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ON THE POSITIVE ROOTS OF AN EQUATION INVOLVING A
BESSEL FUNCTION

by SIEGFRIED H. LEHNIGK

(Received 1st October 1987)

1. Introduction

In this paper we shall discuss the positive roots of the equation

H(r)=(-Br2 + A)Iq(r) + rrq(r) = O,AeR,B>O,q>-l, (1.1a)

where lq is the modified Bessel function of the first kind. By means of a recurrence
relation for Iq(r) [2, (5.7.9)], equation (1.1a) can also be written in the form

H(r) = (-Br2 + A + q)Iq(r) + rIq+l(r) = 0. (l.lb)

We shall show that, depending on the parameters A, B and q, the equation H(r) = 0
has either one positive simple root, or two positive simple roots, or one positive double
root, or no positive roots at all.

Throughout this paper and without further reference we shall freely use the recurrence
relation mentioned above and the asymptotic formulas for Iq(r) for small (positive) and
large values of r [2,(5.16.4), (5.16.5)]. Furthermore, continuity of H as a function of the
parameters A, B and q as well as of its argument will tacitly be exploited.

Interest in equation (1.1) arises in connection with the functional properties of the
delta function initial condition solution of the generalized Feller equation [3, (4.1)]
which can be interpreted as a density function [4, (3.8)].

2. The reduced equation

For B = 0, equation (1.1) reduces to

h(r) = AIq(r) + rl'q(r) = 0,AeR,q>-l,

so that

h(r)-H(r) = Br2lq(r).

The equation h(r) = O can be transformed into a classical one which contains the Bessel
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function Jq. The corresponding theorem on the roots of that equation is well known [1,
5, 15.25]. Nevertheless, for later references, it is useful to formulate the result for h(r) = 0
explicitly.

Theorem 2.1 For AeR, q> — 1, the equation /i(r) = 0 has exactly one positive simple
root if A + q< 0 and no positive roots if A 4- q ̂  0.

3. The equation H(r) = 0

Before going into details we note that, if p > 0 is a zero of the function H(r) defined in
(1.1), then

H'(p) = P(p)p-lIq(p), (3.1)

H"(p) = Q(p)p-2Iq(p), (3.2)

H'"(p) = R(p)p-1Iq(p), (3.3)

where

P(r)=-[B2r4-(l-2B(l-A))r2 + {A2-q2)l (3.4)

Q(r)=-[3B2r*-(l-2B(l-A))r2-(A2-q2)l (3.5)

R(r)=-2[Br2 + l+A + 2Bq2-2B~]. (3.6)

In some neighbourhood of p the power series expansion

H{r)^{r-p)H'{p)+^{r-p)2H'\p)+~{r-pfH'"(p)+ - (3.7)

is valid.

The structure of H'(p) at any positive zero p of H(r) shows that H{r) can have at most
three distinct positive zeros. This follows from the fact that the polynomial P(r) can
change sign at, at most, two distinct positive points. An essential consequence of this
observation is that there exists a smallest positive zero of H(r) if there are positive zeros
at all.

Theorem 3.1 If B>0, A + q>0, q> — 1, the equation H(r) = 0 has exactly one positive
simple root.

Proof. 1. For small positive values of r the formula
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holds. Therefore, if A + q > 0, H{r) > 0 for r > 0 sufficiently small. Furthermore, H(r) I —
oo as r f oo. Consequently, under the assumptions, H(r) has at least one positive zero.
This fact will tacitly be used in subsequent arguments.

2(a). Let A — q>0 so that A>0, A2 — q2>0. Within their individual restrictions let A,
B and q be arbitrarily given. The sequence of the coefficients of the polynomial P(r)
defined in (3.4) has an even number of variations in sign. Therefore, there are three
alternatives: P(r) has two distinct positive zeros; P(r) has no positive zeros; P(r) has a
positive double zero.

We set l-2B(l-A) = a, 4B\A2-q2) = b, and A2-q2 = c. Then the roots of the
equation P(r) = B2rA - ar2 + c = 0 are

± { ( 2 B 2 ) " 1 [ a ± N / ? ^ b ] } 1 / 2 (3.9)

with a2-b = 4[B2(l-2A + q2)-B(l-A) + %]. Unless the inequalities A>\, 1 -
0 hold simultaneously, there exists exactly one positive value for B, namely

1, (3.10)

such that a > 0 and a2 — b = 0. For this value of B the equation P(r) = 0 has the positive
double root

o = iBll^c]il2. (3.11)

(i) P(r) has two distinct positive zeros ol<o2. Let p be the smallest positive zero of
H(r). Then p cannot be in the interval (0, <r2)- To see this, observe that p | oo as
B[0 (see Section 2) and that <Xi|N/c! Therefore, if 0<p<<7j for some B>0, it
would have to move across IT, into the interval (<TJ,CT2) as BJ.O. But, by (3.1) and
(3.4) H'(p)>0 if pe(al,a2) which is impossible if p is the smallest positive zero of
H(r). Thus, any positive zero of H(r) is greater than or equal to <j2. But p cannot
be equal to o2. For, if p = a2, the expansion (3.7) holds with H'(a2) = 0 and, by
(3.2) and (3.5), H"(a2)<0 which implies H(r)<0 in some neighbourhood of p = a2

which is impossible. Therefore, p>a2. But then H'(p)<0 so that p is a simple
zero of H(r). Clearly, H(r) cannot have a zero greater than p. Consequently,
under the current conditions, H(r) has exactly one positive simple zero.

(ii) P(r) has no positive zeros. In this case H'(p)<0 whenever p is a positive zero of
H(r). Therefore, H(r) has exactly one positive simple zero.

(iii) P(r) has a positive double zero a. By (3.10) and (3.11)

The factor of l^a) is nonnegative for q ̂  0. Therefore, H(a) > 0 and any positive zero p
of H(r) must be greater than a. If p>a, then H'{p)<0 so that H(r) has exactly one
positive simple zero.
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Now let — 1 <q<0 and set q= —p. By the result of the previous paragraph

# » = [ - y/~c + A]lp(a) + al'p(a) = a(p) > 0,

c = A2 — p2. (We observe that a = a{p) is an even function of p by (3.10) and (3.11).) The
last inequality holds for p = 0, i.e., <x(0)>0. Continuity implies that

if p>0 is sufficiently small. Suppose there exists p>0 such that H_P(CT) = 0. Then

/ _ p H p - / p H . p = <T(/_»/»-/;,(ff)/ '_p(t7)) = a(p)/_p(a). (3.12)

Bessel's differential equation for Iq [2, (5.7.7)] implies that

r[/ _ p(r)/p(r) - lp(r)l'_ p(r)] = P(p) = const.

Using the series expansions for Iq and I'q and letting r { 0, we conclude that

This and (3.12) lead to

Using again the series expansion of 7p and that for 7p+1 we obtain from (3.13), after
some manipulations,

[ > /c - / l + p] = { [ - v / c + /l + p]( l-p2)-1+(l+p) ' 1}y+(posi t ive terms) (3.14)

with a2/2 = (\-A + sfc)yfc. (It may be helpful to provide a few hints on these
manipulations. The right-hand side of (3.13) can be written in the form [ — ̂ /c + A + q]
[power series of positive terms]+ 2(<r/2)2 [power series of positive terms]. Multiplication
of the equation by T(l +p)F(l — p), subsequent transposition of term -^/c + A + q from
the right to the left, and grouping of the remaining terms on the right by powers of a2

leads to (3.14).) One can show that, in the present circumstances, the left-hand side of
(3.14) is less than the first term at the right (the positive terms neglected). In fact, the
inequality can finally be brought into the form
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Therefore, the assumed equality (3.12) is contradictory. We have inequality, the left-hand
side being less than the right-hand side in (3.12). This implies that / /_ P (CT)>0.

Consequently, under the present conditions, H(r) again has exactly one positive simple
zero which is greater than a.

2(b). A—q^O so that A>0, q>0, and A2 — q2^0. Within their individual restrictions
let A, B and q be arbitrarily given. There are two alternatives: P(r) has one positive
zero; P(r) has no positive zeros.

(i) P(r) has one positive zero ax. If p is the smallest positive zero of H(r) we have
p^ffj for, otherwise, H'(p) would be positive which is impossible. The zero p
cannot be equal to ol. For, if p = oi, H'(<Ti) = 0> W'(ffi)<0> so that, by (3.7),
H(r)<0 in some neighbourhood of p = ol which is impossible. Therefore, p>ax.
But then H'(p) < 0 and, consequently, H(r) has exactly one positive simple zero.

(ii) P(r) has no positive zeros. (In this case A2 — q2 = 0.) Then H'(p)<0 at any positive
zero of H(r). Consequently, H(r) has exactly one positive simple zero. This
completes the proof.

Theorem 3.2 / / B>0, A + q = 0, q> — 1, the equation H(r) = O has exactly one positive
simple root if B<[2(l+q)y1, and H(r) = 0 has no positive roots otherwise.

Proof. Within the assumptions let A, B and q be arbitrarily given. Then A= — q<\,
and A2 — q2=0. As (3.4) shows, there are two alternatives: P(r) has one positive zero;
P(r) has no positive zeros.

(i) P(r) has one positive zero. (The roots of P(r) = 0 are given in (3.9).) This requires
that a=l-2B{\-A)>0, i.e., 0<B<[2{l~A)yl = l2(l + q)y1. In these circum-
stances, as (3.8) shows, H(r)>0 for r > 0 sufficiently small, i.e., H(r) has at least
one positive zero. The arguments used in part 2(b)(i) of the proof of Theorem 3.1
can now be applied verbatim.

(ii) P(r) has no positive zeros. In this case a = l-2B(l-A)^0, i.e., B^[2{l+q)yl.
Let B = /? + [2(l +q)y\ 0^0. We write H{r)= -Br2Iq(r) + rIq+l(r) in the form

H(r) = - pr2lq(r) - [2(1 + q)] " V2/,(r) + rlq+ t(r)

„ . . „ , . . 2 S (r/2)2*+« + 2

This expression shows that H(r)<0 for every r > 0 . Consequently, H(r) has no
positive zeros. This completes the proof.

Theorem 3.3 / / B > 0 , A+q<0, q> — 1, there exists exactly one positive B such that
the equation H(r)=0 has two positive simple roots if B<B; it has exactly one positive
double root if B = B; and it has no positive roots if B>B.

Proof 1. The asymptotic formula (3.8), with A + q<0, shows that, in the present
circumstances, H{r)<0 for r > 0 sufficiently small. Furthermore, H(r) | — oo as r | oo. We
also observe that, by Theorem 2.1, the reduced function h(r) has exactly one positive
simple zero.
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2(a). Let A — q<0 so that A<0, A2—q2>0. Let A, B and q be arbitrarily given
within their individual restrictions. There are three alternatives: The polynomial P(r)
given in (3.4) has two distinct positive zeros; P(r) has a positive double zero; P(f) has no
positive zeros.

(i) P(r) has two distinct positive zeros G1<G2. (They are contained in the set defined
in (3.9).) Then B <\2(\ - A)Yl. If B>0 is small, H(r) has a positive simple zero
px as a consequence of Theorem 2.1. Since H(r)<0 for 0 < r < p , , H(r)>0 for
r>px and r sufficiently close to plt H(r) must have at least one other zero
p2>Pi- By the properties of P(r) we have ol<pl<o2, and o2^p2. &ut p2

cannot be equal to a2. The arguments used in part 2(a)(i) of the proof of
Theorem 3.1 can be applied verbatim to verify this statement. Therefore, p2>o2

and p2 is simple. Cearly, H{r) cannot have a zero greater than p2 because, at any
such zero, H' would be negative. Consequently, under the current conditions,
H(r) has two positive simple zeros if B > 0 is sufficiently small.

(ii) P(r) has a positive double zero a. This requires that B = B^<[2(1— A)]"1. (B^ is
given by (3.10), and a by (3.11).) Suppose p>0 is the smallest positive zero of
H(r). If 0 < p < (T, then H'(p) < 0 which is impossible. Thus, p ̂  a. If p = a, then
H(a) = H'(a) = H"((x) = 0 (by (3.1) and (3.2)). Therefore, by (3.7) in some neigh-
bourhood of p = a,

with

according to (3.3) and (3.6). Therefore, in some left-hand neighbourhood of a,
H(r) > 0 which is impossible. Thus, a is not a zero of H{r). Finally, if p >a, then
H'(p)<0 which again is impossible. Consequently, H(r) has no positive zeros.

(iii) P{r) has no positive zeros. In this case, which requires B>B^, H'(p)<0 at any
positive zero of H(r). Consequently, H{r) has no positive zeros.

We can now finish up the present part of the proof. Let

and consider the function

H(o2{B)) = [ - Ba\{B) + A + qV&iiB)) + <72(B)Iq+1(o2(B)).

If B>0 is sufficiently small, o2{B) is the larger of the two positive zeros of P(r) (see
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(3.9)). By part 2(a)(i), H(a2(B))>0 is fl>0 is sufficiently small. By part 2(a)(ii),
H(a2(B))<0 if B = B, . Therefore, there exists at least one 5 e ( 0 , B j such that
//(CT2(B)) = 0 and H\o2(B)) = P(o1(B))o2\B)lq{o2{B)) = 0. In other words, there exists at
least one Be(0,BJ such that H(r;B) has a double zero at r = o2(B). Clearly, H(r;B)<0
for r#CT2(B). But then, if B>B, H(r;B)<0 for every r including the point <x2(B).
Consequently, there exists exactly one Be(0 ,BJ such that H(a2(B)) ~ H'{p2(B)) = 0. By
(3.2) and (3.5) H"(o2(B)) < 0. H{r) has exactly one positive double zero for B = B.

2(b). Let A-q^0 so that - 1 <<j<0, A<1, and A2-q2^0. Within their individual
restrictions let A, B and q be arbitrarily given. There are two alternatives: P[r) has one
positive zero; P(r) has no positive zeros.

(i) P(r) has one positive zero ax. If B > 0 is small, H(r) has a simple positive zero p t

as a consequence of Theorem 2.1. Since H(r)<0 for 0 < r < p 1 ; H(r)>0 for r > p j
and r sufficiently close to pu H(r) must have at least one other positive zero
p2>Pi- By the properties of P(r) we have 0<p1<<r1 and p 2 ^ o v But p2 cannot
be equal to ov For, if p2 = au then

H(r) = ^ ( r - f f l )

in some neighbourhood of al which is impossible. Therefore, p2><5\, p2 is
simple, and H(r) cannot have a zero greater than p2 . Consequently, under the
current assumptions, H(r) has two positive simple zeros if B > 0 is sufficiently
small.

(ii) P(r) has no positive zeros. In this case A2 — q2=0, — l<A<0, and B ^
[2(1— A)~]~l. Then H'(p)<0 at any positive zero p of H(r) which is impossible.
Therefore, H(r) has no positive zeros.

Now let P(r) have the positive zero alt

and consider the function

= [ - Ba2(B) + A

By part 2(b)(i) of this proof, H{ai(B))>0 if B > 0 is sufficiently small. Relative to
we observe that

In contrast to this we note that any zero of H(r) is greater than the positive fixed zero
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Tj of the reduced function h(r) = [A + q]Iq(r) + rIq+1(r). Therefore, as B increases, there
exists a fl>0 such that H(cr1(B))<0. Consequently, there exists at least one B>0 such
that H(<T,(B)) = O, H'(a1(B)) = P(a1(B))a;l(B)Iq(a1(B)) = O. In other words, there exists at
least one B>0 such that H(r;B) has a double zero at r = o1(B~). The uniqueness of B can
be established as before. This completes the entire proof.
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