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1. INTRODUCTION 

The dynamical evolution of a cluster in which N, the number of stars, 
is large, results primarily from encounters between pairs of stars; 
these tend to modify the system so that it approaches a more probable 
configuration. In statistical equilibrium, the distribution of stars 
among states of different energy, E^, per unit mass would be determined 
to a first approximation by the probability P-[, where 

Pt cc g l expC-BEi) ; (1) 

here g^ is the statistical weight of each state, proportional to the 
amount of phase space available, and B is a constant. Evidently dynam­
ical evolution tends a) towards stellar states which are more tightly 
bound by their mutual gravitational attraction and have a correspond­
ingly lower E-£, and b) towards the free state, where the volume of 
available phase space is very large. The only relatively stable state 
for an isolated cluster is one in which a central, non-evolving massive 
configuration (a compact object, or tight binary, or a hierarchical 
multiple system) has all the initial binding energy of the cluster and 
all other stars have escaped. 

The general tendency of large-N clusters towards a combination of 
collapse and disruption has been known for some years. The different 
mechanisms by which such a cluster evolves and the possible evolution­
ary sequences resulting were reviewed ten years ago, at IAU Symposium 
No. 69 at Besancon (Spitzer, 1975). The present paper discusses the 
progress made in this field during the past decade; the topics consid­
ered are essentially those related to the precollapse phase until n, 
the number of stars per unit volume, approaches its peak value. Work 
on the postcollapse phase is reviewed in the following paper by D. C. 
Heggie. The extensive research in these fields prior to 1974 is mostly 
omitted from the present review, apart from a few passing references. 
Some of the topics discussed here have been treated in greater detail 
in the review by Lightman and Shapiro (1978). 

The three sections which follow this Introduction discuss certain 
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physical processes which have been the subject of considerable research 
during the last decade. Section 2 treats the gravothermal instability, 
which appears to be a dominant process in a late phase of cluster evo­
lution. The development of mass stratification, which is more impor­
tant in the early phases, and which is associated with its own insta­
bilities, is discussed in Section 3. Effects produced by the hardening 
of binaries are reviewed in the fourth Section. Discussion of the var­
ious additional effects which appear during the collapse phase, and 
presumably bring to a halt the contraction of the central core, are 
presented in the final Section 5. 

It should be emphasized that these different physical processes 
are generally defined for idealized clusters. Analysis of each effect 
separately helps us to understand the evolution of actual clusters, and 
of the numerical models which approximate real clusters. The discus­
sion here attempts to explain the phenomena observed in these models in 
terms of the separate idealized physical processes. However, it must 
be remembered that when all these processes are occurring at the same 
time, it may not be possible even in principle to isolate precisely the 
effects produced by each process. 

This review is not in any sense complete, and necessarily reflects 
the author's special interests and background. Thus the effect of a 
massive black hole on cluster evolution is not discussed, despite the 
elegant and interesting theory of this subject developed by various 
authors. Similarly, several papers on the origin and early evolution 
of globular clusters are not included. 

This survey deals essentially with isolated clusters, since there 
has been little work during this last decade on the effects produced by 
the tidal field of the Galaxy. However, one should keep in mind that 
evaporation of stars from many of the globular clusters is much in­
creased by a tidal cut-off at a finite escape radius, rt, and may be a 
dominant effect on the evolution of such clusters. The importance of 
this process is apparent in the results presented at this Symposium by 
Stodolkiewicz; according to his detailed model, enhanced evaporation 
leads roughly to the linear decrease of bound mass with time found by 
Henon (1961) in his pioneering work. For some clusters, strong tidal 
shocks will increase the evaporation rate further. Fall and Rees 
(1977) have suggested that the surviving clusters we observe are those 
for which these processes do not lead to complete disruption in 10 1 0 

years. 
One prominent characteristic of the research reviewed here is the 

wide variety of techniques which have been employed. Theoretical clus­
ter models have been constructed using the fluid equations, several 
types of Monte Carlo programs, numerical integrations of the Fokker-
Planck equations, N-body calculation of individual orbits, and hybrid 
programs making use of several of these techniques in the same models. 
The methods used in some of these approaches have been greatly extended 
and improved during the last ten years. As the following sections in­
dicate, all this activity has substantially increased our theoretical 
understanding of how a globular cluster must evolve with time, though 
there are still major uncertainties concerning the processes that occur 
late in the core collapse phase. 
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The contact between this impressive structure of theory and astro­
nomical observation is admittedly rather incomplete. Even during the 
precollapse phase, where theoretical problems seem minimal, the obser­
vational data cannot be said to verify the theory in any detail. My 
training under Sir Arthur Eddington, together with my own inclinations, 
lead me to believe that the theory, based on simple dynamical assump­
tions of unquestioned validity, has an independent credibility. 

2. GRAVOTHERMAL INSTABILITY 

2.1. Instability criteria 

The numerous analyses of the gravothermal instability all stem from the 
classic paper by Antonov (1962), who investigated the stability of gas­
eous isothermal spheres bounded by a rigid, insulating outer spherical 
shell, with a radius denoted here as r^. Antonov's work is based on 
the entropy, S, of the system, defined as 

s = " /f<£> v, t)ilnf(ar, v, t)drdv , (2) 

where f is the usual phase-space distribution function (to which we 
shall usually refer as the velocity distribution function). Equation 
(2) is the so-called Boltzmann entropy, consistent with the one-
particle distribution function considered in equation (1). We assume 
here, and throughtout all of Section 2, that all stars in the system 
have the same mass, m, and that no binary or multiple stars are pres­
ent. 

We now consider what changes in S are possible when the total 
mass, M, energy, E, and volume, V, of the system are held fixed. At 
all times the velocity distribution function, f, is assumed Maxwellian 
and the system is taken to be spherically symmetrical, since these two 
assumptions maximize S; changes in the system are produced by changes 
in 6f, corresponding to changes in particle density and local mean 
square velocity. In an equilibrium system 6S must vanish to first or­
der in 6f, but is proportional to (6f)2. Antonov demonstrated that if 
the density contrast, D, between the center and the radius r = r^ is 
less than 709, then 6S is negative for all perturbations; the equilib­
rium state is the most probable one, and is thermodynamically stable. 
For a density contrast exceeding 709 the system will be unstable for 
some spherical perturbations, provided that the perturbed velocity dis­
tribution remains Maxwellian. 

The physical principles underlying this effect were discussed some 
time ago by Lynden-Bell and Wood (1968), who named it the "gravothermal 
instability". They pointed out the importance of negative specific 
heat in driving such an instability in self-gravitating systems. In a 
bounded isothermal sphere with a sufficient central condensation, the 
central core can contract and become steadily hotter as it loses heat 
to the outer regions. 

A series of investigators have analyzed the gravothermal insta­
bility criterion from several viewpoints. Hachisu and Sugimoto (1978) 
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reconsidered Antonov1s problem, computing 6S for changes from an equi­
librium state, with M, E and V kept constant, and assuming both spheri­
cal symmetry and a locally Maxwellian velocity distribution. Their 
mathematical method is quite different, however, and yields the criti­
cal D values for modes with various numbers of nodes. For the funda­
mental mode, a value of 709 is again found for D. 

A more direct demonstration of instability is provided by a time-
dependent analysis of perturbations, demonstrating that these grow ex­
ponentially under some conditions. Such an analysis has been carried 
out by Nakada (1978) for the same isothermal sphere considered by Anto-
nov, with a short mean free path assumed for the self-gravitating par­
ticles. As D increases above a critical value, essentially the same as 
found by Antonov, the growth rate increases above zero, and is propor­
tional to the thermal conductivity. 

Yet another technique for demonstrating the appearance of the gra-
vothermal instability is use of the classical "linear series" method. 
This method, developed originally for static systems in dynamical equi­
librium, is based on the nature of a series of equilibrium configura­
tions in which some parameter, u, is assumed to vary. A static system 
is characterized by a potential energy W, which will depend on y. If 
with increasing y, W increases to a maximum and then decreases, the 
point of maximum W is called a "turning point"; in general the system 
will be dynamically stable on one side of a turning point and unstable 
on the other (Jeans, 1929). 

This same technique has been applied (Lynden-Bell and Wood, 1968) 
to systems in thermodynamic equilibrium, especially to the bounded iso­
thermal sphere considered by Antonov. In this case, -S, the negative 
of the total entropy, replaces W. The gas is in equilibrium if S is a 
maximum under any redistribution of mass and energy, again keeping 
mass, energy and volume constant. For the parameter \i we take the den­
sity contrast, D, between the center and the gas just inside the bound­
ing sphere, and we consider a series of equilibria all of the same mass 
and volume, but of different temperature and energy. For D only 
slightly exceeding unity, gravothermal binding is unimportant and the 
system is stable. At D = 709, the entropy has a minimum value, and for 
greater D the system is thermodynamically unstable, in agreement with 
Antonov's results. The mathematical basis for this method as applied 
to clusters and the various conditions required for its application 
have been discussed by various authors—see Horwitz and Katz (1978) and 
Katz (1978). 

Since M and V are constant along the series of equilibria consid­
ered here, one can visualize a given mass moving along the series if 
heat is slowly added or subtracted. Since dS = TdE under these condi­
tions, it is clear that when S is an extremum so is E; for the critical 
configuration at which S is a minimum, E also has its minimum value. 
For application of the linear series method to clusters it is generally 
simpler to compute E rather than S along the sequence. A plot of E 
against 1/T is a spiral, with each extremum in E or 1/T corresponding 
to the onset of some instability (Katz, 1978). 

Evidently there is no question about the existence of the gravo­
thermal instability in a bounded isothermal gas sphere. However, 
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actual stellar systems differ from these idealized spheres in at least 
two major respects. First, the mean free path is much longer than the 
dimensions of the system. Second, the velocity distribution is not 
Maxwellian to begin with, since in the absence of any confining sur­
face, the velocity distribution function, f(jr, v), must vanish for v 
greater than the escape velocity. 

Because of the long mean free path (LP), f(jl, sv) will generally be 
anisotropic if the mean stellar kinetic energy varies systematically 
with distance from the cluster center. In such systems, fCjr, jv) must 
be essentially constant along a dynamical trajectory at any one time, 
if the relaxation time much exceeds the dynamical crossing time. Hence 
if the core becomes hotter than the outer regions, as one expects when 
the gravothermal instability develops, then far out in the system 
f(j:, v) for radial orbits, which pass through the core, will tend to 
vary less steeply with E than will the corresponding distribution func­
tion for tangential orbits. Thus the perturbations possible for a LP 
system differ from the perturbations with local Maxwellian distribu­
tions which are possible in the case of short mean free path (SP). As a 
result the entropy increase possible in such perturbations is somewhat 
less in the LP case than in the SP case. 

The instability expected in this LP case, when the initial equi­
librium is again an isothermal sphere bounded by a reflecting shell, 
has been studied by Ipser and Kandrup (1980) and by Inagaki (1980). 
The former showed that the criterion for instability was the same as 
for the SP case analyzed by Antonov (1962). The latter analyzed the 
time-dependent growth of these perturbations in the LP case, though 
with an isotropic velocity distribution assumed in the Fokker-Planck 
equation. As expected, the growth rate varied inversely as the inter-
particle relaxation time. This latter study, like the parallel SP 
analysis by Nakada (1978) discussed above, gave eigenfunctions for the 
instabilities, though with non-Maxwellian values for the perturbed ve­
locity distribution function. The physical differences between the SP 
and LP systems do not seem to have much qualitative effect on the ini­
tial appearance of the gravothermal instability, though of course the 
growth rates in these two cases depend very differently on the density 
and the velocity dispersion. 

In systems which are not confined by a bounding surface, f(j:, v) 
must be truncated at the escape energy. In such a configuration the 
entropy is not a local maximum, and the system is thermodynamically un­
stable to begin with. It is this instability that leads to evaporation 
of stars and resultant contraction of the system, effects fully studied 
more than a decade ago. However, it is not implausible that additional 
contraction, related to the gravothermal instability, will appear at 
the turning points computed without regard to the initial non-
Maxwellian character of fCr» v) • Analyses of such instabilities have 
been carried out by Katz (1980) for various energy-truncated models, in 
which f vanishes above some cut-off energy. The gravothermal instabil­
ity is found to set in when the escape velocity v0O(0) from the center 
is about 3.8 times the central velocity dispersion vm(0). As shown in 
Figure 1, a comparison with the Monte Carlo computations of Spitzer and 
Thuan (1972) shows that the core collapse seems to change its character 
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t / t rh 

Figure 1. Comparison of Cluster Evolution with the Predicted Onset of 
the Gravothermal Instability. The plotted points show the radii con­
taining 2 and 10 percent, respectively of the cluster mass for model F 
of Spitzer and Thuan (1972), plotted as a function of time since the 
cluster was born as a uniform sphere. For comparison, the arrow shows 
the time at which the cluster should become subject to the gravothermal 
instability, as computed by Katz (1980). 
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at about this time, with r^2 subsequently decreasing linearly with 
time; r̂  is the radius enclosing two percent of the mass. These re­
sults seem to provide some confirmation of the gravothermal instability 
in realistic systems. 

2.2 Self-similar collapse model 

To make further progress in this field, one must analyze the detailed 
consequences of the gravothermal instability. Hachisu et al. (1978) 
have carried out a time-dependent calculation for a confined isothermal 
gaseous sphere, with an initial density contrast, D, much exceeding the 
critical value of 709. The core can either expand and cool or contract 
and heat up. If it expands, the sphere gradually approaches another 
equilibrium configuration with D < 709. If the core starts to con­
tract, it continues to shrink without limit, developing a structure in 
which p is constant at small r and varies as r"101 for larger r. The 
value of a depends on the functional form of the thermal conductivity; 
if the formula for a fully ionized gas is used, a is 2.4, the same val­
ue found by Larson (1970) in his analysis based on the moment equa­
tions. 

A more realistic analysis, based on an improved formula for the 
heat flow in a globular cluster, has been given by Lynden-Bell and Eg-
gleton (1980). They considered a solution of the self-similar type, as 
in the familiar Sedov solution for a supernova shell. Thus p(r) is a 
function of a scaled radius r*, equal to r/rc(t), where rc(t) may be 
taken as the core radius. Hence 

p = pc(t)p*(r*) , (3) 

where pc(t) is the density at r = 0. Analogous equations apply for 
M(r), the mass interior to r, for vm, the rms random velocity and for 
Fc, the conductive energy flux per unit area at the radius r. 

Their equation for the conductive heat flux, Fc, modifies the 
standard formula for a perfect gas to allow roughly for the long mean 
free path in a cluster. In the limit of short mean free path (SP), we 
have the usual result 

Fc - ClPVmX ̂  (^) , (4) 
where vm is again the rms velocity, X is the mean free path, and C^ is 
a constant of order unity. All particles are again assumed to have the 
same mass, m. Here XdT/dx is the excess temperature between the start­
ing point of the particles and the stopping point one collision later. 
In the LP limit, this excess temperature becomes HdT/dx, where H is the 
scale height of the particle orbits. In addition, in this case the 
number of orbits over a distance H required for one collision is t^t^, 
the ratio of the collision time, or relaxation time, to t^, the dynami­
cal crossing time; this ratio is about equal to H/vm. Hence Fc in 
equation (4) must be multiplied by the factor (H/X) x (t^/tj.), yielding 
the result 
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C ^ d (3kT 
c t r dx ^ m 

If we set H proportional to the distance vm/(Gp)1/2, take for tr the 
expression (Spitzer and Hart, 1971a, equation (30), with ¥ = 1 for only 
one mass component present) 

t r = 15.4G5pm*nA > ( 6 ) 

and replace 3kT/m by v m
2, we obtain the final equation adopted by 

Lynden-Bell and Eggleton (1980) for the conductive flux, 
F _ C?pGm £n(0.4N) dvm

2
 ( ? ) 

C vm d x ' 
where C2 is another constant, 

A second assumption is that all perturbations vanish as r* becomes 
large. Thanks to this assumption the outer regions of the cluster be­
come irrelevant, and the cluster as a whole can be an isothermal 
sphere, either bounded or infinite, or a more complex configuration 
with an inner isothermal region surrounded by a halo of stars moving in 
more nearly radial orbits. For the actual LP case the velocity distri­
bution must clearly be anisotropic, as we have seen in subsection 2.1. 
While this anisotropy is ignored in the self-similar solution, the 
analysis provides a first approximation for the gravothermal collapse 
of the inner regions of realistic clusters. 

The time dependent functions rc(t), M c(t), etc. are identical with 
those obtained in self-similar solutions for simple model clusters with 
evaporation of stars (Gurevich and Levin, 1950a, King, 1958). In par­
ticular, for rc(t) and Mc(t) we have 

rc(t) oc (l - t/t0)(^-2O/O-2O , (8) 

Mc(t) oc (l - t/t 0) 2/( 7~ 3^ . (9) 

Evidently tg is the time at which the collapse becomes singular, with 
rc and Mc approaching zero together, while pc becomes infinite. The 
parameter £ is the ratio of the relative change of energy to the rela­
tive change of mass for the cluster core, giving 

E c dt Mc dt # {10) 

For evaporation of stars from an isolated cluster as a result of dis­
tant two-body encounters, the escaping stars have a very small kinetic 
energy at infinity and £ is a small negative number, approaching zero 
with increasing N. Another relation for self-similar collapse is 

vc2 a Pc(l-c)/(5-3?) . ( 1 1 ) 

For a gravothermal collapse, p*(r*) has been determined numeri­
cally (Lynden-Bell and Eggleton, 1980) and is shown in Figure 2. This 
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Figure 2. Density Profile of Similarity Solution for Gravothermal Col­
lapse. The solid curve shows the density profile for the self-similar 
solution found by Lynden-Bell and Eggleton (1980); p* E p(r,t)/p(0,t) 
is plotted against r* = r/rc(t), where rc(t) is the radius of the con­
tracting core. The dashed line shows p* varying as r*"2#l+, while the 
thin straight line shows the asymptotic variation of p* as r*~2*21. 
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determination is an eigenvalue problem for the parameter, £, whose val­
ue is found to be 0.737. The asymptotic logarithmic slope, a, of the 
£np* -£nr* plot is a simple function of £ and equals 2.208. As a re­
sult of the inwards temperature gradient, this density distribution is 
slightly steeper than for the isothermal sphere, in which p varies 
asymptotically as r""2. The systematic material velocity, wr, is di­
rected inwards for small r* and outwards for large r*, vanishing at the 
radius where p* = 0.0071, corresponding to r* = 16 in Figure 2. 

2.3 Comparison with realistic cluster models 

As a test for the importance of the gravothermal instability we may 
compare this idealized first approximation with detailed cluster mod­
els. In the early Monte Carlo models by Spitzer and Thuan (1972) the 
scale height, K, of the core varies with time as (1 -t/tg) 0* 6 5, in com­
parison with the exponent 0.53 found in equation (8) for £ = 0.737. 
Also, the macroscopic velocity, wr, was found to reverse sign when the 
local density was less than p(0) by some two orders of magnitude, in 
rough agreement with the theory. 

A more conclusive confirmation of self-similar gravothermal col­
lapse is obtained in later realistic cluster models, which achieve 
greater precision and extend to later times. The central density in 
these later models increases by some 3 to 4 orders of magnitude as com­
pared with an increase of only 2 orders of magnitude in the earlier 
work. The Fokker-Planck equation, with f taken to depend both on ener­
gy, E, and angular momentum, J, was used by Cohn (1979) in a detailed 
numerical computation of cluster evolution. A new Monte Carlo method, 
which follows the diffusion of stellar orbits in E, J space, but with 
two important differences from the Henon (1971a,b) method, was devel­
oped and applied by Marchant and Shapiro (1980). Variations in the 
time step used give the correct mean changes of velocity during each 
orbital period, and radial variations in the number of shells (Henonfs 
superstars) per unit mass give the necessary additional data needed to 
follow the evolution of a core whose mass continually decreases. These 
two modifications much increase the precision of the calculations, es­
pecially for late stages of core collapse. 

An important result obtained with these models is the variation of 
velocity dispersion, vm, in the core with changing core density. Fig­
ure 3 shows the relationship obtained in these two types of models. 
The value of vm at r = 0 is designated here as VQ. The slope of the 
dashed line, which is about the same as for the plotted data, corres­
ponds to pc varying as V Q 2 0 , or to an exponent 0.10 in equation (11), 
as compared to the value 0.094 found for £ = 0.737. For the evapora­
tive model of core collapse, £ = 0, and the predicted exponent in equa­
tion (11) is 0.20, twice the "observed" value obtained from Figure 3. 
These results provide rather strong confirmation that the gravothermal 
instability rather than evaporation is the dominant mechanism in the 
core collapse of isolated clusters. 

The self-similar solution of Lynden-Bell and Eggleton received 
further confirmation from a much more extended Fokker-Planck computa­
tion by Cohn (1980). In this work f was averaged over J, thus ignoring 
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Figure 3. Variation of Central Density with Velocity Dispersion. The 
plotted points show nc, the central density in the cluster core, as a 
function of VQ, the rms velocity dispersion at the center, computed by 
Marchant and Shapiro (1980) with a Monte Carlo program. The solid line 
shows these same quantities computed by Cohn (1979) from the time-
dependent Fokker-Planck equation. For comparison the dashed line rep­
resents nc varying as V Q 2 0 during the evolution. 
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the anisotropy of the velocity distribution. With the simplification 
so achieved, the computations were extended to a central density in­
creasing by almost 20 orders of magnitude, a somewhat formal extension, 
since the core mass at the end is much less than a solar mass! An in­
teresting feature of the results is that at late times the density p 
outside the innermost core varies asymptotically as p~ 2 , 2 3, in very 
close agreement with the result p~ 2 , 2* obtained from the similarity 
solution. 

Another noteworthy result of Cohnfs work is that as the cluster 
collapses, the collapse rate, measured by tr(0)d£np(0)/dt, approaches a 
constant value equal to about 6 x 10~3 in the first Fokker-Planck com­
putation, with non-isotropic velocities considered, and 3.6 x 10~~3 in 
the second one, with f(E, J) averaged over J. This difference may re­
sult in part from the increased precision in the later computations, 
though one would expect some difference to result between these two 
types of velocity distribution. In any case, the collapse is slow in 
that hundreds of relaxation times are required for appreciable evolu­
tion. 

The anisotropy of the velocity distribution associated with the 
gravothermal collapse is evidenced by the Monte Carlo models of Duncan 
and Shapiro (1982), who used the same techniques as did Marchant and 
Shapiro (1980). Their result, confirming earlier less complete compu­
tations by Spitzer and Shull (1975), showed the development in late 
collapse stages of marked velocity anisotropies outside the core but 
well within the half-mass radius r^. At a radius enclosing one fourth 
the total mass the mean square radial velocity exceeded half the mean 
square tangential velocity by 20%. It is clear physically that when 
the velocity dispersion of the core increases the mean square radial 
velocity of all stars on radial orbits will tend to increase, since 
f(E, J) is constant along a dynamical trajectory. One of the ways in 
which kinetic energy is transmitted to the outer regions is by colli-
sional deflections of stars in radial orbits, which increase the mean 
square tangential velocity of stars in the outer regions of the clus­
ter. Not unexpectedly, for r within 3rc the velocity distribution re­
mains nearly isotropic. Evidently this complex process is not consid­
ered in the similarity solution obtained by Lynden-Bell and Eggleton. 

Despite this appearance of velocity anisotropies in their detailed 
models, Duncan and Shapiro (1982) find that in all other respects their 
collapse solution is very similar to that obtained with isotropic ve­
locities assumed. In particular, the density varies about as p""2*2 for 
radii between rc and r^, in close agreement with the results noted 
above for isotropic velocity distributions, both in the self-similar 
solution and in Cohn's isotropic model. We have already seen that the 
variation of pc with vc in the anisotropic Monte Carlo models is in 
relatively close agreement with the self-similar solution, in which the 
velocity distribution is isotropic. Apparently within the half-mass 
radius r^, the approximation of isotropic velocities makes very little 
difference in overall behaviour of a cluster during the collapse 
phase. 

The effect of close encounters during the collapse phase has been 
studied by Goodman (1983), who finds that large-angle deflections do 
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not make any important difference, even when the number of stars in the 
core is small. Similar conclusions for the evaporation of stars from 
clusters at earlier stages were reached by Spitzer and Thuan (1972), 
who compared their Monte Carlo results with Henon's analysis (1960) of 
close encounters, and also by Retterer (1979). 

3. MASS STRATIFICATION 

3.1 Instability criteria 

An idealized theory showed some time ago (Spitzer, 1969) that an iso­
lated cluster with two mass components, m^ and m2> cannot achieve ki­
netic equilibrium in the core if the total mass, M2, of the heavier 
stars, is more than a certain critical fraction of the total mass, M]^, 
of the lighter stars. The physical basis for this result is that when 
P2(°)/pl(°)> t n e ratio of densities of the two components at the clus­
ter center, much exceeds unity, the self-attraction of the heavier 
stars tends to give them an appreciable mean square random velocity 
vm2 which is greater than the equipartition value (m^/n^)1'2vml# A n 

approximate theory gave as a condition of equilibrium the following 
limit on M2/M2 

J = jJZ (JB2)3/2 < 0.I6 . (12) 
M^ ^miJ 

Vishniac (1978) has found that with a continuous mass spectrum a rela­
tion similar to equation (12) can be derived, with m^ equal to the mass 
of the lightest stars present, provided that the total fraction of the 
cluster mass in stars of mass exceeding 1112 replaces M2/M2. The criti­
cal value of d so redefined is about 2; this order of magnitude in­
crease over the corresponding value in equation (12) results in part 
from the fact that m^ is substantially less than the mean mass of the 
stars lighter than m2« 

The equilibrium of two-component systems has received considerable 
attention in the last decade, with some half dozen papers published in 
this area. This work generally indicates that when equipartition is in 
fact present in a system confined by its own gravitational field, the 
computed equilibrium configurations become unstable if the mass frac­
tion in the heavier stars exceeds some critical value, roughly compa­
rable with that found in equation (12). Stable equilibria seem possi­
ble with greater mass fractions of the relatively heavy stars, but such 
equilibria are either not self-confined or are not characterized by 
equipartition. 

Analyses of two-component isothermal systems confined by a rigid 
bounding shell of radius r^ have been carried through by Saito and 
Yoshizawa (1976), Lightman (1977) and Yoshizawa et al. (1978). These 
analyses determine the minimum energy, E c, for different values of 
1112/mi and M2/M1. If M2/M1 is either very large or very small this min­
imum energy, measured in terms of GM2/rb, has the same value -0.335 as 
for a one-component bounded isothermal sphere, with a density contrast, 
D, equal to 709. For intermediate values of M2/M1, E c is positive and 
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no equilibria of negative energy exist. For M2/M1 small, the condition 
that Ec = 0 corresponds to tf about equal to 0.6, some four times 
greater than the upper limit in equation (12). For J equal to 0.16 
and M2/M1 again small, Ec = -0.25. As Ec increases above this value, 
the confinement of the system by the pressure on the outer rigid shell 
presumably becomes increasingly important, and the system becomes less 
and less like an isolated cluster. 

To analyze isolated systems a non-Maxwellian velocity distribution 
must be assumed, with f(E) vanishing for E positive, corresponding to 
stars which escape. In the well known models by King (1966), f(E) is 
truncated according to the law 

f(E) = f0(e"BE - 1) for E > 0, f = otherwise . (13) 

As in equation (1), E is the energy per unit mass. To give a finite 
system, the gravitational potential is assumed to vanish at a finite 
cut-off radius, rt. Two-component systems based on this distribution 
have been analyzed by Merritt (1981) and by Kondrat'ev and Ozernoy 
(1982). They applied equation (13) separately for each of the two com­
ponents, with masses m^ and n^. The latter authors assume that 

Bi/m! = B2/m2 . (14) 

If the central potential <J>(0) has a large negative value, so that 
-B<|>(0) is a large positive number, the cut-off is in the far tail of 
the Maxwellian distribution, and equation (14) gives equipartition of 
energy, with mivmi2 = m2Vm22» For shallow potential wells equiparti­
tion of energy no longer follows from equations (13) and (14); for suf­
ficiently small |B<J)(0)|, f(E) is proportional to BE for v < v^, and the 
mean square velocities are equal for the two mass components. For ex­
ample, if iT̂ /mi = 3, the ratio of kinetic energies of heavy to light 
stars increases to about 1.5 if |B̂ d)(0)| = 3 (Kondrat'ev and Ozernoy, 
1982), approaching n^/mi as | Bl<t>C0) | decreases towards zero. 

In the models by Merritt (1981) the ratio B2/B1 is adjusted to 
preserve equality of kinetic energies between the two mass components 
at the cluster center. Models based on this assumption are obtained 
for arbitrary values of M2/M^. However, the models with J much ex­
ceeding 0.16 seems quite unrealistic; for example, for a model with 
jrf = 1 the fraction of heavy stars within the tiny central core, to 
which equipartition is limited, is only about 10"8 ! The stability of 
these various two-component King models has not been investigated. 

Katz and Taff (1983) have considered two-component models in which 
the velocity distribution function has the following form, based on one 
proposed by Wilson (1975), 

f(E) = f0(e"BE - 1 + BE) . (15) 

Equation (14) was assumed, relating the values of B for the two compon­
ents. The detailed one-component numerical models (as, for example, 
the Fokker-Planck model by Cohn, 1979) show a distribution function in 
the central regions which is intermediate between equations (13) and 
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(15). In the models by Katz and Taff (1983) the gravitational poten­
tial <f>(r) was assumed zero at a boundary radius, rt. The linear series 
method (§2.1) determined the critical condition at which instability 
sets in. 

The results are shown in Figure 4, which plots the critical value 
of k = -B^c^O), the dimensionless depth of the potential well, as a 
function of J , defined in equation (12). Each critical value corres­
ponds to a turning point in a plot of total energy against B]_. The dif­
ferent curves in Figure 4 correspond to different values of n^/mi; the 
arrow is drawn to indicate the critical value of j# given in equation 
(12). Evidently if d increases much above 0.16, the maximum depth of 
the potential well consistent with the theoretical criterion for sta­
bility decreases rather steeply. As pointed out above, with decreasing 
|Bi<J)(0)|, equipartition disappears, and in the limit vmi approaches 
vm2» When n^/mi = 4 and J =0.54, the deviations from equipartition 
at the cluster center are about 50%, and are even greater in the outer 
regions. 

These results on the stability of two-component clusters are not 
entirely conclusive, in view of theoretical uncertainties concerning 
the linear series method as applied to systems with non-Maxwellian 
f(E),—see § 2.1. However, the general evidence certainly points to 
the conclusion that in realistic clusters kinetic equilibrium cannot be 
established in the core if the mass fraction of heavy stars exceeds a 
small value, and the system of heavy stars at the cluster center must 
continue to shrink compared to the light stars. 

3.2 Collapse of realistic clusters 

Ever since the early Monte Carlo computations (Spitzer and Hart, 1971b) 
it has been known that the heavier stars tend to move into the central 
core, where there is an evident tendency toward equipartition, and that 
the core of heavier stars then proceeds to collapse in much the same 
way as do the cores in single-component clusters. Subsequent computa­
tions (Spitzer and Shull, 1975; Saito and Yoshizawa, 1976; Angeletti 
and Giannone, 1977; Inagaki and Wiyanto, 1984) confirm this general re­
sult. There are no simple time-dependent theoretical solutions, such 
as the self-similar solution for the sphere subject to gravothermal in­
stability, with which multi-component models can be compared. As a re­
sult general conclusions are somewhat more difficult to extract from 
these models. 

One result which is of theoretical significance, though not sur­
prising, was obtained by Saito and Yoshizawa (1976), who used Larson's 
(1970) fluid dynamic technique, based on moments of the Boltzmann and 
Fokker-Planck equations, to follow the evolution of an isothermal 
sphere with two mass components confined by a rigid shell. They as­
sumed equal velocities for the two components initially. If the system 
energy was well above the minimum possible, corresponding to stability 
against either gravothermal or mass stratification collapse, they found 
that equipartition developed at the expected rate and the system ap­
proached a stable equilibrium. Lightman and Fall (1978) compared early 
Monte Carlo results with a simple analytical theory for the overall 
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Figure 4. Theoretical Onset of Mass Stratification Instability. The 
curves show the maximum depth of the potential well (in dimensionless 
units) for which a cluster with stars of the indicated mass ratio is 
stable, according to the theory by Katz and Taff (1983). The quantity 
jg , defined in equation (16), was found to be less than 0.16 for 
stable equilibrium (see arrow) in an early theory by Spitzer (1969). 
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properties of the central core, and obtained reasonable fits. They 
considered two effects,—the mass stratification instability and evapo­
ration from the core, on the assumption that the latter phenomenon is 
responsible for the collapse of one-component models; as we have seen, 
more recent computations indicate that this assumption seems invalid. 

An extensive set of model two-component cluster computations was 
obtained by Inagaki and Wiyanto (1984), who used the time-dependent 
Fokker-Planck equation, with an isotropic velocity distribution, fol­
lowing Cohn (1980). With n^/m^ fixed at 2, they constructed models 
with M2/M1 equal to 0.01, 0.05, 0.11 and 1.0; the corresponding jtf 
values are 0.028, 0.14, 0.31 and 2.8. The results show that for the 
lowest J the central core soon approaches equipartition (with (T2 -
Tl)/Tl e<3ual t 0 about 2%) and stays there until just before the final 
collapse. As si increases above unity, the minimum relative difference 
of central temperatures between the two components (i.e., the minimum 
relative difference of kinetic energies) increases, with (T2 -Tj_)/Tj_ 
equal to about 17 percent for j$ - 2.8. During the final collapse 
phase the core is mostly composed of heavy stars even for M2/M1 = 0.01. 
As shown in earlier studies, many of the heavy stars remain outside the 
core, and do not approach equipartition. 

Inagaki and Wiyanto (1984) follow Lightman and Fall (1978) in ex­
plaining their data for core evolution by the predictions of mass stra­
tification and the gravothermal instability, using for £ in equation 
(10) the value 0.74 obtained both from the self-similar solution and 
the more realistic calculations for one-component clusters. In all 
cases, the core collapse rate, measured by tr2d£np2/dt, since the core 
becomes composed largely of the heavier stars, is equal to the corres­
ponding value which they find for a system composed entirely of heavy 
stars. This value equals about 3.5 x 10""3 (when the relaxation time 
they used is multiplied by 3/4 to agree with the different tr(0) used 
by Cohn (1980)), a rate which is essentially identical with that found 
also by Cohn (1980) for one-component systems with an isotropic veloc­
ity distribution. This general result strongly suggests that the final 
core collapse in the two-component clusters is due to the gravothermal 
instability. The chief effect of mass stratification in realistic 
clusters is to produce rather rapidly a concentration of heavy stars 
within the core and to shorten the time of evolution until the gravo­
thermal stability becomes dominant. Also, since tr varies as l/<m> for 
constant p, the dominance of heavy stars increases the final rate of 
collapse, though the time required for this collapse process, once it 
begins, is already very short. 

The effect of stellar mass loss on cluster evolution has been con­
sidered by Angeletti, Dolcetta and Giannone (1980), who employed the 
fluid-dynamical approach developed by Larson (1970). Multi-component 
models, with 5 or 8 stellar groups, were considered, and stellar evolu­
tion during the cluster life was considered. The purpose of this ambi­
tious work was to obtain a fit with the observed detailed properties of 
clusters. A certain qualitative agreement was obtained with M3, but 
the uncertainties in the initial conditions and the neglect of shock 
heating make the results somewhat tentative. 
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4. ENERGY EXCHANGE WITH BINARIES 

4.1 Basic processes 

The exchange of energy between single stars and binaries and its possi­
ble importance in globular clusters has been known since the pioneering 
work of Gurevich and Levin (1950b). These authors also pointed out the 
difference between "soft" and "hard" binaries. The former have net 
binding energies less than the translational energy of single stars and 
tend to gain energy and become softer as a result of gravitational in­
teractions with passing stars. In contrast, "hard" binaries tend to 
lose energy and become harder. At the 1974 Besan^on symposium, two im­
portant papers were in press giving much more extensive information on 
the interactions between single stars and binaries,—extensive numeri­
cal computations by Hills (1975a) and a very thorough analytical dis­
cussion by Heggie (1975). 

The most complete numerical information on the complex interac­
tions between single stars and binaries has since been obtained by Hut 
(1983), based on several hundred thousand orbital integrations. The 
results give definitive values for the mean exchange of energy in such 
encounters. Figure 5 shows the rate coefficient <oA> for this process, 
computed separately for A positive and A negative; a is the cross sec­
tion, while A is the relative change in binary binding energy. All 
stars have the same mass, m. The horizontal scale shows vr, the veloc­
ity of the single star relative to the mass center of the binary, ex­
pressed in units of vc, the incoming velocity for which the total ener­
gy of all three stars (regarded as mass points) vanishes. For three 
stars of identical mass m, vc

2 = 3Gm/2a, where a is the semi-major axis 
of the binary orbit. Figure 5 shows clearly the "watershed effect", 
such that A tends to be negative for large vr/vc, and positive when 
vr/vc is small. 

An important feature of such data is that they resolve a disagree­
ment between Heggie and Hills in dE^/dt, the average rate of increase 
of Efc, the binary's binding energy (defined as positive), in interac­
tions with single stars. Heggie (1975) expressed his results in the 
form 

dEh , AN17 4(3)1/2A ngG2mg3 
j ± = ns<v rcA>Eb = 35 * ^ ^ , (16) 

where ns is the particle density of stars and v s m is the root mean 
square random velocity of the single stars. For the constant A, Heggie 
(1975) obtained a value about 45; the data by Hills (1975a) give a val­
ue of 17 for A. In the results by Hut (1983), plotted in Figure 5, A 
is not exactly constant with vr/vc (as indicated by the systematic 
change in separation between the open circles and the dashed line), but 
equals about 30 for a stellar kinetic energy about 10 percent of E^. 

Encounters between two binary systems can be important within an 
evolved cluster core, where under some conditions binaries can outnum­
ber single stars. An asymptotic theory of this process has been devel­
oped by Spitzer and Mathieu (1980), who assume that the harder, more 
tightly bound binary behaves as a single star, and displaces one of the 
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Figure 5. Energy Change in Collisions between Binaries and Single 
Stars. The plotted points represent average values of aA in collisions 
between single stars and binaries, as a function of their relative ve­
locity at infinity, computed by Hut (1983)• The quantity a is the 
cross-section, and A is the energy gained by the single stars. Aver­
ages over impact parameter and several angles characterizing each en­
counter are taken separately for A positive (open circles) and negative 
(solid circles); a is the semi-major axis of the binary. The dashed 
lines show theoretical results by Heggie (1975). 
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stars in the binary which it encounters. The resultant triple system 
then ejects one of the three stars, perhaps after further encounters 
have increased the orbital eccentricity of the loosely bound component 
so that it comes close to its accompanying binary, and acquires enough 
energy to escape. According to Heggie (1975) and Hills (1975a), the ec­
centricity of a binary is modified more rapidly by gravitational encoun­
ters than is the binding energy. 

Direct computations of binary-binary encounters have been reported 
by Mikkola (1983a, 1984), who carried out roughly 5000 orbital inte­
grations, assuming stars all with the same mass, and by Hoffer (1983), 
who reported some 42,000 orbits, mostly for soft binaries, with several 
mass groups. While these computations are not yet sufficiently de­
tailed to yield all the cross-sections of interest, they should provide 
a check on various simplified models for such interactions. They agree 
with each other (and with Spitzer and Mathieu, 1980) in finding a high 
probability that in a strong interaction between two identical hard bi­
naries, one is disrupted into two single stars; on the average, disrup­
tion results (Mikkola, 1983a) in> some 60% of such collisions, with 30% 
leaving a three-body system. Both authors give preliminary fitting for­
mulae for certain interaction cross-sections. 

The formation of binaries by three-body encounters is, of course, 
a basic physical process of importance for globular clusters. It was 
shown early (Spitzer and Hart, 1971a) and confirmed by Heggie (1975) 
that for typical conditions in clusters this process is normally much 
too slow to have any significance. However, in a collapsing core, 
where the density becomes very high, but the number of stars involved 
is so low that the velocity dispersion remains small, this process can 
become significant as can the formation of binaries through tidal cap­
ture of one star by another. These two processes are discussed in Sec­
tion 5. 

4.2 Effect of primordial binaries on core collapse 

The energy released by a hard binary, as it hardens further in encount­
ers with passing stars, is transmitted chiefly to these single stars 
and increases the cluster energy (computed with each binary system re­
placed by a mass point). If an appreciable fraction of hard binaries 
is assumed to be present, produced when the stars themselves were being 
formed, they can provide an important source of heat to the cluster, 
tending to offset the collapse of the central regions. While this as­
sumption does not seem to be supported by the limited observational 
data available (Trimble, 1980), we shall here explore its conse­
quences. 

A preliminary analysis of cluster evolution when primordial bina­
ries are present was carried out by Hills (1975b), who treated the 
cluster core as a homogeneous sphere, and assumed that the energy re­
leased from binaries went entirely into heating the core. The chief 
driving force for core contraction was assumed to be evaporation. On 
these assumptions he found that for a mass fraction of 40% in binaries, 
and 105 stars present in the core, the density in the core initially 
rises slightly, but then decreases as the core expands. For somewhat 
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lower mass fractions in binaries, the initial contraction is greater, 
but binary hardening still wins out over evaporation eventually, and 
the core re-expands• Somewhat similar computations have been made by 
Alexander and Budding (1979). 

Computations for a realistic cluster containing primordial bina­
ries have been made by Spitzer and Mathieu (1980), using a Monte Carlo 
method. All stars, both single and in pairs, were assumed to have the 
same mass. The energy released by star-binary encounters was computed 
from the results of Hills (1975a) and Heggie (1975), while for binary-
binary encounters the asymptotic theory described in the previous sec­
tion was adopted. The initial mass fraction in binaries was taken to 
be 20 or 50 percent in different models. Since each binary has twice 
the mass of a single star, mass stratification increased the fraction 
of binaries in the inner core to at least 90% by mass towards the end 
of the evolution; evidently binary-binary encounters predominated at 
this time. 

Figure 6 shows the radius containing 2% of the system mass plotted 
against the time, for clusters with 20% of the initial mass in bina­
ries. The plotted curves are for different values of A, the numerical 
constant in equation (16); as we have seen, the correct value is about 
30. For the two models with A = 25, the total binary energy released 
somewhat exceeds the initial binding energy of the cluster, computed as 
though each binary were a mass point. Nevertheless, the collapse of 
the cluster core is apparently not averted, but only postponed, even 
though the core is composed almost entirely of binaries at the later 
times. This effect has two causes. First, about 60% of the energy re­
leased is carried entirely away from the cluster by escaping reaction 
products—mostly single stars. Second, of the energy retained in the 
cluster, only a fraction goes into heating the inner two percent of the 
mass,—the inner core where most of the binary energy is released, and 
where the collapse is mostly concentrated. The reaction products which 
are retained in the cluster have sufficient energies to give them apo-
centers well outside the core, and the angular momentum gained from 
gravitational encounters with passing stars hinders them from returning 
to the central core. Hence the energy of these products is gradually 
absorbed in an extended region of the cluster. 

These models are, of course, approximate and neglect a variety of 
effects. The most important simplification is probably the neglect of 
stars with different masses. As is well known, heavy stars tend to 
displace lighter ones from binary systems, an effect shown clearly in 
computations by Hills (1975a) and by Hills and Fullerton (1980). As 
shown in earlier N-body computations (Aarseth and Lecar, 1975) for sys­
tems with a spectrum of masses, it is usually the heaviest stars which 
end up in a central binary, with other stars in elongated orbits or es­
caping. Evidently the rate of mass stratification would be increased 
by the concentration of massive stars in binaries. The net result 
would be a significant enhancement of core heating, since the detailed 
computations by Mikkola (1983b) show that the heating rate resulting 
from binary-binary collisions grows rapidly with increasing stellar 
mass. 
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Figure 6. Evolution of a Cluster with 20 Percent of Mass in Binaries. 
The radius, r^, containing the inner 2% of the cluster mass is plotted 
against time; both r^ and t are in arbitrary units. Different values 
of A correspond to different coefficients assumed for the rate of ener­
gy gain by single stars from binaries. These computations, carried out 
by Spitzer and Mathieu (1980), show that binaries postpone the collapse 
by at most a factor two in time since the origin of the cluster. 

https://doi.org/10.1017/S0074180900147345 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900147345


PRECOLLAPSE EVOLUTION OF GLOBULAR CLUSTERS 131 

5. PHENOMENA LATE IN THE COLLAPSE 

5.1 Binary formation in three-body encounters. 

As the core density increases, three-body encounters become significant 
and produce new binary stars. Some of these will be soft and will soon 
be disrupted, with a certain fraction giving up energy and becoming 
hard binaries. Other newly formed binaries will be hard to begin with. 
The formation rate, considered early by Agekyan and Anosova (1971), has 
been re-evaluated by Aarseth and Heggie (1976), who find that if Nc is 
the number of stars in a relatively uniform core, the rate of formation 
of hard binaries per unit time is given by 

**a = K 
dt Nc£n(0.4N)tr(0) ' K J 

where tr(0) is the central relaxation time and K is a constant of order 
10. Since we have seen that pc changes on a time scale of several hun­
dred tr(0), it is clear that a large fraction of stars will form bina­
ries if Nc is as low as 102. This tendency is evident in direct dynam­
ical computations of cluster evolution for systems with as few as 100 
stars. Binaries formed in this way (which are sometimes referred to as 
"three-body binaries") are not, in general, very hard, and interact 
strongly with single stars and other binaries, becoming harder and 
heating the system. 

The evolution of a collapsing core, subject to the formation of 
three-body binaries, has been considered in detail by Stodoikiewicz 
1983), using a Monte Carlo method of Henon's type with extensive modi­
fications; in particular the time step is varied with distance from the 
center, as in the work by Marchant and Shapiro (1980), and interactions 
between binaries and single stars are followed in numerical three-body 
integrations, with a number of input parameters chosen at random. 
Binary-binary encounters are treated more crudely; following Spitzer 
and Mathieu (1980), such encounters are assumed to disrupt the binary 
of lower binding energy. A distribution of stellar masses is assumed, 
following the familiar Salpeter formula. As in the models by Spitzer 
and Mathieu (1980), almost all the interactions involving energy gener­
ation from binaries occur in the very central regions, where the den­
sity is highest. 

The models computed in this way show that the core collapse ceases 
when the central density has increased by a factor of 105 to 106 over 
its value in the initial state, taken to be an n = 5 polytrope (Plum-
mer's model). The system then re-expands. It is not obvious why this 
result differs qualitatively from that found by Spitzer and Mathieu 
(1980), who found that core collapse was postponed but not averted. 
Possibly the three-body binaries were sufficiently softer in Stodol-
kiewicz's model so that a greater function of the energy released was 
retained in the central core. The presence of relatively more massive 
binaries, as compared to the individual stars, might conceivably tend 
in this same direction. Further computations of such models, perhaps 
using different computer codes as an overall check, would be important. 

In this connection, the results obtained by Bettwieser and Sugi-
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moto (1984) are of interest. Their calculations are somewhat approxi­
mate, based on moment equations, following Larson (1970), and assume 
the thermal conductivity derived by Lynden-Bell and Eggleton (1980)— 
see equation (7). The energy generation rate per unit mass is assumed 
proportional to Cp^v^ 1, where vm is the velocity dispersion, p is the 
local density, and k is taken to be 1 or 2. Since the energy released 
is assumed to be absorbed locally, it is not surprising that the col­
lapse is halted, again when the density has increased by about 106 

above its initial value. More unexpected is that after the subsequent 
expansion, additional collapses and subsequent re-expansions are ob­
served at intervals of a few times the half-mass relaxation time, trn. 
This phenomenon occurs only if the constant C in the assumed energy 
generation formula is less than some critical value. Consideration of 
the actual cluster population, including the distribution of binaries 
of different mass at different times, would be required to verify the 
reality of these non-linear oscillations, with repeated fluctuations of 
central density by factors as large as 106. 

A much more realistic analysis, again giving oscillations but of 
much smaller amplitude, has been carried through by McMillan and Light-
man (1984a,b), who used a direct N-body dynamical integration for the 
core (Nc < 100), combined with a statistical approach (equivalent to the 
Fokker-Planck equation) for the outer regions. All stars were assumed 
to have the same mass, and no binaries were assumed present initially. 
This pioneering but complex program indicated that core collapse fol­
lowed the similarity solution of Lynden-Bell and Eggleton (1980) until 
the number, Nc, of stars in the core had fallen to about 25, at which 
point the formation and hardening of a central binary liberated energy 
which reversed the core collapse. When the density had decreased to 
about a fourth of its peak value, the central binary was ejected from 
the core, recoiling from a strong interaction with a single star. The 
actual mechanism for this process was the formation of a triple star 
system which subsequently disrupted; as shown by Heggie (1975), input 
of energy from a binary to a single star usually occurs in this way. 
Subsequently the core collapsed again. These successive oscillations 
had relatively little effect on the outer regions of the cluster. 

When a realistic mass spectrum is considered, the central core may 
be predominantly composed of compact, relatively heavy but almost in­
visible objects such as white dwarfs, neutron stars and black holes. 
If a few heavy black holes are present, they are the most likely com­
ponents of the central, most tightly bound binary. The gravitational 
potential resulting from a core of faint objects surrounding a central 
binary could produce a rather minor central peak in the observed visual 
surface brightness of the cluster, an effect pointed out by Illingworth 
and King (1977) for a core of neutron stars and by Larson (1984) for a 
core of black holes. 

While there are uncertainties and approximations associated with 
these various models, there seems very little doubt that binaries 
formed by three-body encounters can terminate and even reverse the pro­
cess of core collapse when N is very small. 
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5.2 Tidal captures and collisions 

Because of the finite size of a star, other complex processes become 
important when the high density of the collapsing core increases the 
rate of all two-body encounters. Fabian, Pringle and Rees (1975) 
pointed out that tidal dissipation during a relatively close encounter 
between two stars could lead to their mutual capture, producing a bi­
nary system. A binary formed in this way is sometimes called a "tidal-
capture binary". Such a binary is initially in a very eccentric orbit, 
with a periastron separation equal to the initial distance of closest 
approach, while the apastron separation is determined by the excess of 
the energy dissipated over the initial kinetic energy. Successive per­
iastron passages will dissipate additional energy, tending to produce a 
nearly circular orbit, with a radius equal to twice the initial peri­
astron separation (provided that stellar rotation makes no significant 
contribution to the total angular momentum). 

The least distance of closest approach, Rm, for capture has been 
computed in detail by Press and Teukolsky (1977) for main-sequence 
stars each of mass M* and radius R*. They find that Rm/R* decreases 
from 5 to 2 as the relative velocity increases from 1 to 100 [(M*/MQ) X 
(R0/R*)]1/2 km/s; for globular clusters 3 is a typical value. The cor­
responding impact parameter is much greater, and the cross-section 
varies as Rm. It follows that the cross-section for an actual colli­
sion (Rm < 2R*) is comparable with that for tidal capture (Rm/R* be­
tween 2 and 3); the effects of such stellar collisions are treated be­
low. 

A detailed review and analysis of tidal capture and of energy 
losses associated with somewhat more distant collisions has been given 
by Ozernoy and Dokuchaev (1982). Because of their close separation, 
tidal-capture binaries are relatively very hard and will produce rela­
tively little heating in interaction with other stars, except under 
rather extreme conditions. Their formation represents a loss of energy 
initially, tending to accelerate core collapse; their subsequent con­
centration in the core, as a result of mass stratification, releases 
gravitational energy which provides a source of heating for other com­
ponents of the cluster. 

Such tidal-capture binaries will evolve into harder systems as a 
result of gravitational radiation. Mass flow between the close compon­
ents will also affect the evolution of these hard binaries. Occasional 
encounters with field stars will accelerate the hardening; also, actual 
collisions will much enhance mass transfer to any compact component, 
increasing the X-ray flux (Krolik, Meiksin and Joss, 1984). 

The overall effect of tidal dissipation and tidal capture on clus­
ter evolution has not yet been explored with detailed realistic models. 
Several papers have analyzed this problem, treating the core with a 
simple homology model. In the paper by Inagaki (1984), the gravo-
thermal instability is taken into account; the calculations indicate 
that the dominant effect produced by tidal-capture binaries is the mass 
stratification instability, resulting from their twofold mass increase 
over single stars. Three-body binaries are found to dominate in only a 
small fraction of clusters, but this result is uncertain. It is not 
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obvious what terminates the collapse of a core composed of hard tidal-
capture binaries. Strong encounters between such binaries are likely 
to eject all the reaction products from the cluster. Weak encounters 
between three hard binaries might be expected to form complex multiple-
star systems, whose subsequent evolution may provide a substantial 
source of energy for the cluster as a whole. 

A more precise theory of these effects involving tidal capture bi­
naries would evidently be important, but would clearly involve a number 
of complications. Actual collisions between field stars should also be 
considered since, as noted above, the rate of such collisions is about 
the same, or even somewhat greater, than the rate of tidal capture. 
Physical collisions will produce a variety of effects, starting either 
with a pair of stars in a common envelope or a single star formed by 
coalescence. Subsequent evolutionary processes could lead, perhaps, to 
very massive stars, to supernovae or to black holes. Such effects are 
discussed in the review by Lightman and Shapiro (1978). While not much 
research has been carried out in this area during more recent years, 
actual collisions are clearly of potential importance in the late evo­
lution of a globular cluster. 

These various processes will clearly be affected by the nature of 
the stars which have concentrated in the core. For example, if the 
core is made up predominantly of compact objects, as suggested above 
(§5.1), the rate of tidal capture will be greatly reduced. As McMillan 
and Lightman suggest (1984b), it is possible that because of this ef­
fect tidal-capture binaries may have no significant evolutionary impor­
tance. Regardless of their effect in stellar evolution, the formation 
of binaries by tidal capture seems the most likely explanation for the 
observed presence of strong X-ray sources in a few clusters with rela­
tively dense cores (Lightman and Grindlay, 1982, Krolik, 1984). Evi­
dently the collapse of globular cluster cores is still a field with 
many challenging problems. 

Helpful discussions with J. Goodman, P. Hut, S. Inagaki, D. C. 
Heggie, D. Lynden-Bell, J. P. Ostriker, S. L. Shapiro and S. D. Tre-
maine are gratefully acknowledged. 
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DISCUSSION 

COHN: Is there no question on the basis of the calculations you 
reviewed that binaries must reverse core collapse? 

SPITZER: There seems very little question, from the calculation 
I reviewed, that the formation of binaries by three-body processes, 
and the subsequent hardening of these binaries, can reverse core collapse. 

GOODMAN: Do you see a conflict between the theoretical prediction 
that cluster cores should collapse rapidly and the observation that very 
few cores appear to have collapsed? 

SPITZER: The number of cluster cores that should have collapsed, 
according to the computed values of tr^, is not entirely certain, but 
could be appreciably less than half. The appearance of a cluster after 
collapse is also uncertain. A dense central core could still remain, 
but if this core is composed of neutron stars and black holes, it might 
produce only small effects on the distribution of visible stars. It 
is also possible that post-collapse expansion eliminates the relatively 
dense central core. 

SUGIMOTO: Bettwieser and I think that there exist gravothermal 
oscillations of the core. When the central density is high, i.e., 
when the core has a cusp, the timescale of oscillation is much shorter 
than at the stage of less concentrated core. Therefore, in a probabi­
listic sense, comparable or less members of globular clusters are in 
the collapsed phase. This is conclusive as physics. In order to give 
a numerical value, however, in astronomical situations we have to take 
account of other effects such as escape of binaries from the system, 
segregation of binaries etc. Thus the detailed value in astronomical 
situations is an open question. 

GRINDLAY: Can you elaborate further on your statement that tidal-
capture binaries will not be a significant source of cluster heating and 
contribute to halting core collapse? I would think that the process of 
formation of tidal-capture binaries would be enhanced during core 
collapse and would remove significant binding energy from the core. 

SPITZER: My statement was meant to imply that binaries formed by 
tidal capture would not, after their formation, be a significant source 
of heating for the cluster. This is because such binaries are very 
hard as a result of their close separation; hence, the cross-section 
for their close encounter with a single star is rather small, and, in 
addition, if a close encounter does occur, so much energy is likely to 
be transferred to the star that this will be ejected from the cluster 
and probably the binary also. On the other hand, the process of tidal 
capture is a dissipative one, reducing the kinetic energy of the cluster. 
Additional dissipation arises from close encounters between two stars 
which lose some of their kinetic energy but not enough to be captured. 
These dissipative processes tend to accelerate core collapse. 

BETTWIESER: Can thermodynamic concepts be applied to N-body 
systems? I remember the calculations of R. Miller in 1972 showing that 
energy exchange between N-body systems and a foreign body can be quite 
the opposite you expect from thermodynamics. 

SPITZER: While the conventional application of thermodynamics to 
N-body systems certainly involves some approximations, I believe that 
in most situations useful results can be obtained with this technique. 
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