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Abstract

In this paper, we obtain several results on the commensurability of two Kleinian groups and their limit
sets. We prove that two finitely generated subgroups G1 and G2 of an infinite co-volume Kleinian group
G ⊂ Isom(H3) having 3(G1)=3(G2) are commensurable. In particular, we prove that any finitely
generated subgroup H of a Kleinian group G ⊂ Isom(H3) with 3(H)=3(G) is of finite index if and
only if H is not a virtually fibered subgroup.
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1. Introduction

Two groups G1 and G2 are commensurable if their intersection G1 ∩ G2 is of finite
index in both G1 and G2. In this paper, we investigate the following question posed
by Anderson [5]: if G1, G2 ⊂ Isom(Hn) are finitely generated and discrete, does
Ax(G1)= Ax(G2) imply that G1 and G2 are commensurable? Here we use Ax(G) to
denote the set of axes of the hyperbolic elements of G ⊂ Isom(Hn).

The question has been discussed by several authors. In 1990, Mess [11] showed
that if G1 and G2 are nonelementary finitely generated Fuchsian groups having the
same nonempty set of simple axes, then G1 and G2 are commensurable. Using some
technical results on arithmetic Kleinian groups, Long and Reid [9] gave an affirmative
answer to this question in the case where G1 and G2 are arithmetic Kleinian groups.
Note that all the confirmed cases for the question are geometrically finite groups.
So it is natural to ask if the question is true with the assumption that G1 and G2
are geometrically finite. Recently, Susskind [13] constructed two geometrically finite
Kleinian groups in Isom(Hn) (for n ≥ 4) having the same action on some invariant
2-hyperbolic plane but whose intersection is infinitely generated. So this implies that
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these two geometrically finite groups are not commensurable although they have the
same set of axes. But it is worth pointing that these two geometrically finite Kleinian
groups generate a nondiscrete group. This example suggests that some additional
conditions need to be imposed to eliminate such ‘bad’ groups.

In higher dimensions, we have the following consequence of Susskind and Swarup’s
results [14] on the limit set of the intersection of two geometrically finite Kleinian
groups.

PROPOSITION 1.1. Let G1 and G2 be two nonelementary geometrically finite
subgroups of a Kleinian group G ⊂ Isom(Hn). Then G1 and G2 are commensurable if
and only if the limit sets 3(G1) and 3(G2) are equal. In particular, 3(G1)=3(G2)

if and only if Ax(G1)= Ax(G2)= Ax(G1 ∩ G2).

In several cases, the condition that both subgroups lie in a larger discrete group can
be dropped.

COROLLARY 1.2. Let G1, G2 ⊂ Isom(Hn) be two nonelementary geometrically finite
Kleinian groups of the second kind leaving no m hyperbolic planes invariant for
m < n − 1. Then G1 and G2 are commensurable if and only if 3(G1)=3(G2).

In dimension three, we can refine the analysis of the limit sets using Anderson’s
results [3] to get the following result modulo the recent solution of the tameness
conjecture (see [1, 6]) which states that all finitely generated Kleinian groups in
Isom(H3) are topologically tame.

THEOREM 1.3. Let G1, G2 be two nonelementary finitely generated subgroups of
an infinite co-volume Kleinian group G ⊂ Isom(H3). Then G1 and G2 are commen-
surable if and only if 3(G1)=3(G2). In particular, 3(G1)=3(G2) if and only
if Ax(G1)= Ax(G2)= Ax(G1 ∩ G2).

Similarly, in the following case we are able to remove the ambient discrete group.

COROLLARY 1.4. Let G1, G2 ⊂ Isom(H3) be two nonelementary finitely generated
Kleinian groups of the second kind whose limit sets are not circles. Then G1 and G2
are commensurable if and only if 3(G1)=3(G2).

In fact, under the hypotheses of the above results, the condition of having the same
limit sets of two Kleinian subgroups exactly implies having the same sets of axes. But
Anderson’s original formulation of the question is only to suppose that two Kleinian
groups have the same set of axes. So it is interesting to explore whether there is some
essential difference between the limit set and set of axes. The following theorem is a
result in this direction, suggesting that the ‘same set of axes’ condition is necessary in
general for Anderson’s question.

THEOREM 1.5. Let H be a nonelementary finitely generated subgroup of a Kleinian
group G ⊂ Isom(H3). Suppose that 3(H)=3(G). Then [G : H ] is finite if and
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only if G is not virtually fibered over H. In particular, [G : H ] is finite if and only
if Ax(H)= Ax(G).

REMARK 1.6. We remark that the case of H being geometrically finite is proved by
Susskind and Swarup [14, Theorem 1]. Theorem 1.5 actually proves the special case
of Anderson’s question where G1 is a subgroup of G2.

The paper is organized as follows. In Section 2, we gather together some results on
the limit set of the intersection of two Kleinian groups and prove some useful lemmas
for later use. In Section 3, we prove Theorems 1.3 and 1.5.

2. Preliminaries

Let Bn denote the closed ball Hn
∪ Sn−1, whose boundary Sn−1 is identified via

stereographic projection with R
n−1
= Rn−1

∪∞. Let Isom(Hn) be the full group
of isometries of Hn and let G ⊂ Isom(Hn) be a Kleinian group; that is, a discrete
subgroup of Isom(Hn). Then G acts discontinuously on Hn if and only if G is discrete.
Furthermore, G acts on Sn−1 as a group of conformal homeomorphisms. The set of
discontinuity �(G) of G is the subset of Sn−1 on which G acts discontinuously; the
limit set 3(G) is the complement of �(G) in Sn−1. A Kleinian group is said to be of
the second kind if �(G) is nonempty, otherwise it is said to be of the first kind.

The elements of Isom(Hn) are classified in terms of their fixed point sets. An
element g 6= id in Isom(Hn) is elliptic if it has a fixed point in Hn , parabolic if it has
exactly one fixed point lying in Sn−1, or hyperbolic if it has exactly two fixed points
lying in Sn−1. The unique geodesic joining the two fixed points of the hyperbolic
element g, which is invariant under g, is called the axis of the hyperbolic element and
is denoted by ax(g). The limit set 3(G) is the closure of the set of fixed points of
hyperbolic and parabolic elements of G. A Kleinian group whose limit set contains
fewer than three points is called elementary, and is otherwise called nonelementary.

For a nonelementary Kleinian group G, define C̃(G) to be the smallest nonempty
convex set in Hn which is invariant under the action of G; this is the convex hull
of 3(G). The quotient C(G)= C̃(G)/G is the convex core of M =Hn/G. The
group G is geometrically finite if the convex core C(G) has finite volume.

By Margulis’s lemma, it is known that there is a positive constant ε0 such that for
any Kleinian group G ∈ Isom(Hn) and ε < ε0, the part of Hn/G where the injectivity
radius is less than ε is a disjoint union of tubular neighborhoods of closed geodesics,
whose lengths are less than 2ε, and cusp neighborhoods. In dimensions two and three,
these cusp neighborhoods can be taken to be disjoint quotients of horoballs by the
corresponding parabolic subgroup. This set of disjoint horoballs is called a precisely
invariant system of horoballs for G. In dimension three, it is often helpful to identify
the infinity boundary S2 of H3 with the extended complex plane C. In particular, the
fixed point of a rank-one parabolic subgroup J of G is called doubly cusped if there are
two disjoint circular discs B1, B2 ⊂ C such that B1 ∪ B2 is precisely invariant under J
in G. In this case, the parabolic elements in J are also called doubly cusped.
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In dimension three, we call a Kleinian group G topologically tame if the manifold
M =H3/G is homeomorphic to the interior of a compact 3-manifold. Denote by Mc

the complement of these cusp neighborhoods. Using the relative core theorem of
McCullough [10], there exists a compact submanifold N of Mc such that the inclusion
of N in Mc is a homotopy equivalence, every torus component of ∂(Mc) lies in N ,
and N meets each annular component of ∂(Mc) in an annulus. Call such an N
a relative compact core for M . The components of ∂(N )− ∂(Mc) are the relative
boundary components of N . The ends of Mc are in one-to-one correspondence with
the components of Mc

− N . An end E of Mc is geometrically finite if it has a
neighborhood disjoint from C(G), otherwise E is geometrically infinite.

A Kleinian group G ⊂ Isom(H3) is virtually fibered over a subgroup H if there
are finite-index subgroups G0 of G and H0 of H such that H3/G0 has finite volume
and fibers over the circle with the fiber subgroup H0. Note that H0 is then a normal
subgroup of G0, and so 3(H0)=3(G0)= S2.

In order to analyze the geometry of a geometrically infinite Kleinian group, we will
use Canary’s covering theorem, which generalizes a theorem of Thurston [15]. Note
that the tameness theorem [1, 6] states that all finitely generated Kleinian groups in
Isom(H3) are topologically tame.

THEOREM 2.1 [7, The covering theorem]. Let G be a torsion-free Kleinian group
in Isom(H3) and let H be a nonelementary finitely generated subgroup of G. Let
N =H3/G, let M =H3/H, and let p : M→ N be the covering map. If M has
a geometrically infinite end E, then either G is virtually fibered over H or E has a
neighborhood U such that p is finite-to-one on U.

We now list several results on the limit set of the intersection of two Kleinian
groups, which describe3(G1 ∩ G2) in terms of3(G1) and3(G2), where G1 and G2
are subgroups of a Kleinian group G. Here we only give the results used in this paper,
stating them in a form appropriate for our purposes. See [4] for a useful survey and
the bibliography therein for the results in full detail.

THEOREM 2.2 [14, Theorem 3]. Let G1, G2 be two geometrically finite subgroups of
a Kleinian group G ⊂ Isom(Hn). Then3(G1) ∩3(G2)=3(G1 ∩ G2) ∪ P where P
consists of some parabolic fixed points of G1 and G2.

PROPOSITION 2.3 [14, Corollary 1]. Let H be geometrically finite and j be a
hyperbolic element with a fixed point in 3(H). If 〈H, j〉 is discrete, then jn

∈ H
for some n > 0.

Based on the above results, we get the following lemma characterizing the relation-
ship between limit sets and sets of axes.

LEMMA 2.4. Let G1, G2 be two geometrically finite subgroups of a Kleinian
group G ⊂ Isom(Hn). Then 3(G1)=3(G2) if and only if Ax(G1)= Ax(G2)=

Ax(G1 ∩ G2).
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PROOF. If G1 and G2 are geometrically finite subgroups of a Kleinian group G,
then G1 ∩ G2 is again geometrically finite [14, Theorem 4]. It is well known that
a hyperbolic element cannot share one fixed point with a parabolic element in a
discrete group. Thus, by applying Theorem 2.2 to 3(G1) ∩3(G2), we can conclude
that any hyperbolic element h ∈ Gi has at least one fixed point in 3(G1 ∩ G2) for
i = 1, 2. Now by Proposition 2.3, we have h j

∈ G1 ∩ G2 for some large integer
j > 0. This implies the axis ax(h) of h belongs to Ax(G1 ∩ G2). Therefore we have
Ax(G1)= Ax(G2)= Ax(G1 ∩ G2) and it also follows that P is the empty set.

The other direction is easy to see using the fact that the set of fixed points of
hyperbolic elements of G is dense in 3(G). 2

In dimension three, Anderson [3] carried out a more careful analysis on the limit
set of the intersection of two topologically tame Kleinian groups. Combined with
the recent solution of the tameness conjecture in [1] and [6], we have the following
theorem.

THEOREM 2.5 [3, Theorem C]. Let G ⊂ Isom(H3) be a Kleinian group, and let G1
and G2 be nonelementary finitely generated subgroups of G. Then3(G1) ∩3(G2)=

3(G1 ∩ G2) ∪ P where P is empty or consists of some parabolic fixed points of G1
and G2.

PROPOSITION 2.6 [3, Theorem A]. Let H be a finitely generated Kleinian group
and j be a hyperbolic element with a fixed point in 3(H). If 〈H, j〉 is discrete, then
either 〈H, j〉 is virtually fibered over H or jn

∈ H for some n > 0.

Similarly, we obtain the following lemma.

LEMMA 2.7. Let G1 and G2 be two nonelementary finitely generated subgroups of an
infinite co-volume Kleinian group G ⊂ Isom(H3). Then 3(G1)=3(G2) if and only
if Ax(G1)= Ax(G2)= Ax(G1 ∩ G2).

PROOF. Observe that our hypothesis ‘G is an infinite co-volume Kleinian group’
implies that G is not virtually fibered over G1. Since the intersection of any pair
of finitely generated subgroups of a Kleinian group is finitely generated (see [2]), we
see that G1 ∩ G2 is finitely generated. Using Theorem 2.5 and Proposition 2.6, we
can argue exactly as in Lemma 2.4 to obtain Ax(G1)= Ax(G2)= Ax(G1 ∩ G2), if
we suppose that 3(G1)=3(G2). 2

REMARK 2.8. The condition of G being infinite co-volume cannot be dropped, as
will be seen in the proof of Theorem 1.5. The Kleinian group G fibering over H has a
different set of axes from that of its fiber subgroup H .

In the following two lemmas, we give some useful properties about the same sets
of axes of two Kleinian groups.

LEMMA 2.9. Let G be a nonelementary finitely generated Kleinian group and H a
subgroup of finite index in G. Then Ax(G)= Ax(H).
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PROOF. It is obvious that Ax(H)⊂ Ax(G). Conversely, since [G : H ] is finite, for
any hyperbolic element g with axis ax(g) ∈ Ax(G), there are two integers i and j
such that gi H = g j H and thus gi− j

∈ H . It follows that ax(g) ∈ Ax(H). The proof
is complete. 2

REMARK 2.10. In fact, our Theorem 1.5 proves that the converse of the above lemma
is also true when H is a finitely generated subgroup of G ⊂ Isom(H3).

LEMMA 2.11. Let G be a nonelementary finitely generated, torsion-free Kleinian
group and H be a subgroup of G. Suppose that Ax(G)= Ax(H). Then for every
hyperbolic element g ∈ G, gn

∈ H for some n > 0.

PROOF. For any hyperbolic element g ∈ G, we can choose a hyperbolic element h
from H such that ax(g)= ax(h) by the hypothesis Ax(G)= Ax(H). It follows that the
subgroup 〈g, h〉 is elementary and torsion-free. By the characterization of elementary
Kleinian groups it follows that 〈g, h〉 is actually a cyclic subgroup 〈 f 〉 of G. Thus we
can write g = f m and h = f n for two appropriate integers m, n. Thus we have found
the integer n such that gn

= hm
∈ H , which proves the lemma. 2

3. Proofs

PROOF OF PROPOSITION 1.1. Recall that G1 and G2 are commensurable if the
intersection G1 ∩ G2 is of finite index in both G1 and G2. By Lemma 2.9, we have
Ax(G1)= Ax(G2) and thus 3(G1)=3(G2), if G1 and G2 are commensurable. So
it remains to prove the converse.

If 3(G1)=3(G2), we have Ax(G1)= Ax(G2)= Ax(G1 ∩ G2) by Lemma 2.4.
Therefore it follows that3(G1)=3(G2)=3(G1 ∩ G2), since the set of fixed points
of hyperbolic elements of G is dense in 3(G). Now we can conclude that G1 ∩ G2
is of finite index in both G1 and G2, by using [14, Theorem 1] which states that
any geometrically finite subgroup H of a Kleinian group G is of finite index in G if
3(H)=3(G).

The second assertion is just Lemma 2.4. This completes the proof. 2

PROOF OF COROLLARY 1.2. It is well known that the stabilizer in Isom(Hn) of the
limit set of a nonelementary Kleinian group G of the second kind, leaving no m
hyperbolic planes invariant for m < n − 1, is itself a Kleinian group. See, for example,
Greenberg [8], where the discreteness of the stabilizer of that limit set is proved.

Thus Ax(G1)= Ax(G2) implies that G1 and G2 together lie in a common Kleinian
group, which is the stabilizer of the common limit set of G1 and G2. Thus Propo-
sition 1.1 completes the proof. 2

PROOF OF THEOREM 1.3. Observe that the fundamental domain of the subgroup H
is the union of translates of the fundamental domain of G by left H -coset repre-
sentatives in G. So the subgroup 〈G1, G2〉 also has infinite co-volume, and we can
assume that G is finitely generated by replacing G by 〈G1, G2〉. As the conclusion
is easily seen to be unaffected by passage to a finite-index subgroup, we may use
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Selberg’s lemma to pass to a finite-index, torsion-free subgroup of G. Hence, without
loss of generality, we may assume that G is finitely generated and torsion-free.

By Proposition 1.1, the conclusion is trivial if G is geometrically finite. So we
suppose that G is geometrically infinite. Then M =H3/G has infinite volume. Let C
be a compact core for M . Since M has infinite volume, ∂C contains a surface
of genus at least two. Then using Thurston’s geometrization theorem for Haken
3-manifolds (see [12]), there exists a geometrically finite Kleinian group with
nonempty discontinuity domain, which is isomorphic to G.

Now our task is to give an algebraic characterization of the limit set of G1 ∩ G2
in Gi such that the relationships between 3(G1 ∩ G2) and 3(Gi ) can be passed to
those between target isomorphic groups under the above isomorphism of G. Then
the conclusion of Theorem 1.3 follows from Proposition 1.1. We claim that for every
element g ∈ G1, there exists an integer k such that gk

∈ G1 ∩ G2.
Firstly, by Lemma 2.7, we obtain that Ax(G1)= Ax(G2)= Ax(G1 ∩ G2). So for

any hyperbolic element g ∈ G1, the integer k obtained in Lemma 2.11 is such that
gk
∈ G1 ∩ G2. Now we consider the remaining parabolic elements. Theorem B of [3]

says that if no nontrivial power of a parabolic element h ∈ G1 lies in G1 ∩ G2, then
there exists a doubly cusped parabolic element f ∈ G1 ∩ G2 with the same fixed
point ξ as h. Normalizing their fixed point ξ to ∞, we can suppose that f (z)=
z + 1 and h(z)= z + τ , where Im(τ ) 6= 0. Since f is doubly cusped in G1 ∩ G2,
then 3(G1 ∩ G2)⊂ {z : |Im(z)|< c}, for some constant c. But on the other hand,
3(G1 ∩ G2) is also kept invariant under h, which contradicts the fact that3(G1 ∩ G2)

is invariant under f . Therefore the claim is proved for all elements including parabolic
elements. A similar claim holds for G1 ∩ G2 and G2.

Under the isomorphism, using the above claims, we can conclude that the limit set
of the (isomorphic) image of G1 ∩ G2 is equal to those of the (isomorphic) images
of G1 and G2. The proof is complete as a consequence of Proposition 1.1. 2

REMARK 3.1. Theorem 1.3 can be thought of as a geometric version of [3, Lemma 5.4],
which uses an algebraic assumption on the limit sets of the groups involved.

PROOF OF COROLLARY 1.4. This is proved similarly to Corollary 1.2. 2

PROOF OF THEOREM 1.5. In view of Lemma 2.9, we may assume, without loss of
generality, that H is finitely generated and torsion-free by using Selberg’s lemma to
pass to a finite-index, torsion-free subgroup of H .

If H is geometrically finite, then the conclusion follows from a result of Susskind
and Swarup [14], which states that a nonelementary geometrically finite subgroup
sharing the same limit set with the ambient discrete group is of finite index. So next we
suppose that H is geometrically infinite. Then there exist finitely many geometrically
infinite ends Ei for the manifold N :=H3/H .

We first claim that Ax(H)= Ax(G) implies that H cannot be a virtually fibered
subgroup of G. Otherwise, by taking finite-index subgroups of G and H , we can
suppose that H is normal in G. Then it follows that every element of the quotient
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group G/H has finite order by Lemma 2.11. Thus G/H could not be isomorphic to Z.
This is a contradiction. So H is not a virtually fibered subgroup of G.

Using Theorem 2.1, we know that for each geometrically infinite end Ei , there
exists a neighborhood Ui of Ei such that the covering map P : N → M :=H3/G is
finite-to-one on Ui .

Now we argue by way of contradiction. Let Q N :H3
→ N and let Q M :H3

→ M
be the covering maps and notice that Q M = P ◦Q N . Suppose that [G : H ] is infinite.
This implies that P is an infinite covering map. By the definition of a geometrically
infinite end, we can take a point z from the neighborhood U1 of a geometrically infinite
end E1 such that z also lies in the convex core of N . By lifting the point P(z) ∈ M
to H3, it is easy to see that the infinite set S̃ :=Q−1

M (P(z)) lies in the common
convex hull C̃(H)= C̃(G)⊂H3, by observing that C̃(G) is invariant under G and the
preimage Q−1

N (z)⊂ S̃ lies in C̃(H). Since P is an infinite covering map, the set S :=
P−1(P(z)) is infinite. By considering Q M = P ◦Q N , it follows that S =Q N (S̃)⊂ N
and thus S lies in the convex core of N , because S̃ ⊂ C̃(H).

We claim that we can take a smaller invariant horoball system for H such that
infinitely many points of S lie outside all cusp ends of N . Otherwise, we can suppose
that infinitely many points of S are contained inside a cusp end Ec of N , since there are
only finitely many cusp ends for N . Thus infinitely many points of Q−1

N (S) lie in the
corresponding horoball B for the end Ec. Normalizing the parabolic fixed point for Ec
to∞ in the upper half-space model of H3, the horoball B at∞ is precisely invariant
under the stabilizer of∞ in H . On the other hand, we have that infinitely many points
of Q−1

N (S) have the same height, since the covering map P maps S ⊂ N to a single
point on M , and the horoball B is also precisely invariant under the stabilizer of ∞
in G, which is a Euclidean group preserving the height of points in the horoball B.
Then we can take a smaller horoball for Ec such that these infinitely many points
of Q−1

N (S) lie outside the horoball.
Continuing the above process for all cusp ends of N , we can get a new invariant

horoball system such that infinitely points of S lie outside these cusp ends of N .
Since S projects to a single point on M , we can conclude that S cannot lie in any

compact subset of the convex core of N . Thus, by the second claim above, there exist
infinitely many points of S that can only lie in geometrically infinite ends of N . This is
in contradiction to Theorem 2.1, which states that the covering map P restricted to
each geometrically infinite end is finite-to-one, if H is not a virtually fibered subgroup
of G. 2
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