume overlap
formally as part of the mathematical model by simply having one volume variable,
V. The ambiguity about where in space the gases are located is removed because there
is only one place they can be, and there is no need to stipulate that the volumes of
the gases both have the same value because there is only one volume variable
“containing’’ the mole numbers N1 and N2. This means we can now model something
that we could not under Ms; fs� �: we can model the key physical feature, the “volume
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of the mixture,” as V. Thinking this way leads us to the next candidate for the
representation of a mixture: Gibbs’s representation.

3.2. Gibbs’s representation
The alternative representation of a mixture I would like to advocate adheres to
REME and is able to represent the volume of the mixture directly. One might think
of this as a formal implementation of volume overlap: we represent an ideal gas
mixture of k components as the system MG; fG� �, where MG may be given coordinates
U;V;N1; . . . ;Nk� �, and the fundamental relation is

S � fG U;V;Ni; . . . ;Nk� � � 1
T
U � p

T
V �

Xk
i

;
µi

T
Ni; (3.3)

where

1
T
� 3

2
R

Pk
i Ni

� �
U

;
p
T
� R

Pk
i Ni

� �
V

;
µi

T
� Rln

Ni
Pk

i Ni

� �
3=2

VU3=2

" #
� Ki: (3.4)

In this characterization, we must think of an ideal gas mixture as some number of
different substances with mole numbers Ni, all with the same temperature, occupying
the very same volume V. This definition incorporates the previously informal volume
overlap as an explicit formal structure in the model by simply having only one
volume variable that we may easily interpret as the “volume of the mixture.”

This representation not only has intuitive appeal but also historical precedent: it is
the same as that adopted by Gibbs. Although Gibbs did not yet have the formal tools to
adopt the definition of a thermodynamic system I propose, it is clear that he takes
MG; fG� � to be the definition of an ideal gas mixture. That is, he takes the extensive
variables that describe the thermodynamic state of a mixture to be19

S;U;V;N1; . . . ;Nk for a mixture of k components:

[I]f we consider the matter in the mass as variable, and write N1; . . . ;Nk for the
quantities of the various substances 1; . . . ; k of which the mass is composed,
U will evidently be a function of S, V, N1; . . . ;Nk and we shall have for the
complete value of the differential of U

dU � TdS � pdV � µ1dN1 � . . .� µkdNk

µ1; . . . ;µk denoting the differential coefficients of U taken with respect to
N1; . . . ;Nk. (Gibbs 1878, 116)

Thus, Gibbs takes the variables for a thermodynamic system of a homogeneous gas
consisting of various substances of mole number Ni to be described by the extensive
variables, S;U;V;N1; . . . ;Nk. This differs from the variables for a pure substance only
in the number of variables Ni denoting the quantities of the substances.

19 Gibbs’s notation for the thermodynamic quantities has been changed to be consistent with the rest
of the article.
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Having settled on his choice of variables, Gibbs begins his derivation of the funda-
mental relation of an ideal gas mixture by assuming the following principle:

The pressure in a mixture of different gases is equal to the sum of the pressures
of the different gases as existing each by itself at the same temperature and with
the same value of its [chemical] potential. Gibbs (1878, 215)

From this principle,20 Gibbs is able to deduce that the pressure of an ideal mixture
of n components is

p �
Xn
i

Cieµi=TT5=2: (3.7)

That is, the pressure of the mixture is the sum of the individual pressures each of
the gases would have if they were at temperature T and chemical potential µi.

Gibbs proposes that equation (3.7) can be viewed as the “fundamental equation”
describing a mixture:

It will be legitimate to assume this equation provisionally as the fundamental equa-
tion defining the ideal gas mixture, and afterwards to justify the suitableness of such
a definition by the properties which may be deduced from it. Gibbs (1878, 216)

As it is currently expressed, it is not a relation between the extensive variables and
so does not fit the description of a fundamental relation in the sense in which it was
introduced in section 2. But it is possible to show that equation (3.7) is a fundamental
relation because it is the full Legendre transform of the fundamental relation between
the extensive variables. To extract the explicit form of the fundamental relation fG, we
first note that equation (3.7) implies21

p �
Xk
i

NiT
V

; (3.8)

S �
Xk
i

3
2
NiRlnT � NiRln

Ni

V
� NiCi

� �
: (3.9)

We now substitute the expressions for S=V, Ni=V, and p into the Euler relation for
the ideal gas mixture, equation (3.3), which yields U � 3=2

� �
R
Pk

i Ni

� �
T. Taking these

20 To understand how to express this principle in the formalism, note that for a pure ideal gas, µ=T as
a function of pressure and temperature is

µ

T
� Rlnp � 5

2
RlnT � K; (3.5)

where K is a constant. We may rearrange this for p to give

p � Ceµ=TT5=2; (3.6)

where C is a constant absorbing all the constant terms that appear in the course of the substitutions.
This equation allows us to express the principle Gibbs described as equation (3.7).

21 The details of this are carried out by Gibbs (1878, 216—17).
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three equations together, we have worked out all of the equations of state of the gas
mixture:

1
T
�
Xk
i

3
2
R
Ni

U
;

p
T
�
Xk
i

R
Ni

V
;

µi

T
� Rln

Ni
Pk

j Nj

� 	
VU3=2

2
4

3
5� Ki: (3.10)

To see the fundamental relation (as a relation between the extensive variables) of
the ideal gas mixture, fG, in its explicit form, we may substitute the equations of state
into equation (3.3).

Thus, the thermodynamic representation of an ideal gas mixture may be derived
from an empirical principle, and this is how all of its familiar thermodynamic prop-
erties are derived. This also concludes my argument that Gibbs’s representation
adheres to both principles laid out in the last section and that the standard represen-
tation violates them both.

I am now going to consider two objections to my line of reasoning. The first
appeals to the apparently ubiquitous use of the notion of “partial pressure” in discus-
sions of mixtures and, in particular, to the statement of certain laws concerning
mixtures: Dalton’s law about the pressure of a mixture and Gibbs’s theorem about
the entropy of a mixture. I address this in section 4 by demonstrating that both laws
are in fact consequences of Gibbs’s representation, where no notion of partial pres-
sure appears. The second objection stems from the fact that a typical and popular
representation of mixing based on semipermeable membranes depends on the notion
of partial pressure, so Gibbs’s representation (without such a notion) cannot be the
basis for a representation of mixing. I address this by providing a representation of
mixing based on the Gibbs’s representation of a mixture.

4. Dalton’s law and Gibbs’s theorem
An attractive feature of the Gibbs’s representation of a mixture is that there is only
one volume variable, V, and hence only one pressure, p. This may prompt an objection
from those who see partial pressures and partial volumes as essential variables for
characterizing a mixture: How can we describe mixtures without the concept of
partial pressure? To see partial pressures and mixtures intimately associated with
each other is forgivable: Dalton’s law for mixtures is sometimes stated in terms of
partial pressures,22 and Gibbs’s theorem for mixtures expresses an analogous prin-
ciple with respect to entropy.

In fact, neither Dalton’s law nor Gibbs’s theorem depends on the concept of partial
pressure. Indeed, equations (3.8) and (3.9), which are consequences of Gibbs’s repre-
sentation, are statements of Dalton’s law and Gibbs’s theorem, respectively: they are
both mathematical consequences of a fundamental relation that does not have partial
pressure as an intensive variable. The purpose of this section, then, is to show how
something that looks like partial pressures may appear, as well as to go on to explain
how they should properly be interpreted. We begin with an examination of the math-
ematical origin of the laws.

22 For example, see Adkins (1983, 214) and Blundell and Blundell (2010, 60).
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Dalton’s law is the principle that “the pressure in a gas-mixture is equal to the sum
of the pressures which the component gases would possess if existing separately with
the same volume at the same temperature” (Gibbs 1878, 217). Gibbs’s theorem states
an entirely analogous principle with respect to entropy, which Adkins (1983, 217)
takes to be the fact that “the entropy of the mixture is the sum of the entropies that
the component gases would have if present alone” and Callen (1960, 335) takes to be
the fact that “the entropy of a mixture of ideal gases is equal to the sum of the entro-
pies that each of the gases would have if it alone were to occupy the same volume at
the same temperature.”

Let us understand in more depth why these propositions are true. We will just
cover the case of Dalton’s law because a similar argument applies to entropy and
Gibbs’s theorem. The pressure of a single pure ideal gas i as a function of volume
and temperature is given by pi � NiTi=Vi. If we evaluate the pressures of the pure
ideal gases at temperature value T̃ so that Ti � T̃ for all i and at volume value
Ṽ so that Vi � Ṽ for all i, then the pressure of each gas is given by pi � NiT̃=Ṽ.
The pressure of a mixture evaluated at V � Ṽ and T � T̃ is given by equation (3.8)
as p �P

i NiT̃=Ṽ. By comparing the values of the pressure of the pure ideal gases and
the pressure of the mixture, it is clear that the pressure of the mixture evaluated at
temperature and volume values T̃ and Ṽ is equal to the sum of the pressures of the
individual pure gases evaluated at the same temperature and pressure values. This
coincidence of the values of the pressure of a mixture and the sum of the pressures
of individual gases is Dalton’s law.

My rather pedestrian explication of Dalton’s law serves to highlight that the notion
of “partial pressure” plays absolutely no role in Dalton’s law. The only thermody-
namic pressure variables playing a role in this argument are the individual pressures
of the separate ideal gases and the pressure of the mixture. Now, we could choose to
define p̃i :� NiT̃=Ṽ and call it the “partial pressure” so that the pressure of the
mixture may now be written p �P

i p̃i (i.e., the sum of the partial pressures). But
this definition, at best, serves as nothing more than a mathematical fiction23 and,
at worst, as a method of deceiving us into thinking that partial pressures are genuine
thermodynamic variables. My point can be summarized more succinctly: partial pres-
sures are not thermodynamic variables associated with any thermodynamic model
featured in the argument establishing Dalton’s law; as a result, they lie strictly outside
the representational capacity of that model. Partial pressures are, at best, extra-
theoretic constructs that illustrate a coincidence in the values of the pressures of
individual gases and of a mixture. It seems rather ironic that Dalton’s law, which
seemingly makes unavoidable reference to the notion of partial pressure, is a deriv-
able property of the thermodynamic system MG; fG� �, whose main difference from
Ms; fs� � is that it does not have partial pressures as thermodynamic variables!

5. Mixing and equilibration
A second objection to the Gibbs’s representation might go as follows: this represen-
tation of a mixture cannot be right because it does not allow one to say how a mixture

23 Callen (1960, 337) writes, “The partial pressures are purely mathematical constructs with no direct
physical meaning.”
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is the result of mixing. How could this be possible without partial pressures and the
standard representation? If we are to follow Gibbs in adopting the MG; fG� � representa-
tion and giving up the “partial pressures” as thermodynamic variables, we have to give
up a popular and typical representation of the process ofmixing based on Ms; fs� � as each
gas pushing on a semipermeable membrane with its corresponding partial pressure so
that workmay be extracted from themixing.24 In this section, I will show how this repre-
sentation is capable of representing mixing as equilibration in a conceptually clear way
and indeed one that is more precise than many other accounts.

5.1. Gibbs’s representation of mixing
Mixing is typically described as the process where both samples of gas, each initially
confined to their half of a container, finally come to occupy the full volume of the
container when the partition dividing them is removed. Thus, Dieks writes that
mixing occurs when the gases expand “into the same final volume” (Dieks 2018),
and van Lith writes that we have a mixture when the gases are “spread out over
the whole container” (van Lith 2018). These suffice for intuitive grasps of the concept,
but the challenge now is to represent the process of mixing in the thermodynamic
formalism. I will take the uncontroversial stance that the mixing process is an
instance of equilibration: a thermodynamic system coming to equilibrium.

It is readily admitted that equilibrium thermodynamics has nothing to say about
the process of mixing because it is obviously a nonequilibrium process. But it is
possible to give an account of mixing as equilibration in equilibrium thermodynamics.
Roughly, the strategy I will adopt will be the following: “Removing a partition
between two thermodynamic systems” means more formally that we remove a
constraint on the thermodynamic variables of a third system, which we call
the “composite” of the original two. Informal heuristic expressions about the
“nonequilibrium process” or the “flow” of extensive quantities between two systems
can be viewed in the Gibbs’s representation of mixing as shorthand for the removal of
this constraint. Before we tackle mixing specifically, however, we need to introduce
equilibration in thermodynamics.

5.2. Equilibration in thermodynamics
Intuitive grasps of equilibrium and equilibration abound. Roughly characterized, a
system is in equilibrium if and only if the macroscopic variables that define the
thermodynamic state of the system do not change with time.25 However, this

24 This way of describing the mixing process is very popular and is used by many textbooks and
commentators. It goes back, at least, to Planck (1903). This basic idea is this: if a partition between
the gases is simply removed, the resulting process is not quasistatic because the states between the equi-
librium unmixed state and the mixed state are nonequilibrium. In order to calculate the change in ther-
modynamic quantities (e.g., entropy) between these states, one must integrate along a path in the state
space between the states. One helpful visualization of this path is the quasistatic mixing process
involving semipermeable membranes, where the partial pressures of each gas push on the membrane
to which it is impermeable until the membranes reach the end of the container and each gas permeates
the entire volume.

25 See, for example, Adkins (1983, 7), Baierlein (1971, 4), Brown and Uffink (2001, 528), and Blundell and
Blundell (2010, 32—33).
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characterization is problematic when it comes to saying precisely what it means in
the formalism of orthodox equilibrium thermodynamics because there is no time
parameter in thermodynamics with respect to which to express this constancy.
Equilibration is characterized as the process of coming to equilibrium. This invites
talk of the flow of energy or matter over time from one subsystem to another.
For the same reason, this characterization poses challenges when formulating it in
the concepts and formalism of equilibrium thermodynamics: describing processes
mathematically requires changes of quantities with respect to time.

In fact, equilibrium thermodynamics is equipped with a precise definition of equi-
librium that does not rely on any temporal notion.26 The key to understanding this is
the idea of the composite system. Consider a thermodynamic system with extensive
variables X0; . . . ;Xk. We must imagine this system to be composed of subsystems such
that the extensive quantities of the subsystems sum to the extensive quantities of the
composite system:

P
i X

i� �
K � XK . This decomposition of the system into subsystems is

sufficient for us to say what it means for the system to be in equilibrium.

K-Equilibrium. Let M; f� � be a thermodynamic system with variables X0; . . . ; Xk that
is composed of n subsystems M i� �; f i� �� �

for i � 1; . . . ; n such that
P

i X
i� �
K � XK for

all K � 0; . . . ; k. Then we say that M; f� � is in K-equilibrium if and only if the values
of X i� �

K for all i are such that the entropy function S X�1�
0 ; :::;

�
X 1� �
k ; :::; X�n�

0 ; :::; X n� �
k � :�Pn

i S
i� � X i� �

0 ; :::; X i� �
k

� 	
is at an extremum.27

Essentially, equilibration is the transition to an equilibrium state. Equilibrium
thermodynamics does not say anything about how it gets there, but it does tell us
how to calculate the final equilibrium state: it is the extremum of the entropy func-
tion. The beauty of this formulation of equilibrium and equilibration is that it uses the
notions of composite and subsystems to analyze a nonequilibrium concept in equilib-
rium terms. The composite system before mixing occurs is not in equilibrium, and so
it cannot be assigned an equilibrium state, but each of the subsystems of which it is
composed is in an equilibrium state. By the additivity of entropy, this means we can
still assign an entropy to the composite system and determine the final equilibrium
state by finding the values of the subsystems’ extensive variables that extremize the
composite system’s entropy. We may imagine the extensive quantities “flowing”
between the subsystems until the entropy is at an extremum.

Note that the definition is indexed to an extensive variable XK ; we may choose to
extremize the entropy with respect to any number of the extensive variables, each of

26 Uffink (2001, 361—62) has given a brief critique of this approach to understanding equilibrium. The
present work could be viewed as a conditional statement in light of this critique: that if we adopt the
Gibbs/Callen approach, as many physicists do, then it is still possible to understand equilibrium and equil-
ibration. I am in the business of defending the claim that we can describe the mixing process in this
framework, rather than in the business of defending the framework itself. I do not have space in this
article to discuss the intricacies of defending this approach from Uffink.

27 This means that we have equilibrium when dS � 0. This definition still leaves open the precise
nature of the equilibrium, which depends on the sign of d2S. If the second derivative is negative, we
have a maximum of the entropy function, and we say that the equilibrium is stable. If the second deriva-
tive is positive or zero, we have extrema other than maxima, and we say that the equilibrium is unstable.
This characterization of equilibrium is a variational principle, like the principle of least action in
mechanics. For a discussion of this analogy and its connection to the arrow of time, see Uffink (2001).
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which yields a particular kind of equilibrium. For example, if we choose to extremize
the entropy with respect to U, we get a system in thermal equilibrium. Extremizing S
with respect to V yields mechanical equilibrium, and extremizing with respect to N
yields chemical equilibrium. In the special case where the system is in equilibrium
with respect to all extensive variables, then we make the following definition:

Thermodynamic equilibrium. A system is in thermodynamic equilibrium if and only
if the system is in K-equilibrium for all K.

Let us briefly illustrate how these definitions work by considering an ideal gas
decomposed into two subsystems along the lines outlined previously. For the
composite system to be in equilibrium, the values of the variables U 1� �;V 1� �;N 1� �

and U 2� �;V 2� �;N 2� � must be such that they extremize the entropy of the composite
system S, which is given by S � S 1� � � S 2� �. Thus, we have that

S � S 1� � � S 2� � � 1
T 1� � U

1� � � p 1� �

T 1� � V
1� � � µ 1� �

T 1� � N
1� � � 1

T 2� � U
2� � � p 2� �

T 2� � V
2� � � µ 2� �

T 2� � N
2� �:

(5.1)

To find the extremum of S, we differentiate and set dS � 0. If we allow variation in all
the extensive variables, then we have, for all X � U;V;N, X 1� � � X 2� � � X, where X is
constant, implying dX 2� � � �dX 1� �. Therefore, we find:

0 � 1
T 1� � �

1
T 2� �

� �
dU 1� � � p 1� �

T 1� � �
p 2� �

T 2� �

� �
dV 1� � � µ 1� �

T 1� � �
µ 2� �

T 2� �

� �
dN 1� �: (5.2)

dSmust vanish for arbitrary values of dU 1� �, dV 1� �, and dN 1� �, so we find the conditions
for thermodynamic equilibrium to be

1
T 1� � �

1
T 2� � ;

p 1� �

T 1� � �
p 2� �

T 2� � ;
µ 1� �

T 1� � �
µ 2� �

T 2� � : (5.3)

Therefore, the ideal gas is at thermodynamic equilibrium when the subsystems have
equal temperature, pressure, and chemical potential. These conditions allow us to
calculate the equilibrium values of the subsystems’ extensive variables. For example,
substituting the equation of state U � 3=2

� �
NRT into 1=T 1� � � 1=T 2� � yields

U 1� �=N 1� � � U 2� �=N 2� �. Because U � U 1� � � U 2� �, it follows after some rearrangement
that U 1� �=N 1� � � U 2� �=N 2� � � U=N.

Having understood the definition and structure of equilibrium, we are now able to
bring what we have learned to bear on mixing and, in particular, how to understand
mixing based on the thermodynamic system MG; fG� �.

5.3. Mixing based on Gibbs’s representation
The alternative view I will present is the following: mixing is the transition
from the unmixed state (where the values of the subsystems’ extensive variables
do not extremize the entropy) to the mixed state (where they do) as a result of
the removal of the constraint on the flow of the mole number of each gas between
the subsystems.

It is assumed that the temperatures and pressures on each side of the partition are
equal. This means that the system is already in mechanical and thermal equilibrium,
leaving only the mole number constraints to be removed. In the context of MG; fG� �,
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the only equilibrium there is left to achieve is chemical equilibrium: removing the
partition between the subsystems will allow the flow of the mole number quantity
of each type of gas between the subsystems until the chemical potentials of each
subsystem become equal (figure 1).

The final equilibrium values of the mole number quantities are calculated by
extremizing the entropy:

0 � dS � µ
1� �
1

T
� µ

2� �
1

T

 !
dN 1� �

1 � µ
1� �
2

T
� µ

2� �
2

T

 !
dN 1� �

2 ; (5.4)

concluding that the condition for equilibrium is µ
1� �
1 =T � µ

2� �
1 =T and

µ
1� �
2 =T � µ

2� �
2 =T. Imposing this condition implies that the gases expand to fill the

volume of the container, with final values as illustrated in table 1.

Table 1. Table illustrating the initial and final values of the extensive variables of the
subsystems before and after the removal of the constraint on the mole number

Variable Initial Final

U 1� � U=2 U=2

U 2� � U=2 U=2

V 1� � V=2 V=2

V 2� � V=2 V=2

N 1� �
1 N N=2

N 2� �
1 0 N=2

N 1� �
2 0 N=2

N 2� �
2 N N=2

Figure 1. Depiction of the mixing process according to the Gibbs’s
representation. The initial, unmixed system is depicted on top and
the final, mixed system on the bottom.
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This representation of mixing is rather different compared with the representa-
tion based on Ms; fs� � and its associated semipermeable membranes. In the process
based on Ms; fs� �, mixing is initiated by allowing the “partial pressures” of each
gas to push on each semipermeable membrane, expanding the volume that each
gas occupies. In the process based on MG; fG� �, the pressures and temperatures of each
subsystem are assumed to be equal, so mixing is initiated by removing the mole
number constraint.

In the face of the problems described in section 3.1, and given that one can recover
the standard numerical answer to the entropy increase on mixing on the basis of the
Gibbs’s representation of a mixture, MG; fG� �, it seems reasonable to abandon the stan-
dard representation Ms; fs� � � volume overlap as a representation of a mixture and
instead adopt MG; fG� � as the better representation.

6. Conclusion
This article has addressed the issue of the existence of two incompatible representa-
tions of mixtures in the thermodynamics literature. I adopted a simplified version of
the geometric formulation of thermodynamics, including a mathematically precise
definition of a thermodynamic system, to remove the ambiguity in the definition
of a mixture and compare the two representations against the same formal back-
ground. I argued that the representation based on Gibbs’s description of mixtures
is preferable to the standard representation, which takes partial pressures seriously.
Abandoning the standard representation meant we also had to abandon the
standard and popular representation of the mixing process based on semipermeable
membranes, which makes explicit use of partial pressures. I presented an alternative
representation of mixing based on the Gibbs’s representation of mixture and clarified
the role of partial pressures in thermodynamics in the context of Dalton’s law. On a
broader level, I hope my argument has shown that a judicious use of additional math-
ematical structure can help us make progress on foundational issues in physics and, in
particular, thermodynamics. As philosophers, it is our duty to consider the extent to
which different formulations of a theory may offer new insights into its structure.

There are two further philosophical avenues of research that stem from this work.
The first avenue is to further examine the proposed representation of mixtures.
A notable absence from the content of this article, and a closely related topic often
discussed in the context of thermodynamic mixtures, is Gibbs’s paradox. This
concerns how the entropy change due to mixing depends on the difference between
the components of the mixture. But in what sense are the components different? And
what is the relation of the “components” of the mixture to the mixture itself? In
future work, I intend to examine how this new representation of mixtures leads
to new foundational discussions of indistinguishability in thermodynamics.

The second, more general, avenue concerns my proposed definition of a thermo-
dynamic model of a physical system and the associated alternative mathematical
presentation of the science of thermodynamics. We may investigate which other
physical systems may be represented as thermodynamic models and examine what
this reveals about their structure.
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