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This paper deals with certain expansions of analytic functions in
series of polynomials. Explicit forms for the polynomials are given
in terms of the coefficients of the Taylor's expansion and of pre-
scribed positive constants hk. Under suitable conditions, to be
presently discussed, the series converge to th.e function in the Borel
region.

Definition of the polynomials.

Let r be a rectifiable curve enclosing the origin within and on
which/(z) is analytic. For z within F

Let

hx, h2, , hn (2)

be a sequence of positive numbers.

By repeated use of the identity

1 I z + hkt 1
t — z (1 + hk)t^ (1 + hk)t t — z

we have

1 1 z + hxt (z -4- hx t) (z + h21)
* - z ~ (1 + K) t T (1 + h) (1 + h2) i2 ( 1 + K) (1 + h) (1 + A8) t

s

(z + h1t)....(z + hm_1t) (z + h1t)....{z + hmt) _ l
+ • • • • + (l+h1)....(l+hjtm + ( 1 + / H ) . . . . {l+hm)t™-t-~z-

On inserting this expression for l/(t — z) into (1), we have

f(z) =PO(Z)+P1(Z) + • • • • +Pm-*(Z) + Rm(*), (3)
•where

p M _ J _ f (z + ht)....(z + Kt) f(t)dt
r«KZ) - 2 J (1 h) (1 h) • +i ' (V

mV ' 2niiT(t-\-hxt) (t + hmt)'i-z
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On expanding the integrand in (4) in powers of z and integrating,
it is clear that Pn (z) is a polynomial of degree n, or less, in z. (For
72, = 0, we set 1 in the numerator of the integrand.) It is the infinite
series of polynomials

P0(z)+P1(z) + P2(z)+ .... (6)

that we shall study.
We shall first, however, get an alternative expression for Pn(z).

Set
1/Hn = (1 + hj .. . . (1 + hn+1), (7)

(z + M ) •••• (z + hnt)=zn + bnlz
n-H+ .... +bnnt

n. (8)

The b's in (8) are the elementary symmetric functions of hL, .. .., hn;
that is, bnp is the sum of all products taken p at a time formed
without repetitions from the first n of the h's. For uniformity we
take bn0 = 1.

An application of Cauchy's integral formula to (4) gives

Using the form (8) and performing the differentiation involved,
we find

" fk(0)
Pn(z) = Hn S y - ^ i bnin_kzK . (9)

If the Maclaurin's series for/(z) is

f(z) = ao + aiz + a2z
2+ . . . . , (10)

we may write

Pn(z) = Hn S akbn>n_kzK (11)

Since 6n0=f=0, we see that Pn (z) is actually of degree n unless an = 0.

The Borel region.
Let a ray, that is, a half line, issue from the origin. Proceed

from the origin along this ray until a singularity of the function / (z)
is encountered, if any. Through the singular point draw a line L
perpendicular to the ray. Do this for all rays from the origin. The
Borel region £ consists of all those points P such that the closed line
segment OP joining the origin 0 to P contains no point on a line L.
Otherwise put, the points of B lie on the same side of every line L as
the origin itself.

The region B contains the interior of the circle of convergence of
the Maclaurin's series for f(z). If this circle is a natural boundary
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for the function, so that all points on the circumference are singular
points, then B coincides with the circle of convergence; otherwise B
is a larger region.

Let P be a point of B, and let C be the circle on OP as diameter.
C may or may not lie wholly in B; but we have the result that f(z)
is analytic in and on C. For, if we suppose the contrary, there is a
ray from 0 encountering a first singular point P1in or on C. If P1 is
on C the line L1 through P1 perpendicular to OPX passes through P;
if P1 is within C then L\ meets OP at an interior point. Both of
these situations are impossible, since P is a point of B.

Conversely, if f (z) is analytic in and on the circle on OP as
diameter then P belongs to B. For then any line Lx through a
singularity P1 outside C and perpendicular to OPX does not meet the
segment OP. Thus we might define B as the totality of points P
such that/(z) is analytic in and on the circle on OP as diameter.

The convergence theorem.
We now consider the representation of the function by the series

P0(z) + P1(z) + P2(z) + . . . . (6)

THEOREM I. If hk tends to infinity with k, and if 2 h^1 diverges,
then (6) converges uniformly to f(z) in any region which lies, together
with its boundary, in the Borel region.

It will suffice to prove the theorem for a suitable region about
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any point z0 of B. The uniform convergence for the region of the
theorem will follow by combining a finite number of regions about
points, making the usual application of the Heine-Borel theorem.

The circle C on Oz0 as diameter has centre £z0 and radius \ \ z01.
Since f(z) is analytic in and on C it is also analytic in and on a
slightly larger circle concentric with G. This latter circle, with radius
(5 + 9.) Izo I > which may be written in terms of the variable t thus

or
2tt-z0i-z0t = 2q(l +q)zozo, (12)

where bars indicate conjugate imaginaries, will be used as the contour
F around which integrations are made. Here zo=j=O, and q (> 0) is
sufficiently small. We suppose q < 1.

The neighbourhood of the origin, z0 = 0, may be given a separate
treatment. However, this case is covered by the remark that
I Rm (z) I < e about the origin when this inequality holds in a ring
enclosing the origin.

We shall prove the uniform convergence in a region £' bounded
by a circle with centre z0 and radius \q'z\zo\. The circle B' lies inside
F. Any z in B' may be written

z = Zo + 77, | V < ^ 2 | z 0 | . (13)

We wish to show that the remainder (5) is uniformly small in B' for
all m > m0, sufficiently large.

As a first step we investigate an upper bound for the absolute
value of the product,

m z + hk tn (14)
t + hkl

which appears in the formula for the remainder (5). To this end we
consider the infinite product resulting when m approaches infinity.
This product converges or diverges with

* z + h,. I *
n -.—1~ > (15)

k=1 t + nkt
which is easier to study. This latter product converges or diverges
-with the series

l

provided the terms have ultimately all the same sign. In particular,
if the terms become positive and (16) diverges, then (15) diverges to

zero.
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The general term of (16) may be written

h^1 (tt - zz) + 2tt - zt - zt 1 7 )

Here t is on F and z is in B', whence we have from (12) and (13)

2ti — zt — zt = 2q (1 + q) z0 z0 — rji — yt.
Now

\r,t + ljt\^2\r1t\<qZ(l+q)z0z0,
SO

q(l + q) (2 -q)zozQ< 2tt -zt — zt <q(l + q) (2 + q)z0z0.

These inequalities, together with the simple ones

q 2 z 0 z 0 <S « <S ( 1 + qf z 0 z 0 , \ l l — z z \ < 4 z 0 z 0 ,

lead to the following upper and lower bounds for (17):

g) J 4ftt-^ + g ( l + g ) ( 2 + g) J

These bounds are independent of z and t and are both positive for
hk sufficiently large. The factor preceding l/hk in each bound
approaches a positive limit as k becomes infinite. With suitable
positive constants cx, c2, say c2 = q/8, c2 = 6/q, we can find N such
that for all k > N

z+hkt
t + hkt h.

(18)

Since SfyjT1 diverges this last inequality shows that (16) diverges
and that (15) diverges to zero.

Turn now to the remainder (5). Taking TO sufficiently large,
TO > m0, the product (14), which is the absolute value of the product
in (5), may be made arbitrarily small for all z in B' and all t on F.
Since the other factors in (5) are uniformly bounded, it follows that
| Bm (z) | can be made uniformly small in B'. Hence

and the series converges uniformly to f(z) in B'.

The case of convergence everywhere.
Let us suppose that the series SA^1 converges. Then lim hk= oo ,

and we can derive the inequality (18) in B'. From this we can prove
that Rm (z) approaches a limit uniformly and the series (6) converges
uniformly in B'. But we can go much further than this.

The polynomials in (6) are defined, of course, for all values of z.
We now show that in this case the series always converges:
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THEOREM II . If "Lh^1 converges then the series (6) converges
absolutely and uniformly in any bounded region.

We prove the theorem for the region \z\ ^ R, arbitrarily large.
Let /(z) be analytic in and on the circle | z | 5S r < R, and let | / (z) | < M
on this circle. Then the coefficients in Maclaurin's series (10) satisfy

| ak | < Mr~*.

We have the following bound for (11) in the circle of radius R,
simplifying by means of the identity (8),

| Pn (z) | ^ Hn S | ak z* |. &„, „_* < MHn S (22/r)* bn> n_4
o o

M
= MHn n [(R/r) + hk] = n -YTJ

I 1 + An+1 i 1 + fik

Since S fy^1 converges this last product converges,

the approach to H being from below. Therefore
\Pn{z)\<MHh~lv

Since ~Lh~lx converges, it follows that (6) converges absolutely and
uniformly in the circle | z | SS R.

The sum S (z) of the series (6) is analytic in the whole z-plane.
We shall show, however, that the series does not converge to the
function/(z), ruling out one obvious case.

THEOREM III . / / 2 hk~
x converges and if f(z) is not identically zero,

then S (z) and f(z) are not identical.
The theorem is obvious if / (z) has any finite singularity, since

S (z) has none.
It suffices in the general case to prove that the two functions

differ at one point. Since

/ (z) = S (z) + lim Rm(z),

we wish to show that we do not have lim Rm (z) = 0 everywhere.
At the origin, setting z = 0 in (5),

f(t)dt\ m If

iUo)= — n — W
2-ni i 1 + nr1JT

= n W
1 A T" '*£

where A =j= 0. If / (z) does not vanish at the origin then lim Rm (0)=j=0,
and the theorem is established.
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If f(z) vanishes at the origin the proof is much less simple. Let
s be the order of the zero, so that as (s > 0) is the first non-vanishing
coefficient in the Maclaurin's series. We see from (11) that Pn (z) (n<s)
vanishes identically and that Pn (z) (n ^ s) has a zero of order s at
the origin. For z = 0 we have

[z-8/ (z)]o = a,, \z- Pn (z)]0 = Hn a, &„, „_„

for n ^ s; and, summing the latter,

= a8?, Hnbn>n.s. (19)

We can prove by induction that
m m—e
S Hnbn,n_s = Hm S bm+ltk. (20)

«=s *=0

To do so we observe first that the formula holds for m = s. Assuming
it true for w ^ s w e prove it for m 4- 1. We make use of the relations

Hm = Hm+1 (1 + hm+2).

which are derived easily from equation (7) and identity (8). The
latter is, in fact, a fundamental recurrence formula involving the b's.
Adding Hm+i 6m + l m_e + 1 to both members of (20), we have

m + l m—8
£ Hnbntn_s = Hm+1 [ £ bm+lk(l + hm+2)

n=8 k=0
m—s

E [ ^ {̂ m + 2, ifc+1 + (^m+1, i— "
ft=0

m—8 + 1

In this reduction the terms of £(6m+li k — bm+h k+1) cancel in pairs
except the first, bm+lt0, which is replaced by its equal, 6m+2,o. a n ( i
the last, — &m+i,m-«+i) which cancels the final term of the formula.
The result is (20) with m replaced by m + l, and the induction is
complete.

We shall make a further alteration by writing, from (8),
1 m + l m-s m + l

*=0 k=m-s+l

Formula (19) finally takes the form
m m+l
£ [a-Pn(z))0 = at[l-Hm £ bm+1>J.

i=m—s+1
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Now this summation, carr ied to infinity, is [z~s S (z)](1. We wish
to prove tha t this is unequa l to {z~"f(z)]0; t h a t is, t ha t

m + l
lim Hm S bm+ltk^=0. (21)

m—»°o k=m~8 + l

We know already that the limit exists. On multiplying by the
product hx... hm+1 and dividing by its equal, bm+lm+1, we have

j»+l m + l m+l
=*[ n (l+h&)~^.[ 2 6m+1>4]

rm + 1 1 "I r m+l
= II 2

L 4 = ] 1 + Jh£ J . Lft =m_s
m—« + l "m+l , m+l - '

When m becomes infinite the product which forms the first factor of
the final member converges to the value A =J= 0. Also, the last term
in the sum which forms the second factor is always equal to 1, and
the terms are positive. The limit of this convergent sum of s + 1
terms is therefore equal to or greater than 1. The inequality (21) is
thus established.

It follows from the preceding discussion that S (z) and / (2) have
different coefficients in the terms involving zs. They are therefore
not identical. Theorem III has how been proved with complete
generality.
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