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Abstract

Exact upper and lower bounds on the difference between the arithmetic and geometric means are obtained.
The inequalities providing these bounds may be viewed, respectively, as a reverse Jensen inequality and
an improvement of the direct Jensen inequality, in the case when the convex function is the exponential.
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1. Summary and discussion

Let X+ denote the set of all nonnegative random variables (r.v.s) X with E X < ∞.
Take any X ∈X+ and let

VX := Var
√

X, mX := inf supp X, MX := sup supp X,

EX := E(
√

X −
√

mX )2, FX := E(
√

MX −
√

X )2, (1.1)

where, as usual, supp X denotes the support of (the distribution of) the r.v. X.
It will be shown in this note that

(2VX) ∧
FXVX

FX − VX
6 E X − exp E ln X 6 (2VX) ∨ EX (1.2)

and that each of these two bounds on E X − exp E ln X is exact, in terms of VX and EX

for the upper bound and in terms of VX and FX for the lower bound. As usual, for any
real numbers z1, . . . , zn, we write z1 ∨ · · · ∨ zn and z1 ∧ · · · ∧ zn for their maximum and
minimum, respectively.

Since the r.v. X is nonnegative, clearly mX ∈ [0,∞). However, concerning the value
of MX , one can then only say that MX ∈ [mX ,∞], with the case MX = ∞ certainly
possible. Next, given the condition E X <∞, the values of EX and VX are necessarily
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finite and hence so is the upper bound in (1.2). On the other hand, FX =∞ if MX =∞.
Even then, the lower bound in (1.2) will of course be finite. Concerning the ratio
FXVX/(FX − VX) in the lower bound in (1.2), for any V ∈ R, E ∈ R and F ∈ (−∞,∞],
we assume the conventions that FV/(F − V) equals V if F =∞ and equals 0 if F = V .
It will be seen that these conventions are the appropriate ones in the present context.

That the upper and lower bounds in (1.2) hold and are exact will be established in
Theorem 1.4 below. The statement of Theorem 1.4 is preceded by three propositions,
which complement and help in understanding the main result. All the necessary proofs
are given in Section 2.

Take any V ∈ R, E ∈ R and F ∈ (−∞,∞]. Introduce the sets

Xsup;V,E := {X ∈X+ : VX = V, EX = E}, (1.3)
Xinf;V,F := {X ∈X+ : VX = V, FX = F}. (1.4)

Proposition 1.1. One has Xsup;V,E , ∅ if and only if

either E = V = 0 or E > V > 0. (1.5)

Similarly, Xinf;V,F , ∅ if and only if

either F = V = 0 or F > V > 0. (1.6)

Values of V and E as in (1.5), as well as values of V and F as in (1.6), may be
referred to as admissible.

Proposition 1.2. If Xinf;V,F , ∅, then

EV,F :=
FV

F − V
= inf{EX : X ∈Xinf;V,F}. (1.7)

If, moreover, F < ∞, then the latter infimum is attained, and it is attained at a r.v.
X ∈Xinf;V,F if and only if supp X = {mX , MX}, that is, if and only if supp X contains at
most two points. If F =∞, then the infimum in (1.7) is not attained.

Proposition 1.3. Take any X ∈X+. Then both inequalities in (1.2) turn simultaneously
into equalities if and only if the distribution of the r.v.

√
X is the symmetric distribution

on a set of at most two points in [0,∞).

Theorem 1.4. Let

DX := E X − exp E ln X. (1.8)

Then

S V,E := sup{DX : X ∈Xsup;V,E} = (2V) ∨ E if Xsup;V,E , ∅, (1.9)
IV,F := inf{DX : X ∈Xinf;V,F} = (2V) ∧ EV,F if Xinf;V,F , ∅. (1.10)

These equalities hold if the sets Xsup;V,E and Xsup;V,E are replaced by their respective
subsets consisting of the r.v.s in Xsup;V,E and Xsup;V,E taking at most two values.
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Clearly, inequalities (1.2) and the exactness of the upper and lower bounds in (1.2)
immediately follow from Theorem 1.4.

Remark 1.5. Note that (2V) ∨ E is nondecreasing in V and E, whereas (2V) ∧ EV,F is
nondecreasing in V and nonincreasing in F (from EV,V+ = 2V down to EV,∞ = V). So,
(1.9) will hold if the equalities VX = V and EX = E in the definition (1.3) of Xsup;V,E
are replaced by the inequalities VX 6 V and EX 6 E. Similarly, (1.10) will hold if the
equalities VX = V and FX = F in the definition of (1.4) of Xinf;V,F are replaced by
VX > V and FX 6 F.

Moreover, it is now clear that inequalities (1.2) will hold if mX and MX in the
definitions of EX and FX in (1.1) are replaced, respectively, by any nonnegative a
and b such that supp X ⊆ [a, b].

It also follows from the mentioned monotonicity of the exact lower bound (2V) ∧
EV,F in F that the values of this bound are always between V and 2V . �

The lower bound in (1.2) is an improvement of the zero bound, which follows
immediately by the Jensen inequality for the (convex) exponential function. In
particular, the condition E X < ∞ implies E ln X < ∞; however, it is possible that
E ln X = −∞; we use the standard conventions ln 0 := −∞ and exp(−∞) := 0.

As for the second inequality in (1.2), one may consider it as a reverse Jensen
inequality (cf. [3]). Indeed, one can write E X − exp E ln X as E eY − eE Y for Y := ln X.
In contrast with the upper bound in (1.2), the bounds in [3] will be finite only when
MX − mX < ∞. On the other hand, the bounds in (1.2) are only for the case when the
convex function is the exponential function.

In the case when the r.v. X is a continuous function on the interval [0, 1] endowed
with the Lebesgue measure, obtaining the upper bound (

√
MX −

√
mX)2 on E X −

exp E ln X was presented as [5, Problem 11800]. Note that 2VX = 2 Var
√

X can be
rewritten as E(

√
X −
√

X̃ )2, where X̃ is an independent copy of the r.v. X. Therefore,
the upper bound in (1.2) is strictly less than that in [5] unless supp X = {mX , MX}. In
the case when X is a continuous function on the interval [0, 1], the latter condition on
supp X simply means that X is a constant, and then the difference E X − exp E ln X and
the upper bound on it in (1.2) (as well as the lower one) are each 0.

Given any nonnegative real numbers x1, . . . , xn, let X be any r.v. with the distribution
defined by the formula

E f (X) =
1
n

n∑
i=1

f (xi) for any function f : R→ R. (1.11)

(So, in the case when the numbers x1, . . . , xn are pairwise distinct, any such r.v. X takes
each of the values x1, . . . , xn with probability 1/n.) In this case,

E X =
x1 + · · · + xn

n
and exp E ln X =

n√x1 · · · xn.

Thus, for any r.v. X with E X < ∞, the terms E X and exp E ln X in (1.2) can be
referred to, respectively, as the arithmetic and geometric means of the r.v. X. Since any
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bounded nonnegative r.v. can be approximated in distribution by uniformly bounded
r.v.s each taking finitely many nonnegative real values with equal probabilities, the
upper and lower bounds in (1.2) will each remain exact in an appropriate sense if one
considers only the r.v.s with such discrete uniform distributions. In particular, one has
the following immediate corollary from Theorem 1.4 and Remark 1.5.

Corollary 1.6. For any n ∈ N, any z = (z1, . . . , zn) ∈ Rn and any function f : R→ R,
let

z :=
1
n

(z1 + · · · + zn), zg :=
n√
|z1 · · · zn|,

zmax := z1 ∨ · · · ∨ zn, zmin := z1 ∧ · · · ∧ zn, f (z) := ( f (z1), . . . , f (zn)).

Then, for any real V, E, F such that 0 < V < E ∧ F,

sup{x − xg : x = y2, y ∈ Rn
+, n ∈ N, (y − y)2 6 V, (y − ymin)2 6 E} = (2V) ∨ E,

inf{x − xg : x = y2, y ∈ Rn
+, n ∈ N, (y − y)2 > V, (ymax − y)2 6 F} = (2V) ∧ EV,F .

The proof of Theorem 1.4, given in Section 2, relies on the theory of Tchebycheff–
Markoff systems. Major expositions of this theory and its applications are given in
the monographs by Karlin and Studden [4] and Kreı̆n and Nudel’man [6]. A brief
review of the theory, which contains all the definitions and facts necessary for the
proof in the present paper, is given in [7]. A condensed version of [7] can be found in
[8, Appendix A].

2. Proofs

Proof of Proposition 1.1. Take any X ∈X+. Clearly, EX > VX > 0. If VX = 0, then
P(X = c) = 1 for some c ∈ [0,∞), whence EX = 0, so that EX = VX = 0. If VX > 0, then
E
√

X >
√

mX and hence EX > VX > 0. So, condition (1.5) is necessary for Xsup;V,E , ∅.
Vice versa, suppose now that (1.5) holds. For any real u and v such that 0 6 u < v and
any p ∈ [0, 1], let Yu,v,p denote any r.v. such that

P(Yu,v,p = u) = p = 1 − P(Yu,v,p = v). (2.1)

If E = V = 0, then 0 ∈Xsup;V,E and so Xsup;V,E , ∅. If now E > V > 0, let X = Y2
u,v,p

with
p =

V
E

and any u and v such that 0 6 u < v and v − u =
E

√
E − V

. (2.2)

Then X ∈Xsup;V,E and so Xsup;V,E , ∅ in this case as well. Thus, the equivalence
of the condition Xsup;V,E , ∅ and (1.5) is checked. The equivalence of the condition
Xinf;V,F , ∅ and (1.6) is checked quite similarly; here, in the case when F > V > 0,
(2.2) is replaced by

q := 1 − p =
V
F

and any u and v such that 0 6 u < v and v − u =
F

√
F − V

. (2.3)

Thus, Proposition 1.1 is proved. �
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Before proceeding to the proofs of Propositions 1.2 and 1.3, let us state the
following observation.

Lemma 2.1. Take any r.v. Z such that E Z = 0 and supp Z ⊆ [c, d] for some real c and d.
Then c 6 0 6 d, Var Z 6 |c|d and Var Z = |c|d if and only if supp Z = {|c|, d}.

This follows immediately on noting that c 6 E Z = 0 6 d and Var Z = E Z2 =

E(Z − c)(Z − d) − cd 6 −cd = |c|d.
Being very simple, Lemma 2.1 seems to be a piece of common mathematical lore.

For example, the inequality Var Z 6 |c|d in Lemma 2.1 follows immediately from
[2, Lemma 2.2], by shifting and rescaling. In the case when Z has a discrete distribution
of the form given by (1.11), Lemma 2.1 was presented as Theorem 1 and the second
part of Proposition 1 in [1].

Proof of Proposition 1.2. Suppose that Xinf;V,F , ∅ and take any X ∈Xinf;V,F . Let
Y :=

√
X, a := mY and b := MY . By Lemma 2.1 with Z := Y − E Y , c := a − E Y and

d := b − E Y ,

EX = E(Y − a)2 = Var Y + (a − E Y)2 > Var Y +
(Var Y)2

(b − E Y)2 = EVX ,FX = EV,F (2.4)

provided that ∞ > F > V , with the inequality in (2.4) turning into the equality if and
only if supp Y = {mY , MY }, that is, if and only if supp X = {mX , MX}. This verifies
Proposition 1.2 in the case when∞ > F > V .

If now F = V , then, by Proposition 1.1, F = V = 0. In this case, by the convention,
EV,F = 0. On the other hand, for any X ∈Xinf;V,F , one has supp X = c for some c ∈ R,
which implies that EX = 0. So, Proposition 1.2 holds as well in the case when F = V .

Consider the remaining case, with F = ∞. Then, by the convention, EV,F = V .
For each ε ∈ (0, 1), let Uε be any r.v. whose distribution is (a mixture of a Bernoulli
distribution and an exponential distribution) defined by the condition that

E f (Uε) = (1 − ε) f (0) + (ε − ε2) f (1) + ε2
∫ ∞

0
f (x)e−x dx

for all nonnegative Borel functions f on R. Then E Uε = ε = Var Uε and FUε
=∞. Let

now Xε := (V/ε) U2
ε . Then Xε ∈Xinf;V,∞ = Xinf;V,F and EXε = (1 + ε)V . So,

inf{EX : X ∈Xinf;V,F} 6 inf{(1 + ε)V : ε ∈ (0, 1)} = V = EV,F .

On the other hand,

EX = VX + (mX − E X)2 > VX = V = EV,F (2.5)

for all X ∈Xinf;V,F . Now (1.7) follows as well in the case F =∞. However, in this case
the infimum in (1.7) is not attained. Indeed, otherwise the inequality in (2.5) would
for some X ∈Xinf;V,F turn into an equality, which would imply that E X = mX and
hence FX = 0, which would contradict the assumption F = ∞. Thus, Proposition 1.2
is completely verified. �
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Proof of Proposition 1.3. The ‘if’ side of Proposition 1.3 is quite straightforward to
check. Let us verify the ‘only if’ side. Suppose that the inequalities in (1.2) turn
simultaneously into equalities, so that the upper and lower bounds there are equal
to each other, which is in turn equivalent to the statement that

EX 6 2VX 6
FXVX

FX − VX
. (2.6)

If FX = VX , then, by Proposition 1.1, VX = 0 and hence supp X = {c} for some
c ∈ [0,∞), that is, the distribution of

√
X is the (necessarily) symmetric distribution

on the singleton set {
√

c} ⊂ [0,∞).
It remains to consider the case FX > VX . Then the double inequality (2.6) can be

rewritten as 2VX > EX ∨ VX , which can be further rewritten as

Var Y > max[(E Y − a)2, (b − E Y)2],

where Y :=
√

X, a := mY and b := MY , so that a 6 E Y 6 b. Therefore,

2 Var Y > (E Y − a)2 + (b − E Y)2 > 2(E Y − a)(b − E Y) > 2 Var Y, (2.7)

where the last inequality follows by Lemma 2.1 (with Z = Y − E Y). Hence, all the
inequalities in (2.7) are actually equalities. In particular, the equality (E Y − a)2 +

(b − E Y)2 = 2(E Y − a)(b − E Y) implies E Y = (a + b)/2. Also, again by Lemma 2.1,
the equality 2(E Y − a)(b − E Y) = 2 Var Y implies supp Y = {a, b}. This, together
with the condition E Y = (a + b)/2, shows that the distribution of the r.v. Y =

√
X

is the symmetric distribution on the set {a, b} ⊂ [0,∞). This completes the proof of
Proposition 1.3. �

The proof of Theorem 1.4 will be preceded by more notation and two lemmas. Take
any a and b such that 0 < a < b <∞ and introduce

Qsup;V,E := {( β1, β2) ∈ (0,∞)2 : β2 − β
2
1 = V, β2 − 2aβ1 + a2 = E},

Qinf;V,F := {( β1, β2) ∈ (0,∞)2 : β2 − β
2
1 = V, β2 − 2bβ1 + b2 = F}

and then

Yβ1, β2 := {Y ∈X+ : supp Y ⊆ [a, b], E Y = β1, E Y2 = β2},

S β1, β2 := sup{DY2 : Y ∈ Yβ1, β2},

Iβ1, β2 := inf{DY2 : Y ∈ Yβ1, β2}

for ( β1, β2) ∈ (0,∞)2, with the definition of DX in (1.8) in mind; for brevity, the
dependence on a and b is not made explicit in this notation.

Lemma 2.2. Take any ( β1, β2) ∈ Qsup;V,E such that Yβ1, β2 , ∅. Then

S β1, β2 6 (2V) ∨ E.

Lemma 2.3. Take any ( β1, β2) ∈ Qinf;V,F such that Yβ1, β2 , ∅. Then

Iβ1, β2 > (2V) ∧ EV,F .
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Proof of Lemma 2.2. Note that

S β1, β2 = β2 − exp(2Iln; β1, β2 ), where Iln; β1, β2 := inf{E ln Y : Y ∈ Yβ1, β2}. (2.8)

Using [7, Proposition 1], it is easy to see that the sequence of functions (1, #, #2, ln #)
is an M+-system on [a, b]. Hence, by [7, part (II)(a) of Proposition 2] (with n = 2), the
infimum Iln; β1, β2 is attained at a r.v. of the form Y = Yu,v,p ∈ Yβ1, β2 with 0 < u = a <
v <∞ and p ∈ [0, 1], whose distribution is defined by (2.1). These conditions on Yu,v,p,
u and v, together with the condition ( β1, β2) ∈ Qsup;V,E , allow one to express u, v, p,
DY2

u,v,p
, VY2

u,v,p
and EY2

u,v,p
uniquely in terms of a, V and E, in accordance with (2.2):

u = a, v = u +
E

√
E − V

, p =
V
E
, (2.9)

DY2
u,v,p

= pu2 + qv2 − u2pv2q, (2.10)

VY2
u,v,p

= pq(v − u)2 = V, EY2
u,v,p

= q(v − a)2 = q(v − u)2 = E, (2.11)

where
q := 1 − p.

It follows that

S β1, β2 = ψ(0) 6 sup
c∈[−u,∞)

ψ(c), where (2.12)

ψ(c) := DY2
u,v,p

= p(u + c)2 + q(v + c)2 − (u + c)2p(v + c)2q (2.13)

and u, v and p are as in (2.9) (cf. (2.10)). The supremum in (2.12) is easy to find, and
it depends only on V and E. Indeed,

ψ′′′(c) = 4pq(p − q)(v − u)3(u + c)2p−3(v + c)2q−3

equals p − q in sign for all c ∈ (−u,∞). To find, for each j ∈ {0, 1, 2}, the limit ψ( j)(∞−)
of the derivative ψ( j)(c) as c→∞, for any γ ∈ Rwrite (v + c)γ = (u + c)γ(1 + ε)γ, where
ε := (v − u)/(u + c) ∼ (v − u)/c→ 0, and then write

(1 + ε)γ =

2− j∑
i=0

γ(γ − 1) · · · (γ − i + 1)
εi

i!
+ o(c j−2).

Thus, one finds ψ(∞−) = 2pq(u − v)2 = 2V and ψ′(∞−) = ψ′′(∞−) = 0. Therefore and
because ψ′′′ equals p − q in sign, one sees that ψ′ equals p − q in sign, on the interval
(−u,∞), which implies that the function ψ is monotonic on the interval [−u,∞),
with ψ(−u) = q(u − v)2 = E and ψ(∞−) = 2V . Thus, the supremum in (2.12) equals
(2V) ∨ E, which completes the proof of Lemma 2.2. �

Proof of Lemma 2.3. This proof is similar to that of Lemma 2.2. Here, instead of the
infimum Iln; β1, β2 defined in (2.8), one deals with S ln; β1, β2 := sup{E ln Y : Y ∈ Yβ1, β2}.
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This supremum is attained at a r.v. of the form Y = Yu,v,p ∈ Yβ1, β2 with

v = b, u = v −
F

√
F − V

, q = 1 − p =
V
F
,

EY2
u,v,p

= q(b − u)2 = q(v − u)2 =
V
F

( F
√

F − V

)2
=

VF
F − V

= EV,F

and DY2
u,v,p

as in (2.10), VY2
u,v,p

= V as in (2.11) and FY2
u,v,p

= p(v − u)2 = F. The proof
of Lemma 2.3 is concluded with the observation that infc∈[−u,∞) ψ(c) = (2V) ∧ EV,F
(cf. the last sentence in the proof of Lemma 2.2). �

Proof of Theorem 1.4. Suppose that Xsup;V,E , ∅, so that condition (1.5) holds. Both
sides of (1.9) are obviously 0 if E = V = 0. To verify (1.9) in the remaining case
E > V > 0, fix any X∗ ∈Xsup;V,E . Consider first the case

a :=
√

mX∗ > 0 and b :=
√

MX∗ <∞. (2.14)

Letting now Y∗ :=
√

X∗ and ( β∗1, β
∗
2) := (E Y∗,E Y2

∗ ), one has ( β∗1, β
∗
2) ∈ Qsup;V,E and

Y∗ ∈ Yβ∗1, β
∗
2
. Also, DX∗ = DY2

∗
6 S β∗1, β

∗
2
6 (2V) ∨ E, by Lemma 2.2. So,

DX∗ 6 (2V) ∨ E (2.15)

for any r.v. X∗ ∈Xsup;V,E satisfying conditions (2.14).
If a r.v. X∗ ∈Xsup;V,E is such that mX∗ = 0, then DX∗ 6 E X∗ = EX∗ = E 6 (2V) ∨ E,

so that inequality (2.15) still holds.
Take now any r.v. X∗ ∈Xsup;V,E such that mX∗ > 0 and MX∗ = ∞. Take any t ∈

(mX∗ ,∞) and let Xt := X∗ ∧ t, so that MXt 6 t <∞, whence, by (2.15) with Xt in place
of X∗, one has DXt 6 (2VXt ) ∨ EXt . On the other hand, by dominated convergence with
t→∞, one has VXt → VX∗ = V , EXt → EX∗ = E, E Xt → E X∗ and E ln Xt → E ln X∗ and
so DXt → DX∗ .

Thus, inequality (2.15) holds for all X∗ ∈Xsup;V,E . That is,

S V,E 6 (2V) ∨ E,

in the case E > V > 0, where S V,E is as in (1.9). On the other hand, again in the case
E > V > 0, for any u, v, p as in (2.2) and any c ∈ [−u,∞), the r.v. Y2

u+c,v+c,p is in Xsup;V,E
and so

S V,E > sup
c∈[−u,∞)

ψ(c) = (2V) ∨ E, (2.16)

with ψ(c) as in (2.13). This concludes the proof of (1.9).
The proof of (1.10) is similar. Suppose that Xinf;V,F , ∅, so that condition (1.6)

holds. Both sides of (1.10) are obviously 0 if F = V = 0. Consider the remaining
case F > V > 0.

Fix any X∗ ∈Xinf;V,F . Consider first the case when conditions (2.14) hold.
Letting now Y∗ :=

√
X∗ and ( β∗1, β

∗
2) := (E Y∗,E Y2

∗ ), one has ( β∗1, β
∗
2) ∈ Qinf;V,F and

Y∗ ∈ Yβ∗1, β
∗
2
. Also, DX∗ = DY2

∗
> Iβ∗1, β∗2 > (2V) ∧ EV,F , by Lemma 2.3. So,

DX∗ > (2V) ∧ EV,F (2.17)

for any r.v. X∗ ∈Xinf;V,F satisfying conditions (2.14).

https://doi.org/10.1017/S0004972715000350 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972715000350


[9] Bounds on the arithmetic and geometric means 157

Take now any s and t such that 0 < s < t < ∞ and let Xs,t := s ∨ (t ∧ X∗), so that
conditions (2.14) are satisfied with Xs,t in place of X∗. Hence, one will have DXs,t >
(2VXs,t ) ∧ EVXs,t ,FXs,t

. Let now s ↓ 0 and t ↑ ∞. Then Xs,t → X∗ pointwise, mXs,t → mX∗
and MXs,t → MX∗ . By dominated convergence, E Xs,t → E X∗ and VXs,t → VX∗ = V . If
FX∗ <∞, then FXs,t → FX∗ , again by dominated convergence. If FX∗ =∞, then clearly
FXs,t 6 FX∗ . Thus, in any case, lim sup FXs,t 6 FX∗ = F. Moreover, by the Fatou lemma,
E ln X∗ 6 lim inf E ln Xs,t, whence DX∗ > lim sup DXs,t > lim sup[(2VXs,t ) ∧ EVXs,t ,FXs,t

] >
(2V) ∧ EV,F , since EV,F is nonincreasing in F and continuous in (V, F) such that
F > V > 0.

Thus, inequality (2.17) holds for all X∗ ∈Xinf;V,F . That is,

IV,F > (2V) ∧ EV,F ,

in the case F > V > 0, where IV,F is as in (1.10). On the other hand, again in the case
F > V > 0, for any u, v, p as in (2.3) and any c ∈ [−u,∞), the r.v. Y2

u+c,v+c,p is in Xinf;V,F
and so

IV,F 6 inf
c∈[−u,∞)

ψ(c) = (2V) ∧ EV,F ,

with ψ(c) still as in (2.13). This concludes the proof of (1.10).
Concerning the last sentence of Theorem 1.4, let Xsup,2;V,E denote the set of all r.v.s

in Xsup;V,E taking at most two values, and then let S 2;V,E := sup{DX : X ∈Xsup,2;V,E}.
Suppose that Xsup;V,E , ∅, as is done in (1.9), so that (1.5) holds.

If E = V = 0, then S V,E = 0 and, on the other hand, 0 ∈Xsup,2;V,E and hence
0 = D0 6 S 2;V,E 6 S V,E = 0, so that S 2;V,E = S V,E = (2V) ∨ E.

Suppose now that E > V > 0. Then, for any u, v, p as in (2.2) and any c ∈
[−u,∞), one has Y2

u,v,p ∈Xsup,2;V,E and, hence, by (2.16) and (2.13), (2V) ∨ E =

supc∈[−u,∞) ψ(c) = supc∈[−u,∞) DY2
u,v,p
6 S 2;V,E 6 S V,E = (2V) ∨ E and so the conclusion

S 2;V,E = S V,E = (2V) ∨ E holds.
That is, the equality in (1.9) holds if the set Xsup;V,E is replaced there by Xsup,2;V,E .

The corresponding statement concerning the equality in (1.10) and the set Xinf;V,F is
verified quite similarly.

Thus, Theorem 1.4 is completely proved. �
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