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Abstract. Let R be an affine PI-algebra over an algebraically closed field k and
let G be an affine algebraic k-group that acts rationally by algebra automorphisms on
R. For R prime and G a torus, we show that R has only finitely many G-prime ideals
if and only if the action of G on the centre of R is multiplicity free. This extends a
standard result on affine algebraic G-varieties. Under suitable hypotheses on R and G,
we also prove a PI-version of a well-known result on spherical varieties and a version
of Schelter’s catenarity theorem for G-primes.
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1. Introduction.

1.1. This paper addresses the following general question:

Suppose a group G acts by automorphisms on a ring R. When
does R have only finitely many G-prime ideals?

Recall that a proper G-stable (two-sided) ideal I of R is called G-prime if AB ⊆ I for
G-stable ideals A and B of R implies that A ⊆ I or B ⊆ I . The set of all G-prime ideals
of R will be denoted by

G-Spec R.

Continuing our investigations in [21] and [22], our main focus will be on the case where
R is an algebra over an algebraically closed base field k and G is an affine algebraic
k-group that acts rationally by k-algebra automorphisms on R; see 2.2 below for a
brief reminder on rational actions. This setting will be assumed for the remainder of
the Introduction. For noetherian R and an algebraic torus G, the above question was
stated as Problem II.10.6 in [7].

1.2 The question in Section 1 is motivated in part by the stratification of the
prime spectrum Spec R that is induced by the action of G. Namely, there is a surjection

Spec R � G-Spec R

sending a given prime ideal P to the largest G-stable ideal of R that is contained in
P. A precise description of the fibres of this map in terms of commutative algebras is
given in [22, Theorem 9]. Hence, from a noncommutative perspective, the focus shifts
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to the description of G-Spec R, with finiteness being the optimal scenario. It turns
out that, as long as the deformation parameters are sufficiently generic, G-Spec R is
indeed finite for all quantized coordinate algebras R = Oq(X) that have been analysed
in detail thus far, the acting group G typically being a suitably chosen algebraic torus.
Notable examples include the (generic) quantized coordinate rings of all semisimple
algebraic groups (Joseph [14], Hodges, Levasseur and Toro [12]), quantum matrices
and quantum Grassmannians (Cauchon, Lenagan and others; e.g, [8], [9] and [19]).
Finiteness of G-Spec R has also been observed for Leavitt path algebras R, again for
the action of a suitable torus G [1]. These finiteness results depend either on long
calculations in R or else on finding a presentation of R as an iterated skew polynomial
algebra, a class of algebras for which a finiteness result due to Goodearl and Letzter
[10, 11] is available. A general finiteness criterion for G-Spec R is currently lacking.

1.3. In this paper, we concentrate on the case of an affine k-algebra R satisfying
a polynomial identity (PI). The class of PI-algebras, whose structural theory was
pioneered by Kaplansky [15], Amitsur [2] and Procesi [27], combines aspects of
noncommutativity with geometric properties that are familiar from commutative
algebras. In order to give the finiteness problem in Section 1 a geometric perspective, we
mention the following connection with G-orbits of rational ideals. Here, a prime ideal
P of R is called rational if C(R/P) = k, where C(·) denotes the centre of the classical ring
of quotients of the ring in question. Rational primes are exactly the closed points of
Spec R; see Section 2.3.4 below for several equivalent characterizations of rationality.
An ideal P ∈ G-Spec R is said to be G-rational if the algebra of G-invariants C(R/P)G

coincides with k. The subset of Spec R consisting of all rational primes of R will
be denoted by Rat R, and G-Rat R ⊆ G-Spec R will denote the set of all G-rational
ideals. Since R satisfies the ascending chain condition for semiprime ideals (2.3.1),
the Nullstellensatz (2.3.3) and the Dixmier–Mœglin equivalence (2.3.4), the following
result is a special case of [22, Proposition 14].

PROPOSITION 1. Let R be an affine PI-algebra over the algebraically closed field k
and let G be an affine algebraic k-group that acts rationally by k-algebra automorphisms
on R. Then the following are equivalent:

(i) G-Spec R is finite;
(ii) G-Rat R is finite;

(iii) G has finitely many orbits in Rat R;
(iv) G-Rat R = G-Spec R.

Thus, the finiteness problem at hand amounts to determining when all G-primes of R
are G-rational.

1.4. In studying the finiteness question in Section 1 we may assume without loss
that G is connected. In this case, all G-primes of R are actually prime, and hence
G-Spec R is the set of all G-stable prime ideals of R; see Lemma 4 below. The main
result of this note concerns the special case where R is an affine PI-algebra and G is a
torus; it generalizes a standard result on affine algebraic G-varieties [17, II.3.3 Satz 5].

THEOREM 2. Let R be a prime affine PI-algebra over the algebraically closed field k
and let G be an algebraic k-torus that acts rationally by k-algebra automorphisms on R.
Then G-Spec R is finite if and only if the action of G on the centre Z(R) is multiplicity
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free: for each rational character λ : G → k×, the weight spaceZ(R)λ = {r ∈ Z(R) | g.r =
λ(g)r for all g ∈ G} has dimension at most 1.

The proof of Theorem 2 will be given in Section 3 after deploying some auxiliary
results and a generous amount of background material in Section 2. We remark that if
R is also assumed noetherian, then Theorem 2 is quite a bit easier, being an immediate
consequence of Proposition 7 and Lemma 8(b) below. We conclude, in Section 4, with
two results for noetherian R, namely a PI-version of a standard result on spherical
varieties (Proposition 10) and a version of Schelter’s catenarity theorem for G-primes
(Proposition 11).

NOTATIONS AND CONVENTIONS. All rings have a 1 which is inherited by subrings
and preserved under homorphisms. The action of the group G on the ring R will be
written as G × R → R, (g, r) �→ g.r. For any ideal I of R, we will write I:G = ⋂

g∈G g.I ;
this is the largest G-stable ideal of R that is contained in I . The symbol ⊂ denotes a
proper inclusion.

2. Preliminaries.

2.1. Finite centralizing ring extensions. A ring extension R ⊆ S is called
centralizing if S = RCS(R), where CS(R) = {s ∈ S | sr = rs for all r ∈ R}. In this case,
for any prime ideal P of S, the contraction P ∩ R is easily seen to be a prime ideal of
R. A centralizing extension R ⊆ S is called finite, if S is finitely generated as left
or, equivalently, right R-module. By results of Bergman [3, 4] (see also [29]), the
classical relations of lying over and incomparability for prime ideals hold in any finite
centralizing extension R ⊆ S:

� given Q ∈ Spec R, there exists P ∈ Spec S such that Q = P ∩ R (Lying Over);
� if P, P′ ∈ Spec S are such that P ⊂ P′ then P ∩ R ⊂ P′ ∩ R (Incomparability).

LEMMA 3. Let R ⊆ S be a finite centralizing extension of rings and let G be a group
acting by automorphisms on S that stabilize R. Assume that every ideal A of S contains
a finite product of primes each of which contains A. Then contraction yields a surjective
map

G-Spec S � G-Spec R , I �→ I ∩ R

with finite fibres. In particular, if one of G-Spec S or G-Spec R is finite then so is the other.

Proof. First, we note that the G-primes of S are exactly the ideals of the form P:G
with P ∈ Spec S. Indeed, it is straightforward to check that P :G is G-prime. Conversely,
for any given I ∈ G-Spec S, there are finitely many Pi ∈ Spec S (not necessarily distinct)
with I ⊆ Pi and

∏
i Pi ⊆ I . But then I ⊆ Pi:G for each i and

∏
i Pi:G ⊆ I , whence I =

Pi:G for some i. In particular, each I ∈ G-Spec S is semiprime. The group G permutes
the finitely many primes of S that are minimal over I and G-primeness forces these
primes to form a single G-orbit. Therefore, we may write I = P:G with P ∈ Spec S
having a finite G-orbit. Similar remarks apply to the ring R, because every ideal B of
R also contains a finite product of primes each of which contains B; this follows from
the fact that B contains some finite power of BS ∩ R by [20, Corollary 1.4].

Now let I ∈ G-Spec S be given and let A, B be G-stable ideals of R such that AB ⊆
I ∩ R. Then, AS = SA is a G-stable ideal of S and similarly for B. Since (AS)(BS) =
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ABS ⊆ I , we must have AS ⊆ I or BS ⊆ I and hence A ⊆ I ∩ R or B ⊆ I ∩ R. Thus,
contraction yields a well-defined map G-Spec S → G-Spec R .

For surjectivity of the contraction map, let J ∈ G-Spec R be given and write
J = Q:G with Q ∈ Spec R. By Lying Over we may choose P ∈ Spec S with Q = P ∩ R.
Putting I = P:G we obtain a G-prime of S such that J = I ∩ R .

Finally, assume that I ∈ G-Spec S contracts to a given J ∈ G-Spec R. Write I = P:G
with P ∈ Spec S having a finite G-orbit. We claim that P must be minimal over the ideal
JS. Indeed, suppose that JS ⊆ P′ ⊂ P for some P′ ∈ Spec S. Then Incomparability
gives P ∩ R ⊃ P′ ∩ R ⊇ J = ⋂

g∈G g.(P ∩ R). Since the last intersection is finite and
P′ ∩ R is prime, we conclude that g.(P ∩ R) ⊆ P′ ∩ R for some g ∈ G. Consequently,
g.(P ∩ R) ⊂ P ∩ R, which is impossible. This proves minimality of P over JS. It follows
that there are finitely many possibilities for P, and hence there are finitely many
possibilities for I . This completes the proof of the lemma. �

The hypothesis that every ideal of S contains a finite product of prime divisors is
of course satisfied, by Noether’s classical argument, if S satisfies the ascending chain
condition for ideals. More importantly, for our purposes, the hypothesis also holds for
any affine PI-algebra S over some commutative noetherian ring by Braun’s theorem
[30, 6.3.39].

2.2. Rational group actions. Let G be an affine algebraic k-group, where k is an
algebraically closed field, and let k[G] denote the Hopf algebra of regular functions on
G. A k-vector space M is called a G-module if M is a k[G]-comodule; see Jantzen [13,
2.7–2.8] or Waterhouse [32, 3.1–3.2]. Writing the comodule structure map �M : M →
M ⊗ k[G] as �M(m) = ∑

m0 ⊗ m1, the group G acts by k-linear transformations on
M via

g.m =
∑

m0m1(g) (g ∈ G, m ∈ M).

Such G-actions, called rational G-actions, are in particular locally finite: the G-orbit of
any m ∈ M is contained in the finite-dimensional k-subspace of M that is generated by
{m0}. If G acts rationally on M then it does so on all G-subquotients of M. Moreover,
every irreducible G-submodule of M is finite dimensional, and the sum of all irreducible
G-submodules is an essential G-submodule of M; it is called the socle of M and denoted
by socG M. In the following, we will denote the set of isomorphism classes of irreducible
G-modules by irr G and, for each E ∈ irr G, we let

[M : E] ∈ �≥0 ∪ {∞}

denote the multiplicity of E as a composition factor of M; see [13, I.2.14].
We will be primarily concerned with the situation where G acts rationally by algebra

automorphisms on a k-algebra R. This is equivalent to R being a right k[G]-comodule
algebra in the sense of [26, 4.1.2]. In the special case where G ∼= (k×)d is an algebraic
torus, we have irr G = X(G) ∼= �d , the lattice of rational characters λ : G → k×. We
will usually write � = X(G). A rational G-action on R is equivalent to a �d-grading
R = ⊕

λ∈�d Rλ of the algebra R. This follows from the fact that k[G] is the group
algebra k� of the lattice � ∼= �d , and k�-comodule algebras are the same as �-
graded algebras; see [26, 4.1.7]. The homogeneous component of R of degree λ is the
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weight space

Rλ = {r ∈ R | g.r = λ(g)r for all g ∈ G},

and [R : λ] = dimk Rλ.
The following lemma was referred to in the Introduction.

LEMMA 4. Let R be a k-algebra, where k is an algebraically closed field, and let G
be an affine algebraic k-group that acts rationally by k-algebra automorphisms on R. If
G0 ⊆ G denotes the connected component of the identity, then G0-Spec R consists of all
ordinary prime ideals of R that are G0-stable. Moreover, G-Spec R is finite if and only if
G0-Spec is finite.

Proof. For the assertion that all G0-primes are prime, see [21, Proposition 19(a)].
The second assertion, that G-Spec R is finite if and only if G0-Spec is so, actually

holds for any (normal) subgroup N � G having finite index in G in place of G0.
Putting G = G/N, we first note that the G-primes of R are exactly the ideals of the
form P = ⋂

x∈G x.Q with Q ∈ N-Spec R. Indeed,
⋂

x∈G x.Q is easily seen to be G-
prime. Conversely, any P ∈ G-Spec R has the form P = P′:G with P′ ∈ Spec R by [21,
Proposition 8], and hence we may take Q = P′:N. Moreover, the intersection

⋂
x∈G x.Q

determines the N-prime Q to within G-conjugacy, because all x.Q are N-prime ideals
of R and G is finite. Therefore, finiteness of N-Spec R is equivalent to finiteness of
G-Spec R. �

2.3. Some ring theoretic background on affine PI-algebras. Let R be an affine
PI-algebra over a commutative noetherian ring k. The following facts are well known.

2.3.1. Semiprime ideals. The ring R satisfies the ascending chain condition for
semiprime ideals and, for each ideal I of R, there are only finitely many primes of
R that are minimal over I . If I is semiprime then R/I is a right and left Goldie
ring and the extended centroid of R/I , in the sense of Martindale [24], is given by
C(R/I) = Z(Q(R/I)), the centre of the classical ring of quotients of R/I . If I is prime,
then C(R/I) is identical to the field of fractions of Z(R/I) by Posner’s theorem. See
[30, 6.1.30, 6.3.36′], [25, 13.6.9], [21, 1.4.2] for all this.

2.3.2. G-prime ideals. By Braun’s theorem [30, 6.3.39], every ideal I of R contains
a finite product of primes that contain I . As in the proof of Lemma 3, it follows that
for any group G acting by ring automorphisms on R, the G-primes of R are exactly
the ideals of the form P:G with P ∈ Spec R. Moreover, P can be chosen to have a
finite G-orbit. In particular, every I ∈ G-Spec R is semiprime. The ring of G-invariants
C(R/I)G is a field for every I ∈ G-Spec R; see [21, Proposition 9].

2.3.3. Nullstellensatz. If k is a Jacobson ring then so is R: every prime ideal of
R is an intersection of primitive ideals. Moreover, if P is a primitive ideal of R then P
is maximal; in fact, k/P ∩ k is a field and R/P is a finite-dimensional algebra over this
field; see [30, 6.3.3].
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2.3.4. Rational ideals and the Dixmier–Mœglin equivalence. Now assume that k
is an algebraically closed field. Recall that a prime ideal P of R is said to be rational if
C(R/P) = k or, equivalently, Z(R/P) = k. By Posner’s theorem [30, 6.1.30], this forces
P to have finite k-codimension in R. In fact, for any prime ideal of R, the following
properties coincide (Dixmier–Mœglin equivalence), the implications ⇒ being either
trivial or immediate from the Nullstellensatz:

finite codimensional ≡ maximal ≡ locally closed in Spec R ≡ primitive ≡ rational.

2.4. The trace ring of a prime PI-ring. Let R be a prime PI-ring with centre
C = Z(R). By Posner’s theorem [30, 6.1.30], the central localization Q(R) = RC\{0} is a
central simple algebra over the field of fractions F = Q(C) = C(R). For each q ∈ Q(R)
we can consider the reduced characteristic polynomial cq(X) ∈ F [X ]. In detail, letting
Falg denote an algebraic closure of F , we have an isomorphism of Falg-algebras

ϕ : Q(R) ⊗F Falg ∼= Mn(Falg) (1)

for some n. This isomorphism allows us to define cq(X) as the characteristic polynomial
of the matrix ϕ(q ⊗ 1) ∈ Mn(Falg). One can show that cq(X) has coefficients in F and
is independent of the choice of the isomorphism ϕ; see [28, Section 9a] or [6, Section
12.3].

The commutative trace ring of R, by definition, is the C-subalgebra of F that is
generated by the coefficients of all polynomials cr(X) with r ∈ R; this algebra will be
denoted by T . The trace ring of R, denoted by TR, is the C-subalgebra of Q(R) that is
generated by R and T . The following result is standard; see [25, 13.9.11] or [31, 3.2].

LEMMA 5. Let R be a prime PI-ring that is an affine algebra over some commutative
noetherian ring k. Then T is an affine commutative k-algebra and TR is a finitely
generated T-module. Furthermore, TR is finitely generated as R-module if and only if R
is noetherian.

Now suppose that a group G acts by ring automorphisms on R. The action of G
extends uniquely to an action on the trace ring TR, and this action stabilizes T . To see
this, note that the G-action on R extends uniquely to an action on the ring of fractions
Q(R). Each g ∈ G stabilizes F = Z(Q(R)), and hence g yields an automorphism of F [X ]
via its action on the coefficients of polynomials. The reduced characteristic polynomials
of q ∈ Q(R) and of g.q are related by

cg.q(X) = g.cq(X). (2)

Indeed, extending g to a field automorphism of Falg, we obtain automorphisms
Mn(g) ∈ Aut Mn(Falg) and αg ∈ Aut Q(R) ⊗F Falg, the latter being given by αg(q ⊗ f ) =
g.q ⊗ g.f . Fixing ϕ as in (1) we obtain an isomorphism of Falg-algebras Mn(g)−1 ◦
ϕ ◦ αg : Q(R) ⊗F Falg ∼= Mn(Falg). Using this isomorphism to compute reduced
characteristic polynomials, we see that cq(X) = g−1.cg.q(X), proving (2). Since g.r ∈ R
for r ∈ R, equation (2) shows that the commutative trace ring T is stable under the
action of G on Q(R), and hence so is the trace ring TR. For rational actions, we have
the following result of Vonessen [31, Proposition 3.4].
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LEMMA 6 (Vonessen [31]). Let R a prime PI-algebra over an algebraically closed
field k and let G be an affine algebraic k-group that acts rationally by k-algebra
automorphisms on R. Then the induced G-actions on TR and on T are rational as well.

In general, the finiteness problem stated in the Introduction transfers nicely to
trace rings.

PROPOSITION 7. Let R be a prime PI-ring that is an affine algebra over some
commutative noetherian ring. Let G be a group acting by ring automorphism on R
and consider the induced G-actions on T and on TR. Then G-Spec T is finite if and only
if G-Spec TR is finite. If R is noetherian, then this is also equivalent to G-Spec R being
finite.

Proof. Lemma 3, applied to the finite centralizing extension T ⊆ TR (Lemma 5),
tells us that finiteness of G-Spec TR is equivalent to finiteness of G-Spec T . If R is
noetherian, then we may argue in the same way for the finite centralizing extension
R ⊆ TR. �

3. Main result. Throughout this section, R denotes an affine PI-algebra over an
algebraically closed field k and G will be an affine algebraic k-group that acts rationally
by k-algebra automorphisms on R.

3.1. Sufficient criteria for G-rationality. By Proposition 1 we know that G-Spec R
is finite if and only if all G-primes of R are G-rational. Therefore, G-rationality criteria
are essential. As usual, the algebra R will be called G-prime if the zero ideal of R is
G-prime; similarly for G-rationality.

LEMMA 8. Assume that R is G-prime.
(a) If there is an N ∈ � such that [socG Z(R) : E] ≤ N for all E ∈ irr G then R is

G-rational.
(b) If G is connected solvable then R is G-rational if and only if [socG Z(R) : E] ≤ 1

for all E ∈ irr G.

Proof. (a) For a given q ∈ C(R)G put I = {r ∈ R | qr ∈ R}; this is a nonzero G-
stable ideal of R. Therefore, J = IN ∩ Z(R) is a nonzero G-stable ideal of Z(R);
see [30, 6.1.28]. Note that qiJ ⊆ Z(R) for 0 ≤ i ≤ N. We have E ↪→ J for some
E ∈ irr G and multiplication with qi yields a G-equivariant map E ↪→ J → Z(R).
Since dimk HomG(E,Z(R)) = [socG Z(R) : E] ≤ N, there are ki ∈ k, not all 0, such
that c = ∑N

i=0 kiqi annihilates E. But nonzero elements of C(R)G are invertible; so we
must have c = 0. Thus, q is algebraic over k and so q ∈ k.

(b) The condition is sufficient by part (a). For the converse, assume that E1 ⊕ E2 ⊆
Z(R) for isomorphic Ei ∈ irr G. By the Lie–Kolchin Theorem [5, III.10.5], Ei = kxi

for suitable xi. Since xi generates a G-stable two-sided ideal, xi is regular in R. The
quotient x1x−1

2 ∈ C(R) is a nonscalar G-invariant; so R is not G-rational. �

REMARK. A simplified version of the argument in the proof of (a), without recourse
to [30, 6.1.28], establishes the following general fact: Let A be an arbitrary (associative)
k-algebra and let G be a group that acts on A by locally finite k-algebra automorphisms.
If there is an N ∈ � such that [A : E] ≤ N holds for all finite-dimensional irreducible
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kG-modules E, where [A : E] denotes the multiplicity of E as composition factor of A
as in [13, I.2.14], then G-Spec A = G-Rat A.

3.2. Regular primes. Recall from (1) that if R is prime, then the classical ring of
quotients Q(R) is a central simple algebra over the field of fractions F = Q(Z(R)). The
PI degree of R, by definition, is the degree of this central simple algebra: PI deg R =√

dimF Q(R). For any P ∈ Spec R, one has PI deg R/P ≤ PI deg R. The prime P is
called regular if equality holds here. The regular primes form an open subset of Spec R.
See [30, p. 104] or [25, 13.7.2] for all this.

Now let G be an algebraic k-torus. In particular, G is connected and so G-Spec R
consists of the G-stable prime ideals of R by Lemma 4.

LEMMA 9. Let G be an algebraic k-torus and assume that R is prime. Then, for every
regular P ∈ G-Spec R, we have tr deg

k
C(R/P)G ≤ tr deg

k
C(R)G. Consequently, if R is

G-rational then all regular primes in G-Spec R belong to G-Rat R.

Proof. Let P ∈ G-Spec R be regular. Put n = PI deg R and let gn(R)+ denote the
Formanek centre of R; this is a G-stable ideal of Z(R) such that gn(R)+ � P (cf. [30,
6.1.37] or [25, 13.7.2(i)]). Therefore, we may choose a semi-invariant c ∈ gn(R)+λ with
c /∈ P. The group G acts rationally on the localization Rc = R[1/c] and Rc is Azumaya
by the Artin-Procesi theorem [25, 13.7.14]. Therefore, Z(Rc) maps onto Z(Rc/PRc)
and Z(Rc)λ maps onto Z(Rc/PRc)λ for all λ ∈ X(G). The map Z(Rc) � Z(Rc/PRc)
extends to a G-equivariant epimorphism Z(Rp) � C(R/P) = Q(Z(Rc/PRc)), where
p = P ∩ Z(R). Since Z(Rp)G ⊆ C(R)G, it suffices to show that Z(Rp)G maps onto
C(R/P)G. But, given q ∈ C(R/P)G, we can find a semi-invariant 0 �= x ∈ Z(Rc/PRc)λ
such that qx ∈ Z(Rc/PRc), and we can further find y, z ∈ Z(Rc)λ with y �→ x and
z �→ qx. Then zy−1 ∈ Z(Rp)G maps to q. This proves the lemma. �

3.3. Proof of Theorem 2. Let G be an algebraic k-torus and assume that R is
prime. We need to show that G-Spec R is finite if and only if the action of G on Z(R) is
multiplicity free. By Lemma 8(b), the latter property is equivalent to G-rationality of
R, and this is certainly necessary for G-Spec R to be finite by Proposition 1.

Now assume that R is G-rational. By Proposition 1 we must show that all G-primes
of R are G-rational. Lemma 9 ensures this for the regular G-primes. In particular, we
may assume that n := PI deg R > 1. Now consider P ∈ G-Spec R with PI deg R/P < n.
Then P contains the ideal a = gn(R)R ⊆ R; this is a nonzero G-stable common ideal
of R and of the trace ring R′ := TR of R (cf. [30, 6.1.37 and 6.3.28]). All primes of R
that are minimal over a are G-stable. Let Q be one of these primes such that Q ⊆ P. It
suffices to show that Q is G-rational. For, then we may replace R by R/Q, and since
PI deg R/Q < n, we may argue by induction that P is G-rational.

First, we claim that there exists Q′ ∈ G-Spec R′ with Q′ ∩ R = Q. Indeed,
choosing Q′ to be a G-stable ideal of R′ that is maximal subject to the condition
Q′ ∩ R ⊆ Q, it is straightforward to see that Q′ is G-prime. If Q′ ∩ R �= Q then Q′ � a

by minimality of Q over a. Thus, Q′ + a is a G-stable ideal of R′ which properly contains
Q′ and yet also satisfies (Q′ + a) ∩ R = (Q′ ∩ R) + a ⊆ Q. Since this contradicts our
maximal choice of Q′, we must have Q′ ∩ R = Q as claimed.

Next, we show that Q′ is G-rational. To see this, recall from Lemma 6 that G acts
rationally on the trace rings T and R′. Moreover, T is an affine commutative k-algebra
that is G-rational, because Q(T)G = C(R)G = k. Therefore, by the case n = 1, we know
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that G-Spec T is finite. By Proposition 7, G-Spec R′ is finite as well, and in view of
Proposition 1, this forces Q′ to be G-rational.

Finally, we show that Q is G-rational; this will finish the proof. But C(R/Q) ⊆
C(R′/Q′) and C(R′/Q′)G = k by the foregoing. Therefore, C(R/Q)G = k as desired.

4. Related results. In this section, R and G are as in the previous section and R is
also assumed noetherian.

4.1. Actions of reductive groups. Recall from Lemma 6 that the induced G-action
on the commutative trace ring T is rational. This fact allows us to invoke results from
algebraic geometry.

PROPOSITION 10. Let R be an affine noetherian PI-algebra over an algebraically
closed field k and let G be an affine algebraic k-group that acts rationally by k-algebra
automorphisms on R. Assume that R is prime and that G is connected reductive. Let
F = Q(Z(R)) denote the field of fractions of the centre of R, and let FB ⊆ F denote the
invariant subfield of a Borel subgroup B ≤ G. If FB = k then B-Spec R is finite (and
hence G-Spec R is finite as well).

Proof. By Proposition 7, B-Spec R is finite if and only if B-Spec T is finite. Now,
T is an affine commutative domain over k and the field of fractions of T is F . By a
standard result on spherical varieties [16, Corollary 2.6], the condition FB = k implies
that there are only finitely many B-orbits in Rat T . The latter fact is equivalent to
finiteness of B-Spec T by Proposition 1, which proves the proposition. �

4.2. Catenarity. A partially ordered set (P,≤) is said to be catenary if, given any
two x < x′ in P, all saturated chains x = x0 < x1 < · · · < xr = x′ have the same finite
length r = r(x, x′).

In the commutative case, the following observation goes back to conversations
that I had with R. Rentschler a long time ago; cf. [23, Section 3]. As usual, GK dim
denotes Gelfand–Kirillov dimension.

PROPOSITION 11. Let R be an affine noetherian PI-algebra over an algebraically
closed field k and let G be an affine algebraic k-group that acts rationally by k-algebra
automorphisms on R. If the connected component of the identity of G is solvable then
the poset (G-Spec R,⊆) is catenary. In fact, every saturated chain P = P0 ⊂ P1 ⊂ · · · ⊂
Pr = P′ in G-Spec R has length r = GK dim R/P − GK dim R/P′.

Proof. First assume that G is connected; so G-Spec R consists of the G-stable
primes of R. In view of Schelter’s catenarity theorem for Spec R [30, 6.3.43], we need to
show that any two neighbours Q ⊂ P in G-Spec R are also neighbours when viewed in
Spec R. Passing to R/Q we may assume that the algebra R is prime and P is a minimal
nonzero member of G-Spec R, and we need to show that P has height 1 in Spec R.
But P ∩ Z(R) is a nonzero G-stable ideal of Z(R) and hence the Lie–Kolchin theorem
provides us with a G-eigenvector 0 �= z ∈ P ∩ Z(R). The ideal P is a minimal prime over
(z). For, if (z) ⊆ P′ ⊂ P for some P′ ∈ Spec R then (z) ⊆ P′:G ⊂ P and P′:G ∈ G-Spec R,
contradicting the fact that P is a minimal nonzero member of G-Spec R. Thus, P is
minimal over (z) as claimed, and the principal ideal theorem [25, 4.1.11] gives that P
has height 1 as desired.
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In general, let G0 denote the connected component of the identity of G and put
G = G/G0. Write Q = ⋂

x∈G x.Q̃ and P = ⋂
x∈G x.P̃ for suitable Q̃, P̃ ∈ G0-Spec R as

in the proof of Lemma 4. Since these intersections are finite intersections of G0-
primes of R, we can arrange that Q̃ ⊂ P̃. The ideals Q̃ and P̃ are neighbours in
G0-Spec R. For, if Q̃ ⊂ T̃ ⊂ P̃ for some T̃ ∈ G0-Spec R then Q ⊂ ⋂

x∈G x.T̃ ⊂ P since
G is finite, which contradicts the fact that Q and P are neighbours in G-Spec R.
By the first paragraph of the proof, Q̃ and P̃ are also neighbours in Spec R, and
hence GK dim R/Q̃ = GK dim R/P̃ + 1 by Schelter’s theorem. Since GK dim R/Q =
GK dim R/Q̃ and GK dim R/P = GK dim R/P̃ by [18, Corollary 3.3], the proof is
complete. �
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