
J. Plasma Phys. (2024), vol. 90, 805900401 © The Author(s), 2024.
Published by Cambridge University Press

1

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.
doi:10.1017/S0022377824000795

Encoding of linear kinetic plasma problems in
quantum circuits via data compression

I. Novikau 1,†, I.Y. Dodin 2,3 and E.A. Startsev 2

1Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
2Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA

3Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA

(Received 19 March 2024; revised 31 May 2024; accepted 3 June 2024)

We propose an algorithm for encoding linear kinetic plasma problems in quantum circuits.
The focus is on modelling electrostatic linear waves in a one-dimensional Maxwellian
electron plasma. The waves are described by the linearized Vlasov–Ampère system
with a spatially localized external current that drives plasma oscillations. This system
is formulated as a boundary-value problem and cast in the form of a linear vector equation
Aψ = b to be solved by using the quantum signal processing algorithm. The latter requires
encoding of matrix A in a quantum circuit as a sub-block of a unitary matrix. We propose
how to encode A in a circuit in a compressed form and discuss how the resulting circuit
scales with the problem size and the desired precision.

Key words: plasma simulation, plasma waves

1. Introduction

Modelling plasma dynamics typically involves operating with classical fields on fine
grids. This requires dealing with large amounts of data, especially in kinetic models,
which are notorious for being computationally expensive. Quantum computing (QC)
has the potential to significantly speed up kinetic simulations by leveraging quantum
superposition and entanglement (see Nielsen & Chuang 2010). However, quantum speedup
is possible only if the depth of a quantum circuit modelling the plasma dynamics
scales advantageously (polylogarithmically) with the system size (number of grid cells).
Achieving such efficient encoding is challenging and remains an open problem for most
plasma systems of practical interest.

Here, we explore the possibility of an efficient quantum algorithm for modelling of
linear oscillations and waves in a Vlasov plasma (see Stix 1992). Previous works in this
area focused on modelling either spatially monochromatic or conservative waves within
initial-value problems (see Engel, Smith & Parker 2019; Ameri et al. 2023; Toyoizumi,
Yamamoto & Hoshino 2023). However, typical practical applications (for example, for
magnetic confinement fusion) require modelling of inhomogeneous dissipative waves

† Email address for correspondence: novikau1@llnl.gov

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-0227-6700
https://orcid.org/0000-0003-0243-6257
https://orcid.org/0000-0002-6716-8583
mailto:novikau1@llnl.gov
https://doi.org/10.1017/S0022377824000795

2 I. Novikau, I.Y. Dodin and E.A. Startsev

within boundary-value problems, which require different approaches. Here, we consider a
minimal problem of this kind to develop a prototype algorithm that would be potentially
extendable to such practical applications.

Specifically, we assume a one-dimensional collisionless Maxwellian electron plasma
governed by the linearized Vlasov–Ampère system. Added to this system is a spatially
localized external current (antenna) that drives plasma oscillations at a fixed frequency
ω. This source produces evanescent waves if ω is smaller than the plasma frequency ωp.
For ω > ωp, it produces Langmuir waves, which propagate away from the source while
experiencing Landau damping along the way. Outgoing boundary conditions are adopted
to introduce irreversible dissipation. This relatively simple system captures paradigmatic
dynamics typical for linear kinetic plasma problems and, thus, can serve as a testbed for
developing more general algorithms of practical interest. We start by showing how this
system can be cast in the form of a linear vector equation1

Aψ = b, (1.1)

where A is a (non-Hermitian) square matrix, ψ is a vector that represents the dynamical
variables (the electric field and the distribution function) on a grid and b describes the
antenna. There is a variety of quantum algorithms that can solve equations like (1.1), for
example, the Harrow–Hassidim–Lloyd algorithms (see Harrow, Hassidim & Lloyd 2009),
the Ambainis algorithm (see Ambainis 2012), the algorithms inspired by the adiabatic
QC (see Costa et al. 2021; Jennings et al. 2023) and solvers based on the quantum signal
processing (QSP) (see Low & Chuang 2017, 2019; Gilyén et al. 2019; Martyn et al. 2021),
to name a few. Here, we propose to use a method based on the QSP, specifically, the
quantum singular value transformation (QSVT) (see Gilyén et al. 2019; Martyn et al.
2021), because it is known to scale near optimally with the condition number of A and
the desired precision.

Specifically, this paper focuses on the problem that one unavoidably has to overcome
when applying the QSVT to kinetic plasma simulations. This problem is how to encode the
corresponding large-dimensional matrix A into a quantum circuit. A direct encoding of this
matrix is prohibitively inefficient. Various methods for encoding matrices into quantum
circuits were developed recently (see Clader et al. 2022; Camps et al. 2023; Zhang &
Yuan 2023; Kuklinski & Rempfer 2024; Lapworth 2024; Liu et al. 2024; Sünderhauf,
Campbell & Camps 2024). We propose how to make it more efficiently by compressing
the content of A at encoding. The same technique can be applied in modelling kinetic
or fluid plasma and electromagnetic waves in higher-dimensional problems, so our results
can be used as a stepping stone towards developing more practical algorithms in the future.
The presentation of the rest of the algorithm and (emulation of) quantum simulations are
left to future work.

Our paper is organized as follows. In § 2 we present the main equations of the
electrostatic kinetic plasma problem. In § 3 we present the numerical discretization of
this model. In § 4 we cast the discretized equations into the form (1.1). In § 5 we
present classical numerical simulations of the resulting system, which can be used for
benchmarking quantum algorithms. In § 6 we present the general strategy for encoding
the matrix A into a quantum circuit. In § 7 we explicitly construct the corresponding
oracle and discuss how it scales with the parameters of the problem. In § 8 we present
a schematic circuit of the quantum algorithm based on this oracle. In § 9 we present our
main conclusions.

1In this paper, matrices and vectors are indicated by bold symbols, as in (1.1), while quantum-state vectors, oracles
and operators in quantum circuits are denoted with non-bold italic symbols, e.g. U and ψ .

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

Block encoding via data compression 3

2. Model
2.1. One-dimensional Vlasov–Ampère system

Electrostatic oscillations of a one-dimensional electron plasma can be described by the
Vlasov–Ampère system

∂tf + v∂xf − e
me

E ∂vf = F , (2.1a)

∂tE − 4πe
∫
vf dv = −4πj(S), (2.1b)

where E(t, x) is the electric field, f (t, x, v) is the electron probability distribution, t is time,
x is the coordinate in the physical space, v is the coordinate in the velocity space, e > 0 is
the elementary charge and me is the electron mass. We have also introduced a fixed source
term F = F(x, v) (balanced by particle losses through the plasma boundaries), which is
explained below. The term j(S) represents a prescribed source current that drives plasma
oscillations. The corresponding source charge density ρ(S) can be inferred from j(S) using
the charge conservation law

∂tρ
(S) + ∂xj(S) = 0. (2.2)

Let us split the electron distribution into the background distribution F and a
perturbation g:

f (t, x, v) = F(x, v)+ g(t, x, v). (2.3)

We assume that g is small, so the system can be linearized in g. Also, because we assume
a neutral plasma, the system does not have a background electric field, so the stationary
background distribution satisfies v∂xF = F . Provided that F depends on x, F can be
spatially inhomogeneous. At the same time, since F is fixed, it does not enter the equation
for g. This leads to the following linearized equations:2

∂tg + v∂xg − E∂vF = 0, (2.4a)

∂tE −
∫
vg dv = −j(S). (2.4b)

Here, v is normalized to vth, x is normalized to the electron Debye length λD and the time
is normalized to the inverse electron plasma frequency ω−1

p , where

ωp =
√

4πe2nref

me
, vth =

√
Tref

me
, λD = vth

ωp
, (2.5a–c)

where nref and Tref are some fixed values of the electron density and temperature,
respectively. The distribution functions g and F are normalized to nref/vth, and E is
normalized to Tref/(eλD). We also assume that F is Maxwellian, i.e.

F(x, v) = n(x)√
2πT(x)

exp
(

− v2

2T(x)

)
, (2.6)

where the background density n and temperature T are normalized to nref and Tref,
respectively. An analytical description of the system (2.4) is presented in Appendix A.

2In practical modelling of stationary linear waves, which are typically done for magnetized plasmas, plasma
inhomogeneity can be maintained in a steady state by the magnetic Lorentz force. Then, the problem as posed here
can be kept consistent also without the source F .

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

4 I. Novikau, I.Y. Dodin and E.A. Startsev

2.2. Boundary-value problem
To reformulate (2.4) as a boundary-value problem, we consider a source oscillating at a
constant real frequency ω0:

j(S)(t, x) = j(S)(x) exp(−iω0t). (2.7)

Assuming g,E ∝ exp(−iω0t), one can recast (2.4) as

iω0g − v∂xg − vHE = 0, (2.8a)

iω0E +
∫
vg dv = j(S), (2.8b)

where H = F/T and the variables g and E are now considered as the corresponding
time-independent complex amplitudes. For definiteness, we impose a localized current
source:

j(S) = iω0 exp(−(x − x0)
2/(2Δ2

S)). (2.9)

Then, by (2.2), the corresponding charge density is that of an oscillating dipole:

ρ(S) = −x − x0

Δ2
S

exp(−(x − x0)
2/(2Δ2

S)). (2.10)

We will be interested in the spatial distribution of the electric field E(x) driven by the
source j(S) and undergoing linear Landau damping caused by interaction of this field with
the distribution perturbation g.

To avoid numerical artifacts and keep the grid resolution reasonably low, we impose an
artificial diffusivity η in the velocity space by modifying (2.8a) as

iω0g − v∂xg + η∂2
vg − vHE = 0. (2.11)

This allows us to reduce the grid resolution in both velocity and real space.
To avoid numerical errors caused by the waves reflected from spatial boundaries, we

impose outgoing (non-reflecting) boundary conditions on both edges (see Thompson
1987). The resulting system is

iω0g − ζ bcv∂xg + η∂2
vg − vHE = 0, (2.12a)

iω0E +
∫
vg dv = j(S), (2.12b)

where

ζ bc =
{

0 for incoming waves,

1 otherwise.
(2.13)

In our case of a one-dimensional system, the incoming waves correspond to v < 0 at the
right spatial boundary of the simulation box and v > 0 at the left spatial boundary.

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

Block encoding via data compression 5

3. Discretization

To discretize (2.12), we introduce the spatial grid

xj = jh, h = xmax/qx, j = [0,Nx), (3.1)

and the velocity grid

vk = −vmax + k	v, 	v = 2vmax/qv, k = [0,Nv). (3.2)

Here, qx = Nx − 1 and qv = Nv − 1, where

Nx = 2nx, Nv = 2nv . (3.3a,b)

For convenience, we also introduce the integer Mv = 2nv−1. The first Mv points on the
velocity grid, k = [0,Mv), correspond to vk < 0, and the last Mv points, k = [Mv,Nv),
correspond to vk > 0. The notation [k1, k2), where k1 and k2 are integers, denotes the set
of all integers from k1 to k2, including k1 but excluding k2. Similarly, the notation [k1, k2]
denotes the set of integers from k1 to k2, including both k1 and k2. Also, throughout this
paper, the discretized version of any given function y(x, v) is denoted as yj,k, where the
first subindex is the spatial-grid index and the second subindex is the velocity-grid index

The integral in the velocity space is computed by using the corresponding Riemann
sum,

∫
y(v) dv = ∑

k y(vk)	v. To remove	v from discretized equations, we renormalize
the distribution functions as

	vg → g, 	vF → F. (3.4a,b)

In real space, we use the central finite difference scheme

∂xyj,k = σ(yj+1,k − yj−1,k), (3.5a)

∂xy0,k = σ(−3y0,k + 4y1,k − y2,k), (3.5b)

∂xyqx,k = σ(3yqx,k − 4yqx−1,k + yqx−2,k), (3.5c)

where σ = (2h)−1, j = [1,Nx − 2], k = [0,Nv) and the expressions for the derivatives
at the boundaries are obtained by considering the Lagrange interpolating polynomial
of the second order. (Instead of using the diffusivity η introduced in (2.11) to smooth
high-frequency oscillations in phase space, it might be possible to apply the upwinding
difference scheme that is often used for the discretization of convective equations; see,
for example, Brio & Wu 1988.) Similarly, the second derivative with respect to velocity is
discretized as

∂2
v yj,k = β(yj,k+1 − 2yj,k + yj,k−1), (3.6a)

∂2
v yj,0 = β(2yj,0 − 5yj,1 + 4yj,2 − yj,3), (3.6b)

∂2
v yj,qv = β(2yj,qv − 5yj,qv−1 + 4yj,qv−2 − yj,qv−3), (3.6c)

where β = 	v−2, j = [0,Nx), k = [1,Nv − 2] and the derivatives at the boundaries are
obtained by considering the Lagrange polynomial of the third order.

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

6 I. Novikau, I.Y. Dodin and E.A. Startsev

After the discretization, the Vlasov equation (2.12a) becomes

Pj,kgj,k +
qx∑

i=0

P(x)j,k,igi,k +
qv∑

i=0

gj,iP
(v)

i,k − vkHj,kEj = 0, (3.7)

where j = [0,Nx) and k = [0,Nv). The function Pj,k is given by

Pj,k = iω0 + ζ bc
j,k(δj,0 − δj,qx)3vkσ − psign

k 2ηβ, (3.8)

where δk1,k2 is the Kronecker delta:

δk1,k2 =
{

1, k1 = k2,

0, k1 �= k2.
(3.9)

The function psign
k = 1 − 2(δk,0 + δk,qv) appears because the discretization (3.6) in velocity

results in different signs in front of the diagonal element gj,k for bulk and boundary velocity
elements. The coefficient (δj,0 − δj,qx) is necessary to take into account the different signs
that appear due to the discretization in space (3.5) at bulk and boundary points. The
function ζ bc

j,k is the discretized version of the function (2.13) responsible for the outgoing
boundary conditions:

ζ bc
j,k =

⎧⎪⎨
⎪⎩

0, j = 0, k = [Mv,Nv),

0, j = qx, k = [0,Mv),

1, otherwise.

(3.10)

The function P(x)j,k,i varies for bulk and boundary spatial points according to (3.5):

P(x)j,k,i = vkσζ
bc
j,k ×

⎧⎪⎨
⎪⎩
δj−1,i − δj+1,i, j = [1, qx),

δj+2,i − 4δj+1,i, j = 0,

4δj−1,i − δj−2,i, j = qx.

(3.11)

The function P(v)i,k varies for bulk and boundary velocity points according to (3.6):

P(v)i,k = −ηβ ×

⎧⎪⎨
⎪⎩

−(δi,k+1 + δi,k−1), k = [1, qv),

5δi,k+1 − 4δi,k+2 + δi,k+3, k = 0,

5δi,k−1 − 4δi,k−2 + δi,k−3, k = qv.

(3.12)

Finally, Ampère’s law (2.12b) is recasted as

iω0Ej +
Nv−1∑
k=0

vkgj,k = j(S)j , (3.13)

where j = [0,Nx).

4. Matrix representation

After the discretization, (3.7) and (3.13) can be converted into the form of (1.1) as
follows.

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

Block encoding via data compression 7

4.1. The vector ψ
First of all, to construct (1.1), one needs to encode gj,k and Ej into ψ . Since one needs
to store Nf = 2 fields on a Nx × Nv phase space, the size of ψ should be Ntot = Nf Nxv,
where Nxv = NxNv, and this vector can be saved by using 1 + nx + nv qubits, where nx and
nv have been introduced in (3.3a,b). Within the vector ψ , the fields are arranged in the
following way:

ψdNxv+jNv+k =

⎧⎪⎨
⎪⎩

gj,k, d = 0,

δk,0Ej, d = 1,

0, otherwise.

(4.1)

Here ψdNxv+jNv+k are the elements of ψ with j = [0,Nx), k = [0,Nv) and d = [0,Nf). Since
the electric field does not depend on velocity, the second half of ψ is filled with Ej only if
the velocity index k is equal to zero.

To address each field, gj,k or Ej, we introduce the register rf with one qubit. The zero
state |0〉rf

corresponds to addressing the plasma distribution function, and the unit state
|1〉rf

flags the electric field. We also use additional two registers, denoted rx and rv, with nx
and nv qubits, respectively, to specify the fields’ position in the real and velocity spaces,
correspondingly. Then, one can express the vector ψ as

|ψ〉 = ηψ,norm

Nx−1∑
j=0

(
Nv−1∑
k=0

gj,k |0〉rf
|j〉rx

|k〉rv + Ej |1〉rf
|j〉rx

|0〉rv

)
, (4.2)

where ηψ,norm is the normalization factor used to ensure that 〈ψ |ψ〉 = 1. (The assumed
notation is such that the least significant qubit is the rightmost qubit. In quantum circuits,
the least significant qubit is the lowest one.) Notably, this encoding can be called
half-analogue, since the electric field and the electron distribution function are encoded
into the amplitudes of the quantum state, which is a continuous variable. However,
positions in phase space are discretized and digital since they are encoded into bitstrings
of the quantum states.

4.2. The source term
Corresponding to (4.1), the discretized version of the vector b in (1.1) is as follows:

bdNxv+jNv+k =
{
δk,0j(S)j , d = 1,

0, d = 0.
(4.3)

Note that all elements in the first half of b are zero, and, in its second half, only every Nvth
element is non-zero. In the ‘ket’ notation, this can be written as

|b〉 = ηb,norm

Nx−1∑
j=0

j(S)j |1〉rf
|j〉rx

|0〉rv , (4.4)

where ηb,norm is the normalization factor used to ensure that 〈b|b〉 = 1.

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

8 I. Novikau, I.Y. Dodin and E.A. Startsev

4.3. The matrix A
The corresponding Ntot × Ntot matrix A is represented as

A =
(

F CE

C f S

)
, (4.5)

where F , CE, C f and S are Nxv × Nxv submatrices. A schematic structure of this matrix
is shown in figure 1. The submatrix F encodes the coefficients in front of g in the Vlasov
equation (3.7) and is given by

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

F L,0 F L,1 F L,2 0 0 · · ·
F B,1 F B,0 −F B,1 0 0 · · ·

0 F B,1 F B,0 −F B,1 0 · · ·
· · · · · · · · · · · · · · · · · ·
· · · 0 F B,1 F B,0 −F B,1 0
· · · 0 0 F B,1 F B,0 −F B,1

· · · 0 0 F R,2 F R,1 F R,0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.6)

This submatrix consists of N2
x blocks, whose elements are mostly zeros. Each block is

of size Nv × Nv, and the position of each block’s elements is determined by the row
index kr = [0,Nv) and the column index kc = [0,Nv). The discretization at the left spatial
boundary is described by the blocks F L,0, F L,1 and F L,2. The discretization at the right
spatial boundary is described by the blocks F R,0, F R,1 and F R,2. The discretization at the
bulk spatial points is described by the blocks F B,0 and F B,1. Using (3.8), (3.11) and (3.12),
one obtains the following expressions for the elements in each block in (4.6) at the left
spatial boundary:

FL,0
kr,kc

= δkr,kc P0,kr + P(v)kc,kr
, (4.7a)

FL,1
kr,kc

= −4vkrσζ
bc
0,kr
δkr,kc, (4.7b)

FL,2
kr,kc

= vkrσζ
bc
0,kr
δkr,kc . (4.7c)

At the right spatial boundary,

FR,0
kr,kc

= δkr,kc Pqx,kr + P(v)kc,kr
, (4.8a)

FR,1
kr,kc

= 4vkrσζ
bc
qx,kr
δkr,kc, (4.8b)

FR,2
kr,kc

= −vkrσζ
bc
qx,kr
δkr,kc, (4.8c)

and at bulk spatial points,

FB,0
kr,kc

= δkr,kc Pj,kr + P(v)kc,kr
, (4.9a)

FB,1
kr,kc

= vkrσδkr,kc . (4.9b)

We denote the part of the submatrix F that depends on v as F̃ . The matrix elements of F̃
are indicated in figure 1 with red. The part of F that does not depend on v is denoted as F̂
and shown in blue in figure 1 within the submatrix F .

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

Block encoding via data compression 9

FIGURE 1. A schematic showing the structure of the matrix A (4.5) with nx = 3 and nv = 3.
The solid lines separate the submatrices introduced in (4.5). The dashed lines indicate blocks of
size Nv × Nv . The blue markers indicate velocity-independent elements.

The matrix CE is block diagonal and encodes the coefficients in front of E in the Vlasov
equation (3.7):

CE
jrNv+kr,jcNv+kc

= −δjr,jcδkc,0vkr Hjr,kr . (4.10)

Here jr, jc = [0,Nx) and kr, kc = [0,Nv). In this submatrix the first column in each
diagonal block of size Nv × Nv is non-sparse whilst all other columns are filled with zeros.
The Kronecker delta δkc,0 appears because of the chosen encoding of the electric field into
the state vector ψ according to (4.1).

The submatrix C f is also block diagonal and encodes the coefficients in front of g in
(3.13):

C f
jrNv+kr,jcNv+kc

= δjr,jcδkr,0vkc . (4.11)

Here jr, jc = [0,Nx) and kr, kc = [0,Nv). The first row in each block of size Nv × Nv is
non-sparse due to the sum in (3.13).

Finally, the matrix S is diagonal and encodes the coefficients in front of E in (3.13):

SjrNv+kr,jcNv+kc = δjr,jcδkr,kc iω0. (4.12)

Here jr, jc = [0,Nx) and kr, kc = [0,Nv).

5. Classical simulations

To test our discretization scheme, we performed classical simulations for homogeneous
plasma (n = T = 1), which facilitates comparison with the analytic theory described in
Appendix A. In our simulations, the phase space is described by xmax = 100, nx = 9 and
vmax = 4, nv = 8. The source in the form (2.9) is placed at x0 = 50 with ΔS = 1.0. We
consider two cases (figure 2): (a) ω0 = 1.2, which corresponds to the case when the source
frequency exceeds the plasma frequency; and (b) ω0 = 0.8, which corresponds to the case
when the plasma frequency exceeds the source frequency. The numerical calculations were

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

10 I. Novikau, I.Y. Dodin and E.A. Startsev

(a) (b)

(c) (d)

FIGURE 2. Plots showing the spatial distribution of the electric field computed numerically
(blue) and analytically (red) using (A17). (a,c) Plots of Re E and Im E, respectively, for ω0 =
1.20. One can see Langmuir waves propagating away from the source (located at x = x0) and
experiencing weak Landau damping. (b,d) Plots of Re E and Im E, respectively, for ω0 = 0.8.
One can see Debye shielding of the source charge. In both cases, nx = 9, nv = 8 and η = 0.

performed by inverting the matrix (4.5) using the sparse-QR-factorization-based method
provided in CUDA toolkit cuSOLVER (see Novikau 2024a; cuSolver 2024).

In the case with ω0 = 1.2, the source launches Langmuir waves propagating outward
and gradually dissipating via Landau damping. The outgoing boundary conditions allow
the propagating wave to leave the simulated box with negligible reflection. In the case with
ω0 = 0.8, the plasma shields the electric field, which penetrates plasma roughly up to a
Debye length. Due to the high resolution in both real and velocity space, the model remains
stable and does not generate visible numerical artifacts (figure 3). Artifacts become
noticeable at lower resolution (figures 4 and 5) but can be suppressed by introducing
artificial diffusivity η in velocity space (2.11). Such simulations are demonstrated in
figures 4 and 5 for nx = 7, nv = 5 and η = 0.002. As seen in figure 4, the results are in
good agreement with the analytical solution. The introduction of the diffusivity does not
change the spectral norm of the matrix A (figure 6a), which is always much higher than
unity. However, keep in mind that the diffusivity complicates block encoding (BE) (§ 6.4)
and somewhat increases the condition number κA of A (figure 6b). The condition number
grows with both nv and nx (except in cases with poor spatial resolution). In particular, if one
takes nx = 7, nv = 5 and η = 0.002, as in the simulations above, then κA = 8.844 × 104

(i.e. log10 κA = 4.95). Without the diffusivity, and with the same phase-space resolution,
the condition number is κA = 3.489 × 104 (i.e. log10 κA = 4.54).

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

Block encoding via data compression 11

(b)(a)

FIGURE 3. Plots showing the real component of the plasma distribution function, in units 	v,
computed numerically with nx = 9, nv = 8 and η = 0.0. Results are shown for (a) ω0 = 0.8 and
(b) ω0 = 1.2.

(a) (b)

(c) (d)

FIGURE 4. Plots showing the spatial distribution of the electric field for ω0 = 1.2, nx = 7,
and nv = 5. (a,c) Results from the numerical (blue) and analytical (red) computations with the
diffusivity η = 0.002. (b,d) Results from the numerical computations with (red) and without
(blue) diffusivity.

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

12 I. Novikau, I.Y. Dodin and E.A. Startsev

(b)(a)

FIGURE 5. Plots showing the real component of the plasma distribution function, in units 	v,
computed numerically for the cases with ω0 = 1.2, nx = 7 and nv = 5. Results are shown for
(a) η = 0.0 and (b) η = 0.002.

(b)(a)

FIGURE 6. Plots showing the dependence of the maximum singular value (a) and the matrix
condition number (b) of the matrix A on the size of the spatial grid for various η and nv . The
values are computed numerically (Novikau 2024b).

6. Encoding the equations into a quantum circuit
6.1. Initialization

To encode the right-hand-side vector (4.4) into a quantum circuit, one can use the fact
that the shape of the source current (2.9) is Gaussian. As shown in Novikau, Dodin &
Startsev (2023), Kane, Gomes & Kreshchuk (2023) and Hariprakash et al. (2023), one
can encode this function by using either QSVT (see Gilyén et al. 2019; Martyn et al.
2021) or the so-called quantum eigenvalue transformation of unitaries (QETU) (see Dong,
Lin & Tong 2022), where the scaling of the resulting circuit is O(nv log2(ε

−1
qsvt)) and εqsvt

is the desired absolute error in the QSVT approximation of the Gaussian. However, one
should keep in mind that the success probability of the initialization circuit depends on
the Gaussian width. To increase this probability, amplitude amplification can be used
(see Brassard et al. 2002). After the initialization, the required initial state |b〉 is usually
entangled with the zero state of the ancillae used for the QSVT/QETU procedure and for

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

Block encoding via data compression 13

FIGURE 7. The QSVT circuit encoding a real polynomial of order Na, where Na is odd, by using
Na + 1 angles φk pre-computed classically. The gates denoted as Rz,k represent the rotations
Rz(2φk). For an even Na, the gate Z should be removed and the rightmost BE oracle UA should
be replaced with its Hermitian adjoint version U†

A.

the amplitude amplification. Thus, the subsequent QSVT circuit computing the inverse
matrix A−1 should be controlled by this zero state to guarantee that A−1 acts on the state
|b〉.

6.2. Block encoding: basic idea
To solve (1.1) with the matrix (4.5) and the source (4.4) on a digital quantum computer,
one can use the QSVT, which approximates the inverse matrix A−1 with an odd polynomial
of the matrix singular values. (The mathematical foundations of the QSVT are described,
for example, in Gilyén et al. 2019; Martyn et al. 2021; Lin 2022.) The QSVT returns a
quantum state |ψqsvt〉 whose projection on zero ancillae is proportional to the solution ψ
of (1.1):

|ψqsvt〉 = exp(iφglob)

κqsvt
A−1 |0〉anc |b〉in + |�= 0〉anc |. . .〉in . (6.1)

Here φglob is an unknown global angle and the scalar parameter κqsvt is of the order of the
condition number of the matrix A.

A typical QSVT circuit is shown in figure 7, where the angles φi are computed
classically. These angles serve as the parameters that specify the function computed by
the QSVT circuit. In our case, the function is the inverse function. (More details about
the computation of the QSVT angles can be found in Dong et al. 2021; Ying 2022). The
subcircuit UA is the so-called BE oracle with the following matrix representation:

UA =
(

A ·
· ·

)
. (6.2)

Here UA is a unitary matrix. (The dots correspond to submatrices that keep UA unitary
but otherwise are unimportant.) This unitary encodes the matrix A as a sub-block that is
accessed by setting the ancilla register ‘be’ to zero:

UA |0〉be |ψ〉in = A |0〉be |ψ〉in + |�= 0〉be |. . .〉in . (6.3)

The QSVT addresses the BE oracle O(κqsvt log2(ε
−1
qsvt)) times to approximate the inverse

matrix A−1. The efficient implementation of the BE oracle is the key to a potential quantum
speedup that might be provided by the QSVT. As discussed in Novikau et al. (2023), the
QSVT can provide a polynomial speedup for two- and higher-dimensional classical wave
systems if the quantum circuit of the BE oracle scales polylogarithmically or better with
the size of A.

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

14 I. Novikau, I.Y. Dodin and E.A. Startsev

To block encode a non-Hermitian matrix such as A, one can first extend it to a Hermitian
one as

Aext =
(

0 A
A† 0

)
(6.4)

and then use the technique from Berry & Childs (2012). However, this will require at least
two additional ancilla qubits for the extension (6.4). Another option is to decompose A
into two Hermitian matrices, i.e.

A = Ah + iAa, (6.5)

where Ah = (A + A†)/2 and Aa = (A − A†)/(2i). The sum (6.5) can be computed by
using the circuit of linear combination of unitaries, which requires an additional ancilla.
Also note that the matrices Aa and Ah, although being Hermitian, still have a non-trivial
structure. Thus, for this method, it is necessary to block encode two separate matrices,
which may double the depth of the BE oracle.

To reduce the number of ancillae and avoid encoding two matrices instead of one, we
propose to encode the non-Hermitian A directly, without invoking the extension (6.4) or
the splitting (6.5). This technique was already used in Novikau et al. (2023). Although the
direct encoding requires ad hoc construction of some parts of the BE oracle, this approach
leads to a more compact BE circuit.

To encode A into the unitary UA, one needs to normalize A such that ς ||A||max ≤ 1,
where

||A||max = max
k

∑
j

√
|Akj|2 (6.6)

and ς is related to the matrix non-sparsity as will be explained later (see (6.14)). Here, by
the term ‘non-sparsity’, we understand the maximum number of non-zero elements in a
matrix row or column.3 Hence, A should be normalized as

A → A/ (||A||maxς) . (6.7)

The general structure of a BE oracle implementing the direct encoding of a
non-Hermitian matrix is

UA = O†
FOB

F,corrOMOHOF
F,corrOF, (6.8)

where the oracles OF, OF
F,corr, OM, OB

F,corr and O†
F encode the positions of non-zero matrix

elements in A, and OH encodes the values of these elements. The upper superscripts ‘F’
and ‘B’ stand for ‘forward’ and ‘backward’ action. The oracle UA can be constructed by
using quantum gates acting on a single qubit but controlled by multiple qubits. Here, such
gates are called single-target multicontrolled (STMC) gates (§ 6.3).

Equation (6.8) is based on the BE technique from Berry & Childs (2012) with the
only difference that the oracles OF

F,corr and OB
F,corr are introduced to take into account the

non-Hermiticity of A and are computed ad hoc by varying STMC gates. Basically, the
oracles OF, OM and O†

F create a structure of a preliminary Hermitian matrix that is as
close as possible to the target non-Hermitian matrix A. The structure is then corrected by
the oracles OF

F,corr and OB
F,corr constructed by varying their circuits to encode the structure

of A.

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

Block encoding via data compression 15

We consider separately the action of the oracle

UD = OB
FOMOF

F, (6.9a)

OF
F = OF

F,corrOF, (6.9b)

OB
F = O†

FOB
F,corr, (6.9c)

where the oracle OH is not included, and the oracles OF
F and OB

F are introduced to simplify
notations. The matrix representation of the oracle UD projected onto zero ancillae is
denoted as DA. The matrix DA has non-zero elements at the same positions as those of
the non-zero elements of A.

We use the input register ‘in’ to encode a row index ir and the ancilla register ac to
perform intermediate computations. Then,

UD |0〉ac
|ir〉in =

Nc,ir −1∑
ic=0

diric |0〉ac
|ic〉in + |�= 0〉ac

|. . .〉in , (6.10)

where ic are the column indices of all non-zero elements of A at the row ir; Nc,ir is the
number of these elements at ir; diric ≤ 1 are the matrix elements of DA. The number Nc,ir is
less or equal to the non-sparsity of A and can be different at different ic. The elements diric
are usually different powers of the factor 2−1/2 that appears due to the usage of multiple
Hadamard gates H.

The oracle OH , which enters UA but is not a part of UD, takes the matrix DA and modifies
its elements to form A. Usually, OH acts on an extra ancilla ae that is not used by UD. Due to
that, we can formally consider UD separately from OH . The action of OH can be considered
as the mapping

OH : diric → Airic, (6.11)

where Airic are elements of the matrix A after the normalization (6.7). For instance, to
encode a real-value element Airic , one can use the rotation gate Ry(θ):

Ry(θ)diric |0〉ae
= cos(θ/2)diric |0〉ae

+ . . . |1〉ae
. (6.12)

The factor diric appears from the action of the oracle UD (6.10). Our goal is to have Airic =
cos(θ/2)diric . Thus,

θ = 2 arccos(Airic/diric). (6.13)

The fact that diric ≤ 1 is the reason why it is necessary to include ς into the normalization
(6.7). From this, we conclude that

ς = max
i,j,DA

ij �=0
|(DA

ij)
−1|. (6.14)

The oracle OH usually consists of STMC rotations gates Rx, Ry, Rz and Rc (C1). The first
two are used to encode imaginary and real values, correspondingly. The third one can be
used to change the sign of a value or to turn a real value into an imaginary one if necessary,
and vice versa. The gate Rc is used to encode complex values.

3Although the term ‘sparsity’ is commonly used in literature, it is better to use the term ‘non-sparsity’ when one
refers to the parameter ς that grows when a matrix becomes less sparse. In other words, matrices with a large ς are
characterized by low sparsity.

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

16 I. Novikau, I.Y. Dodin and E.A. Startsev

Now, let us specify the action of different parts of UA. The oracles OF
F,corrOF encode

column indices into the ancilla register ac:

OF
F |0〉ae

|0〉ac
|ir〉in =

∑
ic

√
diric |0〉ae

|ic〉ac
|ir〉in . (6.15)

The oracle OH uses the row index from the state register ‘in’ and the column indices from
the ancilla register ac to determine which element should be computed and then encodes
it into the state amplitude:

OH

∑
ic

√
diric |0〉ae

|ic〉ac
|ir〉in =

∑
ic

Airic√
diric

|0〉ae
|ic〉ac

|ir〉in + |�= 0〉ae
|. . .〉 . (6.16)

After that, the oracle OM transfers the column indices from ac to the input register:

OM

(∑
ic

Airic√
diric

|0〉ae
|ic〉ac

|ir〉in + |�= 0〉ae
|. . .〉

)

=
∑

ic

Airic√
diric

|0〉ae
|ir〉ac

|ic〉in + |�= 0〉ae
|. . .〉 . (6.17)

Finally, the oracles O†
FOB

F,corr entangle the states encoding the column indices in the input
register with the zero state in the ancilla register:

OB
F

(∑
ic

Airic√
diric

|0〉ae
|ir〉ac

|ic〉in + |�= 0〉ae
|. . .〉

)

=
∑

ic

Airic |0〉ae
|0〉ac

|ic〉in + |�= 0〉ae
|�= 0〉ac

|. . .〉 . (6.18)

6.3. Single-target multicontrolled gates
If one has a single-target gate G, whose matrix representation is

G =
(

G00 G01
G10 G11

)
, (6.19)

then the corresponding STMC gate C{qcδ}G
(qt) is defined as the gate G acting on the target

qubit qt and controlled by a set of qubits {qcδ}. If qcδ is a control qubit then the gate G is
triggered if and only if |δ〉qcδ

, where δ = 0 or 1. If the gate G acting on a quantum state
vector ψ of n qubits is controlled by the qubit qcδ ∈ [0, n), then only the state vector’s
elements with the indices {ie}qcδ can be modified by the gate G:

ie = 2Nctrljb + jstep + δNctrl, (6.20a)

Nctrl = 2qcδ , (6.20b)

jb = [0,−1 + 2n/(2Nctrl)], (6.20c)

jstep = [0,Nctrl). (6.20d)

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

Block encoding via data compression 17

For instance, for qc1 = 0, every second element of ψ can be modified by the gate G. Then,
the STMC gate C{qcδ}G

(qt) can modify only the elements from the set

S =
⋂

qcδ,k∈{qcδ}
{ie}qcδ,k , (6.21)

where
⋂

is the intersection operator. The most common case is when qt is a more
significant qubit than the control ones, and the initial state of qt is the zero state. In this
case, the action of C{qcδ}G

(qt) can be described as

C{qcδ}G
(qt) |0〉qt

∑
k∈{ic}init

ηk |k〉ctrl

= (G00 |0〉qt
+ G10 |1〉qt

)
∑

k∈{ic}init∩S
ηk |k〉ctrl + |0〉qt

∑
k∈{ic}init\S

ηk |k〉ctrl , (6.22)

where ηk are the complex amplitudes of the initial state of the control register.

6.4. General algorithm for the BE
To construct the BE oracle UA, we use the following general procedure.

(i) Introduce ancilla qubits necessary for intermediate computations in the oracle UA
(§ 6.5).

(ii) Assume that the bitstring of the qubits of the input register (also called the state
register) encodes a row index of the matrix A.

(iii) Using STMC gates, construct the oracle UD following the idea presented in (6.10) to
encode column indices as a superposition of bitstrings in the state register (§ 6.6).

(iv) Compute the matrix DA or derive it using several matrices DA constructed for
matrices A of small sizes (§ 7.3).

(v) Normalize the matrix A according to (6.7) using the non-sparsity-related parameter
(6.14).

(vi) Using STMC rotation gates, construct the oracle OH to perform the transformation
(6.11) (§ 7).

Once the circuit for the oracle UA is constructed using STMC gates, one can transpile
the circuit into a chosen universal set of elementary gates. Standard decomposition
methods require at least O(n) of basic gates (see Barenco et al. 1995), where n is the
number of controlling qubits in an STMC gate. Yet, it was recently shown (see Claudon
et al. 2023) that it is possible to decompose an arbitrary STMC gate into a circuit with
O(log2(n)

log2(12) log2(1/εSTMC)) depth where εSTMC is the allowed absolute error in the
approximation of the STMC gate. In our assessment of the BE oracle’s scaling below,
we assume that the corresponding circuit comprises STMC gates not decomposed into
elementary gates.

6.5. Ancilla qubits for the BE
The first step to construct a circuit of the BE oracle is to introduce ancilla qubits and assign
the meaning to their bitstrings. As seen from figure 1, the matrix A is divided into four
submatrices. To address each submatrix, we introduce the ancilla qubit af . In combination
with the register rf introduced in (4.2), the register af allows addressing each submatrix in

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

18 I. Novikau, I.Y. Dodin and E.A. Startsev

the following way:

|0〉af
|0〉rf

→ F , (6.23a)

|1〉af
|0〉rf

→ CE, (6.23b)

|0〉af
|1〉rf

→ C f , (6.23c)

|1〉af
|1〉rf

→ S. (6.23d)

If ir and ic are row and column indices of A, respectively, such that

ir = ifrNxv + ixrNv + ivr, (6.24a)

ic = ifcNxv + ixcNv + ivc, (6.24b)

with integers ifr, ifc = [0, 1], ixr, ixc = [0,Nx) and ivr, ivc = [0,Nv), then the ancilla af
encodes the integer ifc.

According to figure 1, each submatrix is split into N2
x blocks of size Nv × Nv each.

Within each submatrix, only the diagonal and a few off-diagonal (in the submatrix F)
blocks contain non-zero matrix elements. To address these blocks, we introduce the
ancilla register axr with three qubits. This register stores the relative positions of blocks
with respect to the main diagonal within each submatrix. The states |000〉axr

and |100〉axr

correspond to the blocks on the main diagonal of a submatrix. The states |001〉axr
and

|010〉axr
correspond to the off-diagonal blocks shifted by one and two blocks to the right,

respectively. The states |101〉axr
and |110〉axr

correspond to the off-diagonal blocks shifted
by one and two blocks to the left, respectively. Using the same notation as in (6.24), the
meaning of the register axr can be described schematically as follows:

|000〉axr
and |100〉axr

→ ixc = ixr, (6.25a)

|001〉axr
→ ixc = ixr + 1, (6.25b)

|010〉axr
→ ixc = ixr + 2, (6.25c)

|101〉axr
→ ixc = ixr − 1, (6.25d)

|110〉axr
→ ixc = ixr − 2. (6.25e)

To encode the above bitstrings, one can use the circuits shown in figures 8(a) and 8(b).
In the submatrix C f , some of the blocks have rows that contain Nv non-zero elements.

To address these elements, we introduce the ancilla register av with nv qubits. This register
stores the integer ivc (6.24) when the elements of C f and CE are addressed; otherwise, the
register is not used. For instance, to address the non-zero elements in the submatrix C f ,
one uses the following encoding:

|0〉af
|ivc〉av |1〉rf

|ix〉rx
|0〉rv → C f

ixNv, ixNv+ivc
. (6.26)

As regards to CE, since all its non-zero elements have ivc = 0, one keeps the register av in
the zero state when |1〉af

|0〉rf
.

The ancilla register avr with three qubits is introduced to encode positions of the matrix
elements within the non-zero blocks of the submatrix F . In particular, the states |000〉avr

and |100〉avr
correspond to the elements on the main diagonal of a block. The states

|001〉avr
, |010〉avr

and |011〉avr
correspond to the elements shifted by one, two and three

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

Block encoding via data compression 19

(a) (b) (c)

FIGURE 8. (a) The circuit encoding the superposition of states |000〉q, |001〉q and |101〉q for a
given input zero state. (b) The circuit encoding the superposition of states |000〉q, |001〉q and
|010〉q for a given input state produced by the circuit 8(a). To encode the superposition of states
|100〉q, |101〉q and |110〉q, one uses the same circuit except that an additional X gate is applied to
the qubit q2 in the end. (c) The circuit encoding the superposition of states |000〉q, |001〉q, |010〉q
and |011〉q for a given input state produced by the circuit 8(a). To encode the superposition of
states |100〉q, |101〉q, |110〉q and |111〉q, one uses the same circuit except that an additional X gate
is applied to the qubit q2 in the end.

cells, respectively, to the right from the diagonal. The states |101〉avr
, |110〉avr

and |111〉avr

correspond to the elements shifted by one, two and three cells, respectively, to the left
from the diagonal. Using the notations from (6.24), the meaning of the register avr can be
described as

|000〉avr
and |100〉avr

→ ivc = ivr, (6.27a)

|001〉avr
→ ivc = ivr + 1, (6.27b)

|010〉avr
→ ivc = ivr + 2, (6.27c)

|011〉avr
→ ivc = ivr + 3, (6.27d)

|101〉avr
→ ivc = ivr − 1, (6.27e)

|110〉avr
→ ivc = ivr − 2, (6.27f)

|111〉avr
→ ivc = ivr − 3. (6.27g)

To encode the above bitstrings, one can use the circuits shown in figures 8(b)
and 8(c).

Also, we introduce the ancilla ae whose zero-state’s amplitude will encode the complex
value of a given matrix element.

6.6. Constructing the oracle UD

A schematic of the BE oracle UA is shown in figure 9, where the dashed blue box
is the oracle OH described in § 7, and the rest of the boxes are components of the
oracle UD.

The oracle UD is built ad hoc manually by considering its suboracles separately. The
suboracle OF

F = OF
F,corrOF is constructed based on (6.15), where the ‘in’ register includes

the registers rv, rx and rf described in § 4.1. The ancilla registers av, avr, axr and af
described in § 6.5 represent the ac register in (6.15). For instance, the part of the circuit OF
encoding the ancilla af (6.23) is shown in figure 10, where the first Hadamard gate creates
the address to the submatrices F and CE, and the Pauli X gate generates the address to
the elements of the submatrix S with ivr > 0 (using the notation from (6.24)). The last
Hadamard gate produces the addresses to C f and S at ivr = 0.

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

20 I. Novikau, I.Y. Dodin and E.A. Startsev

FIGURE 9. The circuit representation of the BE oracle UA. The oracle OM is shown in figure 11.
The oracles F, C f , CE and S encode the corresponding submatrices introduced in (4.5), and are
described in § 7. Here, the symbol ∅ means that the gate does not use the corresponding qubit.
The qubit rsin shown in some oracles indicates that the corresponding oracle includes the circuit
shown in figure 15. The qubit rqsvt indicates that the oracle CE is constructed using QSVT. The
positions of the qubits rf and af are changed for the sake of clarity.

FIGURE 10. The circuit to encode information into the ancilla af according to (6.23). The
registers rv , rx and rf encode the row index ir, i.e. the indices ivr, ixr and ifr, correspondingly,
according to (6.24).

The implementation of the suboracle OB
F = O†

FOB
F,corr is done based on (6.18). Its

correcting part OB
F,corr is implemented ad hoc by varying positions and control nodes of

STMC gates.
The suboracle OM that performs the mapping (6.17) uses the SWAP gates to exchange

the states in the registers af and av with the states in the registers rf and rv, respectively,
as shown in figure 11. To encode absolute column indices into the input registers using the
states of the registers axr and avr, one should follow the rules (6.25) and (6.27) and apply
the quantum adders and subtractors described in Appendix C. The important feature of
the oracle OM is that the number of arithmetic operators in it does not depend on Nx or
Nv. Since the circuits of the arithmetic operators scale as O(nx) or O(nv) depending on
the target register of the operator, the scaling of OM is O(nx + nv). The full circuit of UD
can be found in Novikau (2024b). The modelling of the circuit is done using the QuCF
framework (see Novikau 2024c), which is based on the QuEST toolkit (see Jones et al.
2019).

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

Block encoding via data compression 21

FIGURE 11. The circuit of the oracle OM . The adders A1–A3 and the subtractors S1–S3 are
described in Appendix C.

7. Construction of the oracle OH

7.1. General strategy
The purpose of the oracle OH is to compute Airic following (6.13). Therefore, further in the
text, we consider the following rescaled matrix elements:

Airic → Airic

|diric |
. (7.1)

One can see from § 4.3 that two types of elements can be distinguished in A. The first
type includes elements that depend only on the discretization and system parameters such
as the antenna frequency ω0 and the sizes of the grid cells. These elements sit in the
submatrix S (4.12) and the submatrix F̂ introduced after (4.9). Since these elements appear
mainly from the spatial, velocity and time derivatives, they remain mostly constant at bulk
spatial and bulk velocity points, but become highly intermittent at spatial and velocity
boundaries. The values of the elements of F̂ strongly vary at boundaries of each Nv × Nv

block. Note that the submatrix F̂ , which is a part of the matrix A, is also subject to the
rescaling (7.1). Thus, its elements change from one block to another depending not only
on the original values of F̂ (4.7), (4.8) and (4.9) but also on the specific implementation
of UD, which influences the rescaling (7.1).

Another type of element in A are those that depend on velocity v (and the background
distribution function H(v)). They form continuous profiles. However, this continuity can
be lost after the rescaling (7.1). Such elements enter the submatrices C f , F̃ and CE, whose
BE is described in §§ 7.5, 7.6 and 7.7, respectively.

7.2. The algorithm for BE F̂
7.2.1. Main idea

The main idea behind the algorithm for BE F̂ is to decompose this matrix into sets of
elements such that all elements would have the same value within each set. After that,
one extends large enough sets (as will be described further) in such a way that each
extended set is encoded by a single STMC gate. However, after the extension, some sets
may end up overlapping each other. In this case, the elements in the intersections (i.e. in
the overlapping regions) should be corrected by additional STMC gates. The extension of
some small sets that include a few matrix elements often leads to a significant overlapping
with other sets. Therefore, it is often more efficient to encode a small set by encoding

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

22 I. Novikau, I.Y. Dodin and E.A. Startsev

each element in it by its own STMC gate. Also, the representation of a matrix by sets is
not unique. Because of that, we seek a minimal number of sets maximizing the number
of large sets whilst minimizing the number of intersections and the number of small sets.
Ideally, such optimization should be done using, for instance, deep reinforcement learning
(see Sutton & Barto 2018). However, in the current version of the algorithm, the parameters
are defined ad hoc.

This algorithm can be performed in Niter iterations:

OH ≈ O(Niter)

H . . .O(2)
H O(1)

H . (7.2)

Here O(1)
H is the initial version of the oracle OH , O(k)

H is the correction to O(1)
H provided by

the (k > 1)th iteration, and the final correction of the overlapping elements and encoding
of small sets is performed at the Niterth iteration. After the kth iteration, one has

δA(k) = A − A(k), (7.3)

where the matrix A(k) is encoded by the sequence O(k)
H . . .O(2)

H O(1)
H . If δA(k)ir,ic = 0 then the

first k iterations correctly encode the matrix element at the row ir and the column ic. If
|δA(k)ir,ic | > 0 then the corresponding element should be corrected. To do that, one considers
the matrix

Ã(k+1)
ir,ic =

{
A(k)ir,ic, |δA(k)ir,ic | > 0,

0, δA(k)ir,ic = 0,
(7.4)

which provides information about which matrix elements still should be corrected. At
the (k + 1)th iteration, one decomposes Ã

(k+1)
into sets whose extension is restricted

by the condition that the extended sets would not overlap the zero elements of Ã
(k+1)

.
The (k + 1)th iteration constructs the oracle O(k+1)

H correcting A(k) by using Ã
(k+1)

. The
correcting procedure is discussed in § 7.2.4. Because each extension of sets may lead to
additional overlapping elements, it is not guaranteed that the (k + 1) iteration corrects
all overlapping elements. For that reason, at the last iteration, the matrix Ã

(Niter) is encoded
element by element without extending the sets. In other words, the Niterth iteration corrects
all remaining badly encoded matrix elements without introducing its own errors, which
otherwise appear during the sets extension. Finally, by varying the number Niter, one can
construct the oracle OH with a near-optimal scaling with respect to the matrix size.

7.2.2. Decomposition of the matrix
The elements in the submatrix F̂ are arranged along several diagonals (figure 1). The

number of these diagonals is less or equal to the non-sparsity of the matrix A and depends
neither on Nx nor on Nv. Therefore, the first step is to represent F̂ as a group {D} of separate
diagonals D (figure 12a) and then consider each diagonal D separately. One can specify a
diagonal D by using a constant integer 	i as

D = {F̂ir,ir+	i | ir = [δsign	i,−1|	i|,Nxv − δsign	i,1	i)}, (7.5)

where sign	i = 	i/|	i|. Each D is encoded independently of other diagonals (as shown
by various dashed blocks in figure 13) that results in a linear dependence of the depth of
the oracle OH on the non-sparsity ςF̂ of the submatrix F̂ .

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

Block encoding via data compression 23

(a) (b)

(c) (i)

(d)

(ii)

FIGURE 12. A schematic showing decomposition of a matrix into sets for the construction of
the oracle OH . (a) A simple matrix of size NA = 8 is taken as an example. This matrix consists
of three diagonals marked in different colours, and each diagonal is considered separately. The
element values are indicated as ei, where ei �= ej if i �= j. (b) A schematic showing how the main
diagonal marked in red in (a) can be split in several sets where each set groups several matrix
elements of the same value. (c-i) A matrix with bitstrings of the row indices of the original set S2
and of its extended version Sext

2 . This extension results in three overlapping elements marked in
orange, i.e. Sext

2 overlaps elements of the sets S0,0, S1 and S0,1. (c-ii) A bitstring matrix of the set
S2 that has been split into two sets, S2,0 and S2,1, where only the latter is extended. This extension
results in a single overlapping element. (d) A schematic showing the splitting and extension (if
necessary) of sets in the left and right diagonals. The empty cells indicate that the considered
diagonal does not have elements at the corresponding rows. The bits indicated in grey in the
bitstring matrices are chosen as the control nodes of the STMC gates encoding the extended sets
(figure 13).

Each diagonal is represented by a group of sets {S} where each set S contains elements
of the same value v(S), i.e.

S = {v(S), {ir} | F̂ k,k+	i = v(S), ∀k ∈ {ir}}, (7.6)

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

24 I. Novikau, I.Y. Dodin and E.A. Startsev

FIGURE 13. The circuit of the oracle OH encoding the elements of the tridiagonal matrix from
figure 12(a). The dashed blocks indicate the parts of the oracle encoding the main diagonal (red
box), the left diagonal (green box) and the right diagonal (blue box), correspondingly. Here, the
register r encodes the matrix row indices. The ancilla register ar has a similar meaning to that
explained in (6.25) (although here the register has two qubits) and is used to address the matrix
diagonals. The ancilla ae is initialized in the zero state, and the matrix elements’ values are
written into the amplitude of |0〉ae . The gate [ei] is a schematic representation of a rotation gate
whose rotation angle is chosen to encode the value ei as explained in (6.13). The gate [e∗

i] is a
rotation gate whose angle is computed taking into account the overlapping of the element ei with
one or several extended sets. For instance, the third gate in the red box encodes the set S2,0. The
fourth gate encodes the extended set Sext

2,1. Since Sext
2,1 intersects with S0,1, the angle for the fifth

gate is computed taking into account the action of the fourth gate, as explained in § 7.2.4.

where {ir} are the row indices of all matrix elements described by the set S. Each set stores
only v(S) and {ir}. A set can be divided into smaller sets (§ 7.2.5) and, thus, two different S
can have the same v(S).

Once the matrix F̂ is split into {D}, where D = {S}, one constructs a circuit
representation of OH . The element-by-element encoding is inefficient, because it will
require O(Nxv) quantum gates. The main purpose of our algorithm is to construct a circuit
with the scaling better than O(Nxv). Ideally, the scaling should be O(polylog(Nxv)ςF̂). (As
shown in Novikau et al. (2023), the QSVT for solving a multi-dimensional stationary wave
problem described by a matrix of size N and non-sparsity ς can have a polynomial speedup
in comparison to classical conjugate-gradient-based algorithms if the corresponding BE
oracle scales as O(polylog(N)ς)).

To achieve a better scaling, the algorithm encodes the sets instead of the matrix elements
by using the fact that each S contains elements with the same value. The simplest way to
encode S is to use a quantum arithmetic comparator (see Suau, Staffelbach & Calandra
2021; Novikau et al. 2023) to find whether ir ∈ {ir}S, where ir is the row index encoded
into the registers rv, rx and rf (§ 4.1). However, for each S, one will need to use at least
two comparators, and each comparator requires two ancilla qubits (although the ancillae
can be potentially reused by various comparators). Instead, we try to arrange sets in such
a manner that each large enough set would be encoded by a single STMC gate. Such an
arrangement is performed by extending S. (Another possibility could be to use quantum
arithmetic operators to encode the binary representation of the matrix elements. However,
that would require much more qubits and be hard to test numerically, which is why we do
not use this approach here.)

7.2.3. Set extension
To encode all elements of S at once, the algorithm extends S in such a way that the

extended set Sext is computed by a single STMC gate. To make it possible, it is necessary
to complete {ir} of S by another set {icom

r } such that the resulting set {ir} ∪ {icom
r } could be

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

Block encoding via data compression 25

represented by (6.20) and (6.21). In other words, S is extended to ensure that it would be
possible to find a STMC gate C{qcδ}G

(ae) such that G00 = v(S) and S ≡ {ir} ∪ {icom
r }.

The extended set Sext consists of a core, which is the original non-extended set S, and
a complement Scom: Sext = S ∪ Scom and S ∩ Scom = ∅, where Scom includes Nc elements
described by the row indices {icom

r }:
Sext = {v(S), {ir} ∪ {icom

r } | F̂k,k+	i = v(S), ∀k ∈ {ir}}. (7.7)

Note here that the matrix elements F̂j,j+	i for j ∈ {icom
r } may have a value different from

v(S) but the extended set Sext assumes that they do have the value v(S). Thus, the extended
sets can assign wrong values to some matrix elements. In this case, we speak about the
overlapping of several sets. The cores of extended sets never intersect, Sj ∩ Sk = ∅ for
j �= k, but the complements can overlap with the cores or complements of other sets.
Hence, one can have only complement–complement and complement–core overlapping.
The matrix elements that sit in the overlapping regions of several sets should be corrected.
The correction employs supplemental STMC gates. Therefore, it is important to minimize
the number of overlapping elements. The correction can be done in different ways and a
possible algorithm for that is described in § 7.2.4.

We should also note that, sometimes, small sets are extended to significantly larger
sets, thus, drastically increasing the number of overlapping elements. Because of that, it
is better to encode small enough sets such that each element in them is computed by a
separate STMC gate.

In well-structured matrices, such as those that appear in classical linear wave problems,
the number of sets is significantly less than the number of matrix elements. Since each
extended set is encoded by a single STMC gate, the scaling of the resulting oracle should
be significantly better than in the case when the matrix is encoded element by element.
For instance, let us assume that a diagonal D consists of N elements. If all these elements
are equal to each other then D comprises a single set, and this set can be encoded into
a quantum circuit by using a single STMC rotation gate. Another case is when there are
NS elements of the same value where (N − NS) � N, then D has a dominant set with NS
elements. This set can be extended to the whole diagonal as shown in figure 12(b) for
the set S2. In this case, the complement Scom contains (N − NS) � N elements and each
of these elements are encoded by a separate STMC gate. This means that the oracle OH
encoding the diagonal D has (N − NS + 1) � N STMC gates.

However, extending the original set may not always be the best approach. Instead, S can
be split (§ 7.2.5) into several subsets and then each subset can be extended individually. As
demonstrated in figure 12(b) for the set S2, the splitting allows us to reduce the number of
overlapping elements from Nc = 3 to Nc = 1.

7.2.4. Correction of overlapping elements
If two sets intersect with each other, the overlapping elements should be corrected by

supplemental gates. Let us consider the correction on the example from figure 12, where,
for instance, two sets, Sext

2,1 and S0,1, overlap at the element e0. According to figure 12(c-ii),
to encode the set Sext

2,1, one needs a single STMC gate controlled by the most significant
qubit of the input register r (as shown in figure 13 by the fourth gate in the red box).
To encode an arbitrary complex value, one can use the gate Rc(2θz,2, 2θy,2) described
in Appendix C, which should act at the zero state of the ancilla ae. In particular, to
compute the value e2, one needs to chose the gates’ parameters in such a way that
e2 = cos(θy,2) exp(−iθz,2). In this case, one obtains

|ψext〉ae
= Rc(2θz,2, 2θy,2) |0〉ae

= e2 |0〉ae
+ w2 |1〉ae

, (7.8)

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

26 I. Novikau, I.Y. Dodin and E.A. Startsev

where w2 is a complex value defined by the angles of the gate Rc. Thus, two components of
the state ψext are ψext,0 = e2 and ψext,1 = w2. This gate controlled by the most significant
qubit of the register r (figure 13) entangles the state |ψext〉ae

with the states |ir〉r, where ir =
[4, 7]. However, at ir = 7, the main diagonal has an element with the value e0 instead of
e2. This means that a supplemental gate Rc(2θz,c, 2θy,c) should act on the state |ψext〉ae

|7〉r
to encode the value e0:

|ψres〉ae
= Rc(2θz,c, 2θy,c) |ψext〉ae

= e0 |0〉ae
+ w0 |1〉ae

. (7.9)

Here we are not interested in the value w0. This explains the last gate in the red box in
figure 13, denoted [e∗

0].
Equation (7.9) leads to the following equations for θz,c and θy,c:

g00 cos θy,c − g01 sin θy,c = ψ real
res,0, (7.10a)

g10 cos θy,c − g11 sin θy,c = ψ
imag
res,0 . (7.10b)

Here

g00 = ψ real
ext,0 cos θz,c + ψ

imag
ext,0 sin θz,c, (7.11a)

g01 = ψ real
ext,1 cos θz,c − ψ

imag
ext,1 sin θz,c, (7.11b)

g10 = ψ
imag
ext,0 cos θz,c − ψ real

ext,0 sin θz,c, (7.11c)

g11 = ψ real
ext,1 sin θz,c + ψ

imag
ext,1 cos θz,c. (7.11d)

In the more general case, when the Ng gates act on the same element eres, then one can find
θy,c and θz,c in (7.10)–(7.11) from

ψext = Rc,Ng−1Rc,Ng−2 · · · Rc,1Rc,0 |0〉ae
, (7.12a)

ψres,0 = eres. (7.12b)

7.2.5. Set splitting
As we have already mentioned earlier, to minimize the number of overlapping elements,

it may be more efficient to split sets such that the divided sets would have complements
of smaller sizes and, thus, would require a smaller number of operations to correct the
overlapping elements. Such splitting and reorganization of sets can be done in many
different ways and, ideally, should be delegated to machine learning, which is likely to
find a more optimal set organization than one can feasibly do manually ad hoc. However,
there is also a simpler way to rearrange the sets, which is as follows. For each set, one
constructs a matrix Abits with bitstrings representing the row indices of the set’s elements
as illustrated in figure 12(c,d). The size of Abits is NS × nb, where NS is the set’s size (the
number of elements in the set) and nb = log2(NA), where NA is the size of the matrix to be
described by OH (in our case, the matrix is F̂ and NA = Nxv).

The rows in Abits are enumerated by the index rb ∈ [0,NS) and store the bitstring
representations of the rows of the matrix F̂ . Each row rb has nb cells with bits of
different significance, where the leftmost cell stores the most significant bit. Each column
cb ∈ [0, nb) in Abits contains an array of bits of equal significance (figure 12c). The column
cb = 0 contains the most significant bits.

To decide how to split the set, one checks the leftmost Ncheck columns of Abits. Let us
assume that the leftmost column, cb = 0, has the bit δ at rb = 0. If all bitcells at cb = 0

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

Block encoding via data compression 27

contain the same bit δ, then one checks the bits in the next column. If Ncheck columns have
bitcells with unchanging bits, then the set remains undivided.

However, if the column cb < Ncheck has a bit δ at rb = 0, but this bit changes at rb,1, then
one splits Abits into two matrices, Abits,0 and Abits,1. The former matrix is the part of Abits
with the rows [0, rb,1), the latter matrix is the part of Abits with the row [rb,1,NS). These
new matrices of bitstrings represent new sets. These sets still describe matrix elements
with the same value, but now these elements are combined into two sets instead of the
original single set. In this manner, S2 in the main diagonal in figure 12 is split into two
sets, S2,0 and S2,1.

One can vary Ncheck to find an optimal number of sets in D, but usually it is better to
keep this number significantly smaller than nb because, otherwise, one can end up with a
large number of small sets. This happens because the bits of low significance have a higher
possibility to change within a set.

7.3. Extrapolation of the matrix DA

To construct the oracle OH , one needs to compute the matrix DA related to the oracle
UD (6.9) to perform the rescaling (6.13). The parts of DA related to the submatrices CE,
C f and S have a trivial structure and can be predicted for any Nx and Nv. For instance,
DA

Nxv+ixNv+iv, Nxv+ixNv+iv = 1 for ix = [0,Nx) and iv = [1,Nv). These elements correspond to
the main diagonal of the submatrix S, where the matrix non-sparsity is 1. In the rows with
indices Nxv + ixNv, the column indices of the non-zero elements are computed by a single
Hadamard gate acting on the ancilla af and by nv Hadamard gates acting on all qubits
of the register av. (These Hadamard gates appear in both OF and O†

F, according to (6.9)
and figure 10.) Because of that, DA

Nxv+ixNv, Nxv+ixNv = 1/2 that corresponds to the diagonal
elements at iv = 0 in the submatrix S, and DA

Nxv+ixNv, ixNv+iv = 1/2nv/2+1 with iv = [0,Nv)

that corresponds to the non-zero elements of the submatrix C f .
Let us denote the upper left Nxv × Nxv part of DA as DF. The submatrix DF contains

elements diric by which the submatrix F should be rescaled in (6.13). The computation
of DF is numerically challenging for a large Nxv. Instead, DF of a large size can be
extrapolated by using known matrices DF of several small sizes. To do that, one creates a
template of DF by using computed DF for small Nx and Nv. This can be done because the
relative positions of the submatrix elements and the elements’ values do not change with
the increase of Nxv. The template is used to reconstruct DF for any Nxv. The algorithm for
the creation of this template is the following.

Let us consider the matrix DF that is split into several diagonals in the same way as
described in § 7.2.2. The algorithm considers each of these diagonals independently and
assumes that the row index r of this matrix depends on Nind indices rl:

r =
Nind−1∑

l=0

rl

Nind∏
j=(l+1)

Nj. (7.13)

Here each index rl = [0,Nl) corresponds to the lth dimension of the size Nl and NNind = 1.
For instance, any matrix describing dynamics in three-dimensional real space (Nind = 3)
has r = r0NyNx + r1Nx + r2. In our case, r0 = ixr and r1 = ivr according to (6.24). Also,
we define the following ordered set of indices:

−→{r}l = {rj | rj = [0,Nj), j = [0, l)}. (7.14)

The ordered set
−→{r}l is empty if l = 0.

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

28 I. Novikau, I.Y. Dodin and E.A. Startsev

Let us consider the diagonal D defined in (7.5), where instead of F̂ we now take DF.
The vector with all matrix elements from D is denoted M . It has Nxv elements, where we
formally define Mr = ∅ if the diagonal does not have any element at the row r. Due to the
dependence (7.13), M has a nested structure with N0 blocks, where each block has

∏Nind
j=1 Nj

rows. These rows can be combined into N1 sub-blocks, where each sub-block has
∏Nind

j=2 Nj
rows, and so on. Let us call all blocks of an equal size a layer. There are Nind layers. The
ilth block in the lth layer is defined as

B−→{r}l,il
= {B−→{r}l∪il,il+1

}, (7.15)

where il = [0,Nl), l = [0,Nind) and each block of the (Nind − 1)th layer is a single matrix
element, i.e.

B−→{r}q,iq
=
⎧⎨
⎩Mr | r =

∑
rl∈−→{r}q

rl

q∏
j=(l+1)

Nj + iq

⎫⎬
⎭ , (7.16)

where q = Nind − 1. Hence, the lth layer has Nl blocks, and each of these blocks has∏Nind
j=l+1 Nj matrix elements.
Identical adjacent blocks in the lth layer are combined into blocksets. A blockset in the

lth layer is denoted Bl and is defined as

Bl = {B−→{r}l,rb
, rb, re | B−→{r}l,r

= B−→{r}l,rb
, ∀r = [rb, re)}, (7.17)

where each blockset in the q = (Nind − 1)th layer combines identical neighbour matrix
elements

Bq = {Mr, rb, re | Mr = Mrb,∀r = [rb, re)}. (7.18)

Since each block in the lth layer includes blocks from the (l + 1)th layer (7.15), each block
can be described by a group of blocksets, i.e.

B−→{r}l,il
= {Bl+1}il, (7.19)

where we keep the index il to indicate that {Bl+1}il represents the ilth block at the lth layer.
If the block B−→{r}−1,i−1

is formally defined as the whole diagonal M , then {B0}i−1 is a group of
blocksets where the blocks of the zeroth layer are sorted. By combining (7.17) and (7.19),
one can see that each blockset in the lth layer can be defined as a group of blocksets from
the (l + 1)th layer:

Bl = {{Bl+1}rb, rb, re | {Bl+1}r = {Bl+1}rb, ∀r = [rb, re)}. (7.20)

Thus, the whole diagonal M can be represented as nested blocksets. Representing a matrix
by a group of diagonals comprising blocksets can be regarded as creating a template that
represents a compressed image of the matrix.

In the matrix DF, the number of diagonals D does not change with Nxv. The matrix
elements Mr stored in the blocksets (7.18) are also independent of Nxv. (Some matrix
elements of DA do change with Nv because the non-sparsity of C f and CE changes with
Nv. Yet, the non-sparsity of the submatrix F does not change with Nxv, and because of

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

Block encoding via data compression 29

that, the elements of DF do not change as well.) The indices rb and re in (7.20) and (7.18)
depend linearly on Nl, i.e.

rb = αb + βbNl, (7.21a)

re = αe + βeNl, (7.21b)

where l = [0,Nind). The unknown coefficients αb, αe, βb and βe are different for different
blocksets. To compute these coefficients, one constructs the templates for Nind + 1
matrices where each matrix has at least one Nl different from the corresponding Nl of
all other matrices. (If needed, each of the Nind + 1 matrices can have all Nind dimensions
different from the dimensions of other matrices.) For each of these computed (Nind + 1)
templates, one knows the row indices rb and re for each blockset. One substitutes these
indices to (7.21) from which the unknown coefficients can now be calculated.

Once the coefficients are computed, one can construct DF of an arbitrary size Nxv.
Equations (7.21) allow us to compute the positions rb and re for all blocksets in DF for
the required Nxv.

For the matrix DF, Nind equals two, where N0 = Nx an N1 = Nv. Thus, one needs to
precalculate three matrices DF with various Nx and Nv to use (7.21). Yet, one should keep
in mind that Nx and Nv should be large enough to take into account the influence of the
boundary elements in DF properly. More precisely, one should consider only matrices with
nx ≥ 4 and nv ≥ 4.

As an example illustrating the decomposition of a matrix into blocksets, let us consider
a diagonal matrix Dex with diagonal elements Dex

i,i, where i = iyNx + ix with iy = [0,Ny)

and ix = [0,Nx) for Ny = 2ny and Nx = 2nx :

Dex
i,i = e0, iy = [0,Ny/2), ix = [0,Nx − 2], (7.22a)

Dex
i,i = e1, iy = [0,Ny/2), ix = Nx − 1, (7.22b)

Dex
i,i = e0, iy = [Ny/2,Ny), ix = 0 and Nx − 1, (7.22c)

Dex
i,i = e1, iy = [Ny/2,Ny), ix = [1,Nx − 2]. (7.22d)

Here, e0 and e1 are some non-equal values. Due to the dependence on the indices ix and
iy, the main diagonal has a nested structure with Ny blocks and with Nx elements in each
block. Other diagonals are empty (the matrix elements in these diagonals are equal to
zero). The main diagonal for different ny and nx is shown in figure 14.

In the zeroth layer the diagonal is split into two blocksets, BI
0 and BII

0 , independently
of the matrix size. In the next layer, BI

0 contains two blocksets (which are indicated by
different shades of green in figure 14), and BII

0 contains three blocksets (indicated by
different shadows of blue). Although the number of blocks and elements in Dex changes
with Nx and Ny, the number of blocksets in any layer does not. For instance, independently
of Ny, the blockset BI

0 always contains only two blocksets. Indeed, according to (7.17), BI
0

stores a single copy of one of Ny/2 identical blocks in the first half of the diagonal. In turn,
this single copy contains two blocksets, one of which saves a single copy of the elements
e0 and another saves the element e1.

The indices stored by the blockset BI
0 are

rb = 0, re = 1
2 Ny. (7.23a,b)

The indices of the first inner blockset of BI
0 are rb = 0 and re = Nx − 2. The indices of the

second inner blockset are rb = Nx − 2 and re = Nx − 1.

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

30 I. Novikau, I.Y. Dodin and E.A. Startsev

FIGURE 14. A schematic showing elements in the main diagonal of the matrix Dex described in
(7.22) for various Nx = 2nx and Ny = 2ny . The matrix has Ny blocks with Nx elements each. These
blocks are grouped into two blocksets, BI

0 and BII
0 . The elements in each block of the blockset

BI
0 are combined into two blocksets indicated by different shades of green. The elements in each

block of the blockset BII
0 are combined into three blocksets indicated by different shades of blue.

The blockset BII
0 have the following boundaries:

rb = 1
2 Ny, re = Ny. (7.24a,b)

The indices of the inner blocksets of BII
0 can be easily found from figure 14 or (7.22).

7.4. Encoding the submatrix S
To encode the submatrix S described in (4.12), we use the two gates Rx with the following
angles:

θS,b = −2 arcsin(ω0), (7.25a)

θS,e = −2 arcsin(2ω0)− θS,b. (7.25b)

As one can see from the red dashed box in figure 9, the elements of S are encoded by three
gates, Rx(θS,b), Rx(θS,e) and X, applied to the ancilla ae. The first gate Rx(θS,b) encodes iω0
into the amplitude of the zero state of the ancilla ae. Due to the rescaling (7.1), the value
iω0 of each element at ivr = 0 in S is multiplied by the factor 2. This is taken into account
by the second gate, Rx(θS,e), which corrects the action of Rx(θS,b).

7.5. Encoding the submatrix C f

To encode the matrix elements of C f (4.11) that depend on the velocity, we use the circuit
shown in figure 15. It encodes the function sin(φi) for i = [0,Nt) with Nt = 2nt :

φi = α0 + i	φ. (7.26)

Here nt is the number of qubits in the register rt and 	φ = 2α1/Nt. This circuit scales as
O(nt).

To encode the velocity grid vi, where vmax � 1 due to the normalization (6.7), one
can use the circuit 15, since sin(φi) = φi + O(φ3

i). In this case, nt = nv, α0 = −vmax and
α1 = |α0|Nv/(Nv − 1). All non-zero elements of the submatrix C f are encoded by using a
single call to the circuit 15.

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

Block encoding via data compression 31

FIGURE 15. The circuit encoding sin(φi) according to (7.26). Here, Rk = Ry(2α1/2k).

7.6. Encoding the submatrix F̃

The elements of F̃ described after (4.9) depend on v linearly and are encoded using the
same technique described in § 7.5.

7.7. Encoding the submatrix CE

To encode the matrix elements of CE (4.10), one can use the QSVT to approximate the
odd function vH(v). First of all, the odd function vH(v) is approximated by the form

fvH(yi) = p1 arcsin(yi) exp(p0 arcsin(yi)
2), (7.27)

where yi = sin(φi) for i = [0,Nv) where the angles φi are computed using (7.26) with
the parameters α0 = −1 and α1 = |α0|Nv/(Nv − 1). The parameter p0 depends neither
on nx nor on nv. The parameter p1 decreases linearly with Nv and does not depend on Nx.
The approximation fvH(yi) = viH(vi)± εce,appr is found by solving a nonlinear least-square
problem.

The function fvH(yi) is computed by using QSVT, where the variable yi is encoded by
the circuit 15. Because flat background temperature and density profiles are considered,
this function does not depend on x and can be encoded for all x points by a single call
to the QSVT circuit. The absolute error εCE,qsvt of the QSVT computation of the function
(7.27) rapidly decreases with the number of QSVT angles NCE,qsvt, e.g. εCE,qsvt = 10−6

for NCE,qsvt = 16. Each QSVT angle is associated with a single call to the oracle 15 that
scales linearly with nv. Thus, the scaling of the circuit encoding the submatrix CE is
O(nv log2(ε

−1
CE,qsvt)).

If the temperature and density depend on the spatial coordinate, then one needs to
implement additional QSVT circuits that would encode the change in the amplitude and
the width of the bumps of the function vH. Another option is to substitute these QSVT
circuits by a single one by applying multivariable QSP (see Rossi & Chuang 2022)
that operates with several BE oracles at once, thus computing a polynomial of multiple
variables, i.e. x and v in our case.

7.8. Scaling of the BE oracle
The final circuit of the BE oracle encoding the matrix A can be found in Novikau (2024b)
and was numerically tested using the QuCF framework (Novikau 2024c). Now, let us
estimate the scaling of this circuit. It comprises the scaling of the oracle UD and the
oracle OH . As discussed in § 6.6, UD scales as O(nx + nv) due to the arithmetic operators.
The circuit of OH consists of several pieces: the oracle encoding the submatrix F̂ , whose
encoding is performed by the procedure discussed in § 7.2, and the oracles encoding the
submatrices S (§ 7.4), C f (§ 7.5), F̃ (§ 7.6) and CE (§ 7.7). The scaling of the circuit for F̂
is shown in figure 16 and is estimated as O(ςF̂ poly(Nx)poly(nv)). The poor scaling with
respect to Nx is caused by the matrix elements that appear due to the non-zero diffusivity

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

32 I. Novikau, I.Y. Dodin and E.A. Startsev

(a) (b)

(c) (d)

FIGURE 16. The dependence of the number of non-zero elements Nnz in the matrix F F on (a)
nv for various nx and on (b) nx for various nv . (c) The dependence of the number of STMC
gates in the oracle OH necessary for encoding F F on nv for various nx. (d) The dependence of
the number of STMC gates on nx for various nv . Here, the text in different colours indicate the
fitting equations approximating the scaling with respect to nv and nx or Nv and Nx.

η (2.11). The non-sparsity ςF̂ of the submatrix F̂ does not change with Nx or Nv. Yet,
ςF̂ depends on the discretization method or boundary conditions of the simulated kinetic
model.

The depth of the circuit for S scales as O(1) if one uses STMC gates, and, according to
Claudon et al. (2023), an arbitrary STMC gate controlled by n qubits can be decomposed
into a circuit with O(log2(n)

log2(12) log2(1/εSTMC)) depth, as mentioned in § 6.4. The
oracles for C f and F̃ scale as O(nv). The scaling of the oracle CE implemented using
QSVT is O(nv log2(ε

−1
CE,qsvt)).

Then, in summary, the main contribution to the scaling of the BE oracle of the whole
matrix A is due to the oracle encoding F̂ , and the resulting scaling is

O[nx + nv + ςF̂ poly(Nx)poly(nv)+ nv log2(ε
−1
CE,qsvt)]. (7.28)

8. Discussion

A complete QSVT circuit for modelling a boundary-value problem was tested in
Novikau et al. (2023). The QSVT circuit discussed here has a similar structure up to
the BE oracle, so, in principle, it can be done similarly. However, this is currently
beyond the capabilities of the QuCF framework, as the kinetic problem considered here
requires significant computational resources. Specifically, the BE oracle alone involves
2nv + nx + 11 qubits, and our test (§ 5) requires at least nv = 5 and nx = 7. Hence,

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

Block encoding via data compression 33

the total number of qubits in the BE oracle must be 28 or more. Apart from this,
the QSVT circuit needs an extra ancilla, and the initialization block needs at least
two extra ancillae. Thus, the minimum number of qubits of the entire circuit for the
matrix inversion is 31. Moreover, the inversion of the considered matrix, which has the
condition number around 105, requires millions of calls of the BE oracle. Extraction of
classical information further increases the circuit complexity. As usual, extracting all the
information would require a large number of measurements and, therefore, is not an option,
as that would rule out quantum speedup. To retain the speedup, one can measure just
a few integral characteristics, such as the electric-field energy. This can be done using
amplitude-estimation-based techniques discussed by Novikau et al. (2023). Note, though,
that, even then, the amplitude estimation (Brassard et al. 2002) requires at least O(κA)

repetitions of the QSVT circuit, which makes it necessary to use preconditioning.

8.1. Preconditioning
As mentioned earlier, a QSVT-based algorithm for solving (1.1) essentially amounts to
inverting the matrix A. Unfortunately, for boundary-value wave problems, and kinetic
problems in particular, A typically has a large condition number κA. This makes accurate
inversion challenging and also complicates extracting classical information, since the
success probability of the circuit scales as O(κ−1

A) (see Novikau et al. 2023). A solution to
this can be to find a good preconditioner. Specifically, suppose one finds a matrix P such
that the matrix PA has a much smaller condition number than that of A, κPA � κA. From
(1.1), it follows that

PAψ = Pb. (8.1)

Then, the matrix PA is easier to invert than the original matrix A, so it may be possible to
easily calculate the solution in the form

ψ = (PA)−1Pb. (8.2)

A schematic of the QSVT circuit with a preconditioner is shown in figure 17. Here, P is
computed by the separate BE oracle UP, the oracles UA and Ub can be the same as in the
problem without a preconditioner, so the only additional step needed is to implement UP.
An advantage of this approach (compared with constructing oracles for PA and Pb) is that
UP does not have to be constructed precisely. If, instead of the intended P, UP encodes a
slightly different preconditioner P ′, this changes (8.1) into P ′Aψ = P ′b, but the latter is
still equivalent to the original (1.1) leading to an equivalent solution ψ = (P ′A)−1P ′b. As
long as the condition number of P ′A is comparable to that of PA, the matrix P ′ serves the
role of a preconditioner just as well as the matrix P and, thus, the modified UP is just as
good as the intended UP.

The implementation of the combined operator UPUA may require a simple compression
gadget (see Fang, Lin & Tong 2023) to guarantee correct computation of the product
P ′A. This gadget will need two ancillae, two quantum decrementors and the adder A2
(figure 19), i.e. the arithmetic operators that scale linearly with the number of qubits in the
gadget. Thus, the gadget will not deteriorate the overall algorithm scaling.

8.2. Remaining challenges
The main issues that remain to be addressed in future works are the following. The spectral
norm of our BE is around 10−2. This significantly worsens the QSVT scaling. The main
reason for this is that, in our current version of the BE, the oracle UD is not optimized. To
bring the norm close to one, an optimization procedure for constructing a more optimal

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

34 I. Novikau, I.Y. Dodin and E.A. Startsev

FIGURE 17. A schematic of the circuit that solves the preconditioned system (8.1). The oracle
UP encodes the preconditioner P, the oracle UA encodes the original matrix A. The oracle Ub
encodes the right-hand-side vector b into the input register ‘in’ that is originally initialized
in the zero state. The blue box highlights the QSVT circuit that encodes an odd polynomial
approximating the inverse matrix (PA)−1/κPA. The gates denoted as φk correspond to the
controlled rotations indicated by the grey dashed boxes in figure 7.

version of the oracle UD is needed. The algorithm can be based on the same foundations
discussed in § 7.

Another issue, which has already been mentioned in § 6.1, is that the encoding of
the source with a non-trivial profile may significantly reduce the success probability of
the overall quantum algorithm. For instance, both QSVT or QETU methods compute
a Gaussian with success probability scaling as O(σG/xmax), where σG is the width of
the Gaussian (see Kane et al. 2023). To increase the probability, it may be better to
approximate the source profile with a different function that is easier to encode. For
instance, the encoding of a strongly localized source (i.e. δ function) requires one or
several Pauli X gates and has the success probability equal to unity. An impulse with
the amplitude 2−ns/2 potentially can be encoded using ns Hadamard gates and O(ns) Pauli
X gates. Hence, it may be possible to approximate a given source by a set of pulses, which
then can be encoded efficiently and ensure a high success probability at the same time.

9. Conclusions

In this paper we propose an algorithm for encoding linear kinetic plasma problems
in quantum circuits. The focus is on modelling electrostatic linear waves in a
one-dimensional Maxwellian electron plasma. The waves are described by the linearized
Vlasov–Ampère system with a spatially localized external current that drives plasma
oscillations. This system is formulated as a boundary-value problem and cast in the form
of a linear vector equation (1.1) that can be solved using the QSP-based algorithm. The
latter requires encoding of the matrix A in a quantum circuit as a sub-block of a unitary
matrix. We developed an algorithm for BE A into a circuit using a compressed form
of the matrix. This significantly improves the scaling of the resulting BE oracle with
respect to the velocity coordinate. However, further analysis is required to improve the
scaling along the spatial coordinate. The proposed algorithm can serve as a foundation for
developing BE algorithms in more complex kinetic linear plasma problems, for example,
for modelling of electromagnetic waves in magnetized plasma.

Acknowledgements

The authors thank Ilon Joseph for valuable discussions.

Editor Nuno Loureiro thanks the referees for their advice in evaluating this article.

Funding

The research described in this paper was supported by the Laboratory Directed Research
and Development (LDRD) Program at Princeton Plasma Physics Laboratory (PPPL), a

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

Block encoding via data compression 35

national laboratory operated by Princeton University, and by the U.S. Department of
Energy (DOE) Office of Fusion Energy Sciences ‘Quantum Leap for Fusion Energy
Sciences’ Project No. FWP-SCW1680 at Lawrence Livermore National Laboratory
(LLNL). Work was performed under the auspices of the U.S. DOE under PPPL Contract
DE-AC02-09CH11466 and LLNL Contract DE-AC52–07NA27344.

Declaration of interests

The authors report no conflict of interest.

Data availability statement

The open-source freely available C++ code of the QuCF framework used for the
emulation of the quantum circuits created in this work can be found in Novikau (2024c).
The detailed structure of the quantum circuits can be found in Novikau (2024b).

Appendix A. Analytical solution

Here, we derive an analytical solution of (2.4) for the special case when the plasma is
homogeneous (n = T = 1). By applying the Laplace transform (Appendix B) to (2.4), we
obtain

iωgω − v∂xgω + Eω∂vF = 0, (A1a)

iωEω +
∫
vgω dv = −Sω (A1b)

(assuming g0 ≡ g(t = 0) = 0), where Sω = E0 − j(S)ω due to (B2). Let us also apply the
Fourier transform in space (Appendix B), assuming zero boundary conditions at infinity
(i.e. gω|x→±∞ = Eω|x→±∞ = 0). This leads to

iωgω,k − ikvgω,k + Eω,k∂vF = 0, (A2a)

iωEω,k +
∫
vgω,k dv = −Sω,k. (A2b)

From the above equations, we obtain

gω,k = − iEω,k
k

∂vF
v − ω/k

, (A3a)

Eω,k = iSω,k

(
ω − 1

k

∫
v∂vF
v − ω/k

dv
)−1

. (A3b)

For the background Maxwellian distribution (2.6), the electric field becomes

Eω,k = iSω,k
ωε(ω, k)

, (A4a)

ε(ω, k) = 1 + [1 + ξZ0(ξ)]/k2, (A4b)

where ξ = ω/(k
√

2), and the function Z0(ξ) is defined via the plasma dispersion function
Z(ξ) = √

π e−ξ 2 [i − erfi(ξ)] as (see Stix 1992)

Z0(ξ) =
{

Z(ξ), k > 0,

−Z(−ξ), k < 0.
(A5)

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

36 I. Novikau, I.Y. Dodin and E.A. Startsev

By applying the Laplace transform in time and the Fourier transform in space to (2.2),
we also obtain

− iωρ(S)ω,k + ikj(S)ω,k = ρ
(S)
0,k, (A6)

where ρ(S)0,k = ρ
(S)
k (t = 0), whilst the initial electric field satisfies the Gauss’ law:

ikE0,k = ρ
(S)
0,k . (A7)

Thus, we obtain
E0,k = j(S)ω,k − ωρ

(S)
ω,k/k, (A8)

from where one can see that
Sω,k = −ωρ(S)ω,k/k. (A9)

As a result, (A4a) yields

Eω,k = − iρ(S)ω,k
kε(ω, k)

. (A10)

Let us assume an oscillating source charge density:

ρ(S)(t, x) = Q(x) exp(−iω0t). (A11)

This corresponds to

ρ
(S)
ω,k = iQk

ω − ω0
, (A12)

and (A10) yields

Eω,k = Qk

k(ω − ω0)ε(ω, k)
. (A13)

To find the evolution of the electric field in time, we perform the inverse Laplace transform
(B4):

Ek = − iQk

k

⎡
⎣exp(−iω0t)

ε(ω0, k)
+
∑
q≥1

exp(−iωqt)
(ωq − ω0)∂ωε(ωq, k)

⎤
⎦ . (A14)

We are interested only in the established spatial distribution of the electric field that
is observed at t → +∞. Because of the Maxwellian background distribution (2.6), the
plasma is stable, i.e. Imωq(k) ≤ 0, for all q ≥ 1. Therefore, exp(−iωqt) → 0 at t → +∞,
for all such q, and the Fourier components of the electric field become

Ek = − iQk

k
exp(−iω0t)
ε(ω0, k)

. (A15)

We use the source spatial distribution as in (2.10), whose Fourier transform is

Qk = ik
√

2πΔS exp(−k(Δ2
Sk + 2ix0)/2). (A16)

Finally, to find E(x) at t → +∞, we need to compute the inverse Fourier transform of Ek,
i.e.

E(x) = − i
2π

∫ +∞

−∞

Qk eikx

kε(ω0, k)
dk, (A17)

which can be done numerically. In § 5 this result is used for benchmarking our classical
numerical simulations.

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

Block encoding via data compression 37

Appendix B. Laplace and Fourier transformation

For a given function y(t), we define the temporal Laplace transform as

yω = L[y(t)] ≡
∫ +∞

0
y(t) eiωt dt, (B1)

where ω is a complex value such that Imω is large enough for the integral to converge.
Accordingly, the Laplace transform of the time derivative of y can be written as∫ +∞

0
eiωt∂ty dt = −iωyω − y0, (B2)

where we integrated by parts and introduced y0 = y(t = 0). The Laplace transforms of
higher-order derivatives are derived similarly.

The inverse Laplace transform is

y(t) = L−1[yω] ≡ 1
2π

∫ +∞+iγ

−∞+iγ
yω exp(−iωt) dω. (B3)

In the inverse transformation, the integration contour goes along the axis (−∞ +
iγ,+∞ + iγ)with a positive γ such that all singularities of yω lie below the axis. Provided
that yω is well behaved at Imω → −∞ and also that the only singularities of yω are poles
ωj, one can shift the integration contour downward in the complex-ω plane while still
encircling the poles from above. Then, the contribution from the horizontal part of the
contour vanishes and only the pole contributions remain. In this case, the integral can be
computed as a sum of residues at the function poles:

L−1[yω] = −i
∑

j

Res
(
yω exp(−iωt), ωj

)
. (B4)

We define the Fourier transform of a given function z(x) as

zk =
∫ +∞

−∞
z(x) exp(−ikx) dx, (B5)

where k is a real value. The inverse Fourier transform is then

z(x) = 1
2π

∫ +∞

−∞
zk eikx dk. (B6)

Appendix C. Supplemental gates

To encode the complex value ec = |ec| exp[i arg(ec)], we use the operator

Rc(θz, θy) = Ry(θy)Rz(θz), (C1)

with θz = −2 arg(ec) and θy = 2 arccos(|ec|).
To shift an unsigned integer encoded in qubits by an integer more than 1, one can use the

gates discussed in Novikau et al. (2023), Suau et al. (2021) and Draper (2000). However,
since here we need only shifts by ±1, ±2 and ±3, we introduce shorter circuits for these
operations. The shift by ±1 corresponds to an incrementor or decrementor (figure 18).
These operators are denoted as A1 and S1, correspondingly, in figure 11. The shift by ±2

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

38 I. Novikau, I.Y. Dodin and E.A. Startsev

FIGURE 18. The circuit of an incrementor, denoted as A1, which acts on the target register t
with n qubits. The circuit of a decrementor denoted as S1 is inverse to the circuit shown here.

FIGURE 19. The circuit of an adder, denoted as A2, which adds 2 to the unsigned integer
encoded in the target register t with n qubits. The circuit of a subtractor by 2, S2, is inverse
to the circuit shown here.

FIGURE 20. The circuit of an adder, denoted as A3, which adds 3 to the unsigned integer
encoded in the target register t with n qubits. The circuit of a subtractor by 3, S3, is inverse
to the circuit shown here.

does not modify the least significant qubit and, therefore, corresponds to the incrementor
or decrementor whose circuit is shifted upwards (figure 19). These operators are denoted
as A2 and S2, correspondingly. The circuit for the adder by 3, shown in figure 20, can
be understood as a combination of the circuits of an adder by 4 and a subtractor by 1.
The adder and subtractor by 3 are denoted as A3 and S3, correspondingly. The number of
STMC gates in all these operators scales as O(n).

REFERENCES

AMBAINIS, A. 2012 Variable time amplitude amplification and quantum algorithms for linear algebra
problems. In 29th International Symposium on Theoretical Aspects of Computer Science (STACS
2012) (ed. C. Dürr & T. Wilke), Leibniz International Proceedings in Informatics (LIPIcs), vol. 14,
pp. 636–647. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

AMERI, A., YE, E., CAPPELLARO, P., KROVI, H. & LOUREIRO, N.F. 2023 Quantum algorithm for the
linear Vlasov equation with collisions. Phys. Rev. A 107, 062412.

BARENCO, A., BENNETT, C.H., CLEVE, R., DIVINCENZO, D.P., MARGOLUS, N., SHOR, P., SLEATOR,
T., SMOLIN, J.A. & WEINFURTER, H. 1995 Elementary gates for quantum computation. Phys. Rev.
A 52, 3457–3467.

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000795

Block encoding via data compression 39

BERRY, D.W. & CHILDS, A.M. 2012 Black-box Hamiltonian simulation and unitary implementation.
Quantum Inf. Comput. 12 (1–2), 29–62.

BRASSARD, G., HØYER, P., MOSCA, M. & TAPP, A. 2002 Quantum amplitude amplification and
estimation. Quantum Comput. Inf. 305, 53–74.

BRIO, M. & WU, C.C. 1988 An upwind differencing scheme for the equations of ideal
magnetohydrodynamics. J. Comput. Phys. 75 (2), 400–422.

CAMPS, D., LIN, L., BEEUMEN, R.V. & YANG, C. 2023 Explicit quantum circuits for block encodings
of certain sparse matrices. arXiv:2203.10236.

CLADER, B.D., DALZELL, A.M., STAMATOPOULOS, N., SALTON, G., BERTA, M. & ZENG, W.J. 2022
Quantum resources required to block-encode a matrix of classical data. IEEE Trans. Quant. Engng
3, 1–23.

CLAUDON, B., ZYLBERMAN, J., FENIOU, C., DEBBASCH, F., PERUZZO, A. & PIQUEMAL, J.-P. 2023
Polylogarithmic-depth controlled-not gates without ancilla qubits. arXiv:2312.13206.

COSTA, P.C.S., AN, D., SANDERS, Y.R., SU, Y., BABBUSH, R. & BERRY, D.W. 2021 Optimal scaling
quantum linear systems solver via discrete adiabatic theorem. arXiv:2111.08152.

DONG, Y., LIN, L. & TONG, Y. 2022 Ground-state preparation and energy estimation on early
fault-tolerant quantum computers via quantum eigenvalue transformation of unitary matrices. PRX
Quantum 3, 040305.

DONG, Y., MENG, X., WHALEY, K.B. & LIN, L. 2021 Efficient phase-factor evaluation in quantum
signal processing. Phys. Rev. A 103 (4).

DRAPER, T.G. 2000 Addition on a quantum computer. arXiv:quant-ph/0008033.
ENGEL, A., SMITH, G. & PARKER, S.E. 2019 Quantum algorithm for the Vlasov equation. Phys. Rev. A

100, 062315.
FANG, D., LIN, L. & TONG, Y. 2023 Time-marching based quantum solvers for time-dependent linear

differential equations. Quantum 7, 955.
GILYÉN, A., SU, Y., LOW, G.H. & WIEBE, N. 2019 Quantum singular value transformation and beyond:

exponential improvements for quantum matrix arithmetics. In Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, pp. 193–204. Association for Computing Machinery.
https://dl.acm.org/doi/proceedings/10.1145/3313276.

HARIPRAKASH, S., MODI, N.S., KRESHCHUK, M., KANE, C.F. & BAUER, C.W. 2023 Strategies for
simulating time evolution of Hamiltonian lattice field theories. arXiv:2312.11637.

HARROW, A.W., HASSIDIM, A. & LLOYD, S. 2009 Quantum algorithm for linear systems of equations.
Phys. Rev. Lett. 103, 150502.

JENNINGS, D., LOSTAGLIO, M., PALLISTER, S., SORNBORGER, A.T. & SUBAŞI, Y. 2023 Efficient
quantum linear solver algorithm with detailed running costs. arXiv:2305.11352.

JONES, T., BROWN, A., BUSH, I. & BENJAMIN, S.C. 2019 QuEST and high performance simulation of
quantum computers. Sci. Rep. 9 (1), 10736.

KANE, C.F., GOMES, N. & KRESHCHUK, M. 2023 Nearly-optimal state preparation for quantum
simulations of lattice gauge theories. arXiv:2310.13757.

KUKLINSKI, P. & REMPFER, B. 2024 S-fable and LS-fable: fast approximate block-encoding algorithms
for unstructured sparse matrices. arXiv:2401.04234.

LAPWORTH, L. 2024 L-QLES: sparse Laplacian generator for evaluating quantum linear equation solvers.
arXiv:2402.12266.

LIN, L. 2022 Lecture notes on quantum algorithms for scientific computation. arXiv:2201.08309.
LIU, D., DU, W., LIN, L., VARY, J.P. & YANG, C. 2024 An efficient quantum circuit for block encoding

a pairing Hamiltonian. arXiv:2402.11205.
LOW, G.H. & CHUANG, I.L. 2017 Optimal Hamiltonian simulation by quantum signal processing. Phys.

Rev. Lett. 118, 010501.
LOW, G.H. & CHUANG, I.L. 2019 Hamiltonian simulation by qubitization. Quantum 3, 163.
MARTYN, J.M., ROSSI, Z.M., TAN, A.K. & CHUANG, I.L. 2021 Grand unification of quantum

algorithms. PRX Quantum 2, 040203.
NIELSEN, M.A. & CHUANG, I.L. 2010 Quantum Computation and Quantum Information, 10th

Anniversary edition. Cambridge University Press.

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://arxiv.org/abs/2203.10236
https://arxiv.org/abs/2312.13206
https://arxiv.org/abs/2111.08152
https://arxiv.org/abs/quant-ph/0008033
https://dl.acm.org/doi/proceedings/10.1145/3313276
https://arxiv.org/abs/2312.11637
https://arxiv.org/abs/2305.11352
https://arxiv.org/abs/2310.13757
https://arxiv.org/abs/2401.04234
https://arxiv.org/abs/2402.12266
https://arxiv.org/abs/2201.08309
https://arxiv.org/abs/2402.11205
https://doi.org/10.1017/S0022377824000795

40 I. Novikau, I.Y. Dodin and E.A. Startsev

NOVIKAU, I. 2024a Classical modeling of the electrostatic kinetic plasma problem. https://github.com/
QuCF/KIN1D1D.

NOVIKAU, I. 2024b The full circuit for the BE oracle. https://github.com/QuCF/QuCF/wiki/EVM.
NOVIKAU, I. 2024c QuCF framework. https://github.com/QuCF/QuCF/tree/EVM-2024.
NOVIKAU, I., DODIN, I.Y. & STARTSEV, E.A. 2023 Simulation of linear non-Hermitian boundary-value

problems with quantum singular-value transformation. Phys. Rev. Appl. 19, 054012.
ROSSI, Z.M. & CHUANG, I.L. 2022 Multivariable quantum signal processing (M-QSP): prophecies of the

two-headed oracle. Quantum 6, 811.
CUSOLVER 2024 CUDA library to solve sparse linear systems. https://docs.nvidia.com/cuda/cusolver/

index.html#cusolversp-t-csrlsvqr, accessed: 2024.
STIX, T.H. 1992 Waves in Plasmas. AIP-Press.
SUAU, A., STAFFELBACH, G. & CALANDRA, H. 2021 Practical quantum computing. ACM Trans. Quant.

Compu. 2 (1), 1–35.
SÜNDERHAUF, C., CAMPBELL, E. & CAMPS, J. 2024 Block-encoding structured matrices for data input

in quantum computing. Quantum 8, 1226.
SUTTON, R.S. & BARTO, A.G. 2018 Reinforcement Learning: An Introduction. A Bradford Book.
THOMPSON, K.W. 1987 Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys.

68 (1), 1–24.
TOYOIZUMI, K., YAMAMOTO, N. & HOSHINO, K. 2023 Hamiltonian simulation using quantum singular

value transformation: complexity analysis and application to the linearized Vlasov-Poisson equation.
arXiv:2304.08937.

YING, L. 2022 Stable factorization for phase factors of quantum signal processing. Quantum 6, 842.
ZHANG, X.-M. & YUAN, X. 2023 On circuit complexity of quantum access models for encoding classical

data. arXiv:2311.11365.

https://doi.org/10.1017/S0022377824000795 Published online by Cambridge University Press

https://github.com/QuCF/KIN1D1D
https://github.com/QuCF/KIN1D1D
https://github.com/QuCF/QuCF/wiki/EVM
https://github.com/QuCF/QuCF/tree/EVM-2024
https://docs.nvidia.com/cuda/cusolver/index.html#cusolversp-t-csrlsvqr
https://docs.nvidia.com/cuda/cusolver/index.html#cusolversp-t-csrlsvqr
https://arxiv.org/abs/2304.08937
https://arxiv.org/abs/2311.11365
https://doi.org/10.1017/S0022377824000795

	1 Introduction
	2 Model
	2.1 One-dimensional Vlasov--Ampère system
	2.2 Boundary-value problem

	3 Discretization
	4 Matrix representation
	4.1 The vector
	4.2 The source term
	4.3 The matrix A

	5 Classical simulations
	6 Encoding the equations into a quantum circuit
	6.1 Initialization
	6.2 Block encoding: basic idea
	6.3 Single-target multicontrolled gates
	6.4 General algorithm for the BE
	6.5 Ancilla qubits for the BE
	6.6 Constructing the oracle UD

	7 Construction of the oracle OH
	7.1 General strategy
	7.2 The algorithm for BE
	7.2.1 Main idea
	7.2.2 Decomposition of the matrix
	7.2.3 Set extension
	7.2.4 Correction of overlapping elements
	7.2.5 Set splitting

	7.3 Extrapolation of the matrix DA
	7.4 Encoding the submatrix S
	7.5 Encoding the submatrix Cf
	7.6 Encoding the submatrix
	7.7 Encoding the submatrix CE
	7.8 Scaling of the BE oracle

	8 Discussion
	8.1 Preconditioning
	8.2 Remaining challenges

	9 Conclusions
	Appendix A. Analytical solution
	Appendix B. Laplace and Fourier transformation
	Appendix C. Supplemental gates
	References

