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Abstract

The Bishop property (B), introduced recently by K. P. Hart, T. Kochanek and the first-named author, was
motivated by Pełczyński’s classical work on weakly compact operators on C(K)-spaces. This property
asserts that certain chains of functions in said spaces, with respect to a particular partial ordering, must
be countable. There are two versions of (B): one applies to linear operators on C(K)-spaces and the
other to the compact Hausdorff spaces themselves. We answer two questions that arose after (B) was
first introduced. We show that if D is a class of compact spaces that is preserved when taking closed
subspaces and Hausdorff quotients, and which contains no nonmetrizable linearly ordered space, then
every member of D has (B). Examples of such classes include all K for which C(K) is Lindelöf in the
topology of pointwise convergence (for instance, all Corson compact spaces) and the class of Gruenhage
compact spaces. We also show that the set of operators on a C(K)-space satisfying (B) does not form a
right ideal in B(C(K)). Some results regarding local connectedness are also presented.
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1. Introduction

The aim of this note is to continue the line of research undertaken in the recent
work [6] of Kochanek, Hart and the first-named author concerning the so-called
‘Bishop’ property of Hausdorff spaces, denoted (B), which arose from operator-
theoretic considerations.

Let K be a compact Hausdorff space and denote by C(K) the Banach space of
all scalar-valued continuous functions on K furnished with the supremum norm.
Pełczyński characterized weakly compact operators T : C(K)→ X, where X is an
arbitrary Banach space, as precisely those which do not preserve copies of c0 inside
C(K). In fact, T is not weakly compact if it does not preserve copies of c0 spanned
by sequences of disjointly supported norm-one functions. Given a sequence ( fn)∞n=1
of such functions in C(K), set gn = f1 + · · · + fn (n ∈ N)—then the functions (gn)∞n=1
behave like elements of the summing basis of c0. Therefore, we infer that the operator
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T is weakly compact if and only if infn>m ‖Tgn − Tgm‖ = 0. Let us put this observation
into a more general framework.

Given two distinct functions f , g ∈ C(K), we write

f ≺ g whenever f�supp f = g�supp f .

Here, supp f denotes the closure of {t ∈ K : f (t) , 0}. The relation ≺ is a partial
ordering on C(K), which has already been studied in the context of positive elements
in arbitrary C*-algebras (see [9, Theorem 3.11], where ≺ is called the geometric pre-
ordering). We shall however confine ourselves to the classical, commutative setting.

Let X be a Banach space and let T : C(K) −→ X be a bounded linear operator. Then
T is said to have (B) if

inf{‖T f − Tg‖ : f , g ∈ F, f ≺ g} = 0

whenever F is a norm-bounded uncountable ≺-chain in C(K) (F is a ≺-chain if for
all distinct f , g ∈ F either f ≺ g or g ≺ f ). Using this ostensibly ad hoc definition, we
can rephrase the above-mentioned theorem of Pełczyński: the operator T : C(K)→ X
is weakly compact if and only if inf{‖T f − Tg‖ : f , g ∈ F, f ≺ g} = 0 for every norm-
bounded countable ≺-chain F in C(K). It was proved in [6] that if K is an extremally
disconnected compact Hausdorff space, then T is weakly compact if and only if it has
(B). Because the identity operator on a C(K)-space, IC(K), is never weakly compact
(unless K is finite), we can ask what topological properties of K allow IC(K) to have
(B) (in this case we say that K itself has (B)). The class of compact spaces having (B)
in this respect can be thought of as far distant as possible from the class of extremally
disconnected compact spaces and, on the other hand, it is a common roof for the classes
of compact metric spaces (as we shall now explain) and locally connected compact
spaces.

Before we explain why compact metric spaces have (B), let us reformulate this
property in the following helpful way. Given δ > 0 and f , g ∈ C(K), we write f ≺δ g if
f ≺ g and ‖ f − g‖ ≥ δ. A subset F ⊆ C(K) is called a δ-≺-chain if, for any two different
f , g ∈ F, either f ≺δ g or g ≺δ f . Thus, K has (B) if and only if, for each δ > 0, every
bounded δ-≺-chain in C(K) is at most countable. By rescaling, it follows that K has
(B) if and only if every bounded 1-≺-chain in C(K) is at most countable.

Apparently every compact metric space K enjoys this property, as in this case
C(K) is separable in the norm topology and hence contains no uncountable discrete
subset (evidently, any 1-≺-chain is discrete in the norm topology). On the other hand,
the ordinal interval [0, ω1], the lexicographically ordered split interval [0, 1] × {0, 1}
and the Čech–Stone compactification of the natural numbers βN are examples of
compact spaces that do not have (B). To see that the first two spaces do not have
(B), consider the uncountable 1-≺-chains of indicator functions {1[0,α] : α < ω1}

and {1[(0,0),(x,0)] : x ∈ [0, 1]} in the corresponding spaces of continuous functions,
respectively. In the case of βN, consider an enumeration of the rational numbers
(qn)∞n=1, the sets Ex = {n ∈ N : qn < x}, x ∈ R, and finally the functions 1Ex ∈ `∞ and
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their canonical extensions to βN. (Proposition 3.1 generalizes this to the Čech–Stone
compactifications of Tychonoff spaces from a wider class.)

Given these examples, a compact space K may be viewed as being in some way well
behaved if it has (B). Thus, we find the task of identifying classes of compact spaces
having (B) to be natural and important, in terms of both the topology of compact
spaces K and the ideal structure of the Banach algebra B(C(K)).

Let L denote the class of compact spaces K for which Cp(K) is Lindelöf, where
Cp(K) denotes C(K) in the topology of pointwise convergence. As far as the authors
are aware, L has not been fully delineated. However, it is known that L contains the
important subclass C of Corson compact spaces [1, 5].

Definition 1.1. A compact space K is called Corson if, for some set Γ, it is
homeomorphic to a subspace of Σ(Γ) in the pointwise topology, where

Σ(Γ) = { f ∈ RΓ : f (γ) , 0 for at most countably many γ ∈ Γ}.

All metrizable, Eberlein, Talagrand and Gul’ko compact spaces are in C . In
this note we show that all spaces in L have (B). Thus, we answer positively
[6, Question 3.9], which asks whether Eberlein compact spaces (spaces homeomorphic
to weakly compact subsets of Banach spaces) have (B).

There is another large, though lesser-known, class of compact spaces of relevance
to this note. It was first introduced in [4], and the second-named author found it to be
of importance when studying strictly convex norms on Banach spaces. The definition
below is equivalent to that given in [4]—see [13, Proposition 2].

Definition 1.2. We say that a compact space K is Gruenhage if we can find a sequence
(Un)∞n=1 of families of open subsets of K, together with a sequence of open subsets
(Rn)∞n=1 of K, such that:

(1) U ∩ V = Rn whenever n ∈ N and U,V ∈Un are distinct; and
(2) if s, t ∈ K, then {s, t} ∩ U is a singleton for some m ∈ N and some U ∈Um.

Let us denote by G the class of Gruenhage compact spaces. All metrizable,
Eberlein, Gul’ko and descriptive compact spaces are in G . In particular, all scattered
compact spaces having countable Cantor–Bendixson height or, more generally, all
compact σ-discrete spaces (unions of countably many relatively discrete subsets) are
descriptive and thus members of G . We prove that all spaces in G have (B).

That all elements of L and G have (B) follows from the next result.

Theorem 1.3. Suppose that D is a class of compact Hausdorff spaces that is preserved
when taking closed subspaces and Hausdorff quotients, and which contains no
nonmetrizable linearly ordered space. Then every member of D has (B).

It follows from the Tietze–Urysohn extension theorem and the Hahn–Banach
theorem, respectively, that L is preserved when taking closed subspaces and
Hausdorff quotients. It was proved in [10] that L contains no nonmetrizable linearly
ordered elements. Regarding G , it is immediate that this class is preserved under closed
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subspaces. Preservation under continuous images is proved in [13, Theorem 23], and
the fact that G contains no nonmetrizable linearly ordered elements follows from [2,
Proposition 6.5].

It is worth noting that L and G are incomparable. The Mrówka space Ψ, defined
using a maximal, almost disjoint family of subsets ofN, is a compact scattered space of
Cantor–Bendixson height 3 and so is Gruenhage. However, Cp(Ψ) is not Lindelöf [3,
Proposition 1]. On the other hand, there is a Corson compact space that does not
contain any dense metrizable subset [15, page 258], and every Gruenhage compact
space possesses such a subset [4, Theorem 1].

Section 2 is devoted to proving Theorem 1.3. Section 3 explores (B) in the context
of connected and locally connected spaces. In Section 4, we answer in the negative
[6, Question 4.3].

2. The proof of Theorem 1.3

Before proceeding with the proof, we introduce some notation and auxiliary results.
Given a linearly ordered set F and f , g ∈ F, we define the intervals ( f , g), ( f , g], [ f , g]
and [ f , g) in the obvious way. We let (←, f ) and ( f ,→) denote the sets of strict
predecessors and strict successors of f , respectively, and define (←, f ] and [ f ,→)
accordingly.

A subset I ⊆ F is called an initial segment if f ≺ g and g ∈ I implies f ∈ I. The set
I of initial segments of F is naturally linearly ordered with respect to inclusion, and
is compact with respect to the induced order topology.

Let K be a compact Hausdorff space and let us fix a nonempty 1-≺-chain F ⊆ C(K).
Set D = {z ∈ C : |z| ≥ 1}. Given I ∈I , we define

WI :=
⋂
f∈I

f −1(0) ∩
⋂

g∈F\I

g−1(D),

where f −1(0) is shorthand for f −1({0}). The next proposition lists some straightforward
yet important facts about the WI to be used in the proof of Theorem 1.3.

Proposition 2.1. If we fix a 1-≺-chain F ⊆ C(K), then the following statements hold.
Throughout, I and J are assumed to be elements of I :

(i) if ∅ , I ( F, then WI is nonempty;
(ii) if I ( J ⊆ F, then WI ∩WJ is empty;
(iii) if P ∈I , then

⋃
I⊆P WI and

⋃
P⊆J WJ are compact.

Proof.
(i) If f ≺1 g, then f −1(0) ∩ g−1(D) is nonempty. Bearing this in mind, if ∅ , I ( F,

then WI is nonempty, being as it is the intersection of a family of nonempty compact
sets having the finite intersection property.

(ii) Given g ∈ J\I, we have WI ⊆ g−1(D) and WJ ⊆ g−1(0).
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(iii) Let P ∈ I . We show that
⋃

I⊆P WI is compact. First, we assume that P , F.
We claim that ⋃

I⊆P

WI =
⋂

g∈F\P

g−1(D),

which is of course compact. By definition, if I ⊆ P and g ∈ F\P, then WI is a subset of
g−1(D). To see the other inclusion, fix

t ∈
⋂

g∈F\P

g−1(D)

and set
I = {g ∈ P : |g(t)| < 1}.

Using the definition of ≺, it follows that I is an initial segment. We claim that t ∈ WI .
Trivially, |g(t)| ≥ 1 whenever g ∈ F\I. Moreover, if f ∈ I, then f (t) = 0. Indeed, assume
that f (t) , 0. Pick g ∈ F\I (which we can do as I ⊆ P , F). Then f ≺ g and so
| f (t)| = |g(t)| ≥ 1; hence, f < I. Thus, t ∈ WI , as claimed.

In the case where P = F, we proceed differently. Suppose that U is an open cover
of

⋃
I⊆P WI . Then, because WF is compact, there is a finite family G ⊆ U satisfying

WF ⊆
⋃

G . According to the definition of WF , there exists f ∈ F such that

f −1(0) ⊆
⋃

G .

Setting Q = (←, f ), we get Q , F and so
⋃

I⊆Q WI is compact, from above. Thus,⋃
I⊆Q

WI ⊆
⋃

F

for some finite family F ⊆U . We conclude that⋃
I⊆F

WI ⊆
⋃

(F ∪ G ),

since I * Q implies that f ∈ I, meaning that WI ⊆ f −1(0) ⊆
⋃

G .
Now we show that

⋃
P⊆J WJ is compact. Consider a new 1-≺-chain G = F\P, its set

of initial segments J , together with the sets

W ′I =
⋂
f∈I

f −1(0) ∩
⋂

g∈G\I

g−1(D),

where I ∈J . Observe that the map J 7→ J\P is a bijection between the set of J ∈I
containing P and J , and WJ =

⋂
f∈P f −1(0) ∩W ′J\P. Therefore,⋃

P⊆J

WJ =
⋂
f∈P

f −1(0) ∩
(⋃

I∈J

W ′
I

)
,

so it is compact, from above. �
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We remark in passing that if W∅ is empty, then F has a least element and, if WF
is empty, then F has a greatest element. Indeed, if WF is empty, then f −1(0) must be
empty for some f ∈ F. However, the definition of ≺ forces any such f to be the greatest
element of F. Likewise, if W∅ is empty, then g(K) ⊆ D for some g ∈ F, and any such
g is necessarily the least element of a 1-≺-chain.

We also need the following result, which belongs to the folklore of linearly ordered
topological spaces.

Proposition 2.2. Let X be a second-countable linearly ordered topological space, and
let A be the set of x ∈ X such that (x,→) has a least element. Then A must be countable.

Proof. Assume that A is uncountable. Let V be a countable base for X. Since each
interval (←, x], x ∈ A, is open, there are an uncountable set B ⊆ A and V ∈ V , such
that x ∈ V ⊆ (←, x] for all x ∈ B, but applying this to any distinct x, y ∈ B yields a
contradiction. �

Now we are able to prove Theorem 1.3.

Proof of Theorem 1.3. Let K ∈ D , where D is a class satisfying the hypotheses
of the theorem. Let F be a 1-≺-chain in C(K), and set W =

⋃
I∈I WI . From

Proposition 2.1(iii), we know that W is compact, so in particular W ∈ D . Define the
map π : W −→ I by π(t) = I whenever t ∈ WI and I ∈ I . Notice that I \π(W) ⊆
{∅, F}, by Proposition 2.1(i). We know that π is continuous because, given an open
interval (P,Q) ⊆I ,

π−1((P,Q)) = W
∖((⋃

I⊆P

WI

)
∪

(⋃
Q⊆J

WJ

))
is open in W, again by Proposition 2.1(iii). Therefore, π(W) ∈D as well. Now π(W) is
a closed interval in the compact linearly ordered space I , so π(W) must be metrizable,
by hypothesis. It follows that I is also metrizable. Finally, given f ∈ F, the initial
segment (←, f ) ∈ I has immediate successor (←, f ] ∈ I , so F must be countable,
by Proposition 2.2. �

We identify a further class of compact spaces having (B). As with Gruenhage
spaces, the next property was studied in the context of strictly convex norms on Banach
spaces [11].

Definition 2.3. We say that a compact space K has (∗) if we can find a sequence
(Un)∞n=1 of families of open subsets of K, with the property that given any x, y ∈ K,
there exists n such that:

(1) {x, y} ∩
⋃

Un is nonempty; and
(2) {x, y} ∩ U is at most a singleton for all U ∈Un.

Every Gruenhage compact space has (∗) [11, Proposition 4.1], but there are
examples of compact scattered non-Gruenhage spaces having (∗), in both ZFC and
elsewhere (see [14] and [11, Example 2], respectively). Every scattered compact space
having (∗) has (B), because again the class of such things satisfies the hypotheses of
Theorem 1.3, by [11, Proposition 4.5] and [2, Proposition 6.5].
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3. Connectedness, local connectedness and their effects on (B)

Drawing pictures of sequences of bumps will suggest to the reader that some
form of connectedness will have consequences for (B). The next proposition and
example, which generalize the fact that C(βN) does not have (B), shows that standard
connectedness does not force spaces to have (B).

Proposition 3.1. Let X be a Tychonoff (that is, completely regular) space that admits
a countable and locally finite family U of pairwise disjoint nonempty open sets. Then
neither βX nor βX\X has (B).

Proof. Fix an enumeration Un, n ∈ N, of U . Let xn ∈ Un and take continuous functions
fn : X −→ [0, 1] such that fn(xn) = 1 and fn vanishes on X\Un (n ∈ N). Let (qn)∞n=1 be
an enumeration of the rationals and, given x ∈ R, define Ex = {n ∈ N : qn < x}. As U
is locally finite,

gx =
∑
n∈Ex

fn (x ∈ R)

is a well-defined, continuous and bounded function. Let gx denote the continuous
extension of gx to βX, where x ∈ R. Suppose that x < y. Then the set Ey\Ex is infinite.
If p ∈ βX is any limit point of {xn : n ∈ Ey\Ex}, then necessarily p < X, because U is
locally finite. It is evident that gx(p) = 0 and gy(p) = 1. Therefore, the gx, x ∈ R, and
also their restrictions to βX\X form uncountable 1-≺-chains in C(βX) and C(βX\X),
respectively. �

Corollary 3.2. The spaces βR and βR\R do not have (B), according to
Proposition 3.1.

On the other hand, we can formulate a sufficient condition if we consider a
certain type of local connectedness. Before proving our main result of this section,
Theorem 3.5, we make some preparatory observations. The next definition captures
the precise notion of local connectedness that we require.

Definition 3.3. Given a closed subset M of a compact space K, and t ∈ M, we say that
t has a local base of connected sets relative to M if, given any set U 3 t open in M,
there exists a connected set V , also open in M, and satisfying t ∈ V ⊆ U.

Clearly, K is locally connected if every point of K has a local base of connected
sets relative to K. Given E ⊆ K, let ∂E denote the (possibly empty) boundary of E. We
recall that, if a subset V ⊆ K is connected and U ⊆ K is an open set such that V ∩ U
and V\U are nonempty, then V ∩ ∂U is nonempty.

Lemma 3.4. Suppose that M ⊆ K is closed and we have elements fn, n ∈ N, and f
in C(K) satisfying f1 ≺ f2 ≺ f3 ≺ · · · ≺ f and tn ∈ M, n ∈ N, such that fn(tn) = 0 and
| fn+1(tn)| ≥ 1 for all n. Then, if u is any accumulation point of the sequence (tn)∞n=1, then
u does not have a local base of connected sets relative to M.
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Proof. Let Un = {s ∈ K : | fn+1(s)| > 1
2 }, n ∈ N. Evidently, | fn+1(s)| = 1

2 if s ∈ ∂Un.
Suppose that u ∈ M is an accumulation point of the sequence (tn)∞n=1. Then u < Un
for any n, because m > n implies that fn ≺ fm, giving fn+1(tm) = 0 and tm < Un. We
claim that | f (u)| ≥ 1. Indeed, otherwise, we can find an open set U 3 u such that
| f (s)| < 1 whenever s ∈ U. But this implies that tn ∈ U for some n and, since fn+1 ≺ f ,
we have 1 ≤ | fn+1(tn)| = | f (tn)| < 1. Now let U = {s ∈ K : | f (s)| > 1

2 }. If u does have
a local base of connected sets relative to M, then we could find a connected set V ,
open in M, such that u ∈ V ⊆ U ∩ M. However, given m satisfying tm ∈ V , we have
tm ∈ V ∩ Um and u ∈ V\Um. By connectedness, there exists some s ∈ V ∩ ∂Um, giving
1
2 = | fm+1(s)| = | f (s)| > 1

2 , which is a contradiction. �

Now suppose that we have a bounded ≺-chain F ⊆ C(K). Given a closed set M ⊆ K,
we define an equivalence relation ∼M on the set F by declaring that f ∼M g if and only
if ‖( f − g)�M‖ < 1. Evidently, ∼M is reflexive and symmetric. To obtain transitivity,
notice that if t ∈ K and f ≺ g ≺ h, then either g(t) = f (t) or g(t) = h(t) (if g(t) , f (t),
then g(t) , 0, giving g(t) = h(t)). Moreover, the equivalence classes of ∼M are intervals
in (F,≺).

The main result of this section now follows. Recall that a linear ordering is scattered
if it contains no order-isomorphic copies of the rationals.

Theorem 3.5. Let M be closed a closed subset of a compact Hausdorff space K and
suppose that we can write the remainder K\M as a union

⋃∞
n=1 Hn, where each Hn

is open in Hn (n ∈ N), and every point of Hn has a base of neighbourhoods that are
connected sets relative to Hn. Then the following statements hold.

(1) Every equivalence class, with respect to ∼M , of any given 1-≺-chain is countable
and scattered with respect to the induced ordering.

(2) If M has (B), then so does K.
(3) In particular, if M is empty, then K has (B).

Of course, if K is locally connected, then Theorem 3.5 shows that K has (B).
However, if A is a locally connected and compact space, and K is σ-discrete, that
is, K =

⋃∞
n=1 Dn, where each Dn is discrete in the relative topology, then the locally

connected set A × {t} is open in A × Dn
A×K

for all t ∈ Dn. Thus, Theorem 3.5 tells us
that A × K has (B). This example illustrates the fact that Theorem 3.5 can be applied
to spaces that are rather far from being locally connected. Let us record the following
corollary of Theorem 3.5.

Corollary 3.6. Let X be a Banach space and denote by BX∗ the unit ball of X∗

endowed with the weak*-topology. Then BX∗ has (B).

To prove Theorem 3.5, we require some machinery that is based on Haydon’s
analysis of locally uniformly rotund norms on C(K), where K is a so-called Namioka–
Phelps compact space [7]. Lemma 3.7 below is essentially due to him. Let X be a
Hausdorff space, such that X =

⋃∞
n=1 Hn, where each Hn is open in its closure. Let

Σ = {σ = (n1, n2, . . . , nk) : n1 < n2 < · · · < nk, k ∈ N}.
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We introduce a total ordering @ on Σ by declaring that σ @ σ′ if and only if σ is
a proper extension of σ′, or if there exists k ∈ N such that the ith entries ni and n′i of
σ and σ′, respectively, defined for i ≤ k, agree whenever i < k, and nk < n′k. This is the
Kleene–Brouwer ordering on Σ, and is different from the lexicographic ordering.

Given σ = (n1, n2, . . . , nk) ∈ Σ, let

Hσ = (Hn1\Hn1 ) ∩ · · · ∩ (Hnk−1\Hnk−1 ) ∩ Hnk

and
Ĥσ = (Hn1\Hn1 ) ∩ · · · ∩ (Hnk−1\Hnk−1 ) ∩ Hnk .

Evidently, Hσ ⊆ Ĥσ and Ĥσ is closed.

Lemma 3.7 (Cf. [7, Lemma 3.3]). Let W ⊆ X be a nonempty and compact set. Then
there exists a minimal element σ ∈ Σ such that W ∩ Ĥσ is nonempty. Moreover, for this
σ, we have W ∩ Hσ = W ∩ Ĥσ.

Proof. Let n1 ∈ N be minimal, such that W ∩ Hn1 , ∅. If W ∩ Hn1 = W ∩ Hn1 , stop by
setting σ = (n1). Else, W ∩ (Hn1\Hn1 ) , ∅, so let n2 be minimal, such that n2 > n1 and
W ∩ (Hn1\Hn1 ) ∩ Hn2 , ∅. If

W ∩ (Hn1\Hn1 ) ∩ Hn2 = W ∩ (Hn1\Hn1 ) ∩ Hn2 ,

let us stop by setting σ = (n1, n2). Otherwise, let n3 be minimal, such that n3 > n2 and

W ∩ (Hn1\Hn1 ) ∩ (Hn2\Hn2 ) ∩ Hn3 , ∅.

Continuing in this way, we have to stop after finitely many steps. Otherwise, we would
get a strictly increasing sequence n1 < n2 < n3 < · · · such that

Wk := W ∩
k⋂

i=1

(Hni\Hni ) , ∅

for all k ∈ N. Set V :=
⋂∞

k=1 Wk. Then V , ∅ by compactness. Let j be minimal, subject
to V ∩ H j , ∅, and let k be such that nk ≤ j < nk+1 (it is clear that n1 ≤ j). Then

∅ , V ∩ H j ⊆ W ∩
k⋂

i=1

(Hni\Hni ) ∩ H j.

Evidently, this means that nk < j, but this fact contradicts the minimal choice of nk+1.
So, suppose that we have σ determined as above. Now let σ′ @ σ. If σ′ properly

extends σ, then W ∩ Hσ′ = ∅ by construction. If σ′ is not a proper extension, take k
such that n′i = ni for i < k and n′k < nk (where n′i denotes the ith entry of σ′). Since nk

was chosen minimally so that nk > nk−1 and

W ∩
⋂
i<k

(Hni\Hni ) ∩ Hnk , ∅,
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we must have
W ∩

⋂
i<k

(Hni\Hni ) ∩ Hn′k = ∅.

As Ĥσ′ ⊆
⋂

i<k(Hni\Hni ) ∩ Hn′k , we conclude that W ∩ Ĥσ′ = ∅. The second assertion
of the lemma is evident. �

Proof (The proof of Theorem 3.5). Let us prove assertion (1). Suppose that we have
a 1-≺-chain of C(K), and let F be an equivalence class of this chain with respect to ∼M .
We want to show that F is countable and scattered. This is done in two steps.

In step one, we argue by contradiction to eliminate the possibility that F contains
an order-isomorphic copy of ω1 or ω∗1. (Here, ω∗1 stands for ω1 with the reversed
order.) If F contains a copy G of ω∗1, let g be the greatest element of G. Then it is a
straightforward exercise to check that the set {g − f : f ∈ G} is a 1-≺-chain, which is,
moreover, order isomorphic to ω1. Furthermore, it is easy to see that the elements of
this new chain are ∼M-equivalent. Thus, if F contains an isomorphic copy of ω1 or ω∗1,
we can extract ∼M-equivalent elements fα ∈ F, α < ω1, such that fα ≺1 fβ whenever
α < β.

Recall the sets WI introduced in Section 2. Here, we define the nonempty compact
set

Wα :=
⋂
ξ<α

f −1
ξ ({0}) ∩ f −1

α (D),

where D is as in Section 2. Observe that as the fα, α < ω1, are ∼M-equivalent, we have
Wα ⊆ K\M. By applying Lemma 3.7 to X := K\M and the W := Wα, for each α we
obtain σα ∈ Σ satisfying

Wα ∩ Hσα = Wα ∩ Ĥσα , ∅.

Let S σ = {α < ω1 : σα = σ}. Then ω1 =
⋃
σ∈Σ S σ, which implies that S := S σ is

stationary for some σ ∈ Σ (that is, S meets every closed and unbounded subset of
ω1; the implication follows from [8, Theorem 8.3]), which we fix for the remainder
of step one. As S is stationary, we can find a strictly increasing sequence (βn)∞n=1 in S
which converges to some β ∈ S . Indeed, if L denotes the set of accumulation points
(in ω1) of elements of S , then L is closed and unbounded; thus, there exists β ∈ S ∩ L,
from which the existence of (βn)∞n=1 follows.

Write σ = (n1, n2, . . . , nk), m = nk and set A =
⋂

i<k(Hni\Hni ), so that

Wα ∩ A ∩ Hm = Wα ∩ A ∩ Hm , ∅

for every α ∈ S . For each n, select tn ∈ Wβn+1 ∩ A ∩ Hm. We have | fβn+1 (tn)| ≥ 1 and
fβn (tn) = 0. Let u ∈ A ∩ Hm be an accumulation point of the tn. Because fβn+1 ≺ fβ, we
have | fβ(tn)| ≥ 1 for all n and so | fβ(u)| ≥ 1. On the other hand, if ξ < β, then there
exists N for which ξ < βn whenever n ≥ N, meaning that fξ(tn) = 0 for such n and thus
fξ(u) = 0. Therefore, u ∈ Wβ and thus u ∈ Wβ ∩ A ∩ Hm = Wβ ∩ A ∩ Hm. However,
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according to Lemma 3.4, u ∈ Hm does not have a local base of connected sets relative
to Hm, meaning that u < Hm. This contradiction completes step one.

We proceed with step two. We know that F cannot contain an isomorphic copy
of ω1 or ω∗1. According to results that go back to Hausdorff, if we define a new
equivalence relation ∼ on F by f ∼ g whenever the interval ( f , g) is scattered, then
every equivalence class of ∼ is a scattered interval. Moreover, the quotient F/∼, when
endowed with the induced order, is densely ordered. Again, according to Hausdorff,
any uncountable scattered order contains a copy of ω1 or ω∗1 (see [12, Theorem 5.28]).
Since we have excluded this possibility, we conclude that all equivalence classes of ∼
are countable.

The purpose of step two is to show that the quotient F/∼ is in fact a singleton.
From this, we conclude that F is countable and scattered. We assume that F/∼ is
not a singleton and reach a contradiction. Let G ⊆ F have the property that G contains
precisely one element of each equivalence class of ∼. Then G is densely ordered when,
given the induced order: if f , h ∈ G and f ≺ h, then f ≺ g ≺ h for some g ∈ G.

Consider the set D of all initial segments of G that do not have greatest elements.
We can see that D is compact with respect to the induced order. By definition, D is
also densely ordered. The fact that G is densely ordered and not a singleton implies
that D is not the singleton {∅} and moreover that no nonempty open subset of D can be
a singleton. Notice furthermore that D is first countable because G contains no copies
of ω1 or ω∗1. In particular, if J ∈ D is nonempty, then there is a strictly increasing
sequence (Jn)∞n=1 in D , having union J.

Mimicking a little the procedure in step one above, for every I ∈ D , define

WI =
⋂
f∈I

f −1(0) ∩
⋂

g∈G\I

g−1(D),

and take σI ∈ Σ such that

WI ∩ HσI = WI ∩ ĤσI , ∅.

Let Tσ = {I ∈ D : σI = σ}. As D =
⋃
σ∈Σ Tσ, the Baire category theorem implies that,

for some σ, the closure Tσ contains a nonempty open set U . Since U cannot be
a singleton, it follows that (P,Q) ⊆ Tσ for some P,Q ∈U .

Fix J ∈Tσ ∩ (P,Q), take a strictly increasing sequence (In)∞n=1 in (P, J) having union
J and select Jn ∈ Tσ ∩ (In, In+1) for each n. As above, let σ = (n1, n2, . . . , nk), m = nk
and A =

⋂
i<k(Hni\Hni ). Take tn ∈ WJn ∩ A ∩ Hm for all n, f1 ∈ J1 and fn ∈ Jn\Jn−1 for

n ≥ 2. Then fn(tn) = 0 and | fn+1(tn)| ≥ 1 for all n. Fix a limit u ∈ A ∩ Hm of the tn and
pick any f ∈ G\J. As above, according to Lemma 3.4, u ∈ Hm does not have a local
base of connected sets relative to Hm and thus u < Hm.

However, we claim that u ∈ WJ , which is a contradiction because it implies that

u ∈ WJ ∩ A ∩ Hm = WJ ∩ A ∩ Hm.

Indeed, given any f ∈G\J, as fn+1 ≺ f , we have | f (tn)| ≥ 1 for all n, whence | f (u)| ≥ 1.
On the other hand, if f ∈ J, then there exists N such that f ∈ Jn for n ≥ N. Thus,
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f (tn) = 0 for all such n and so f (u) = 0. Therefore, u ∈WJ as claimed and we have our
desired contradiction. This completes the proof of assertion (1).

Assertions (2) and (3) follow easily. Suppose that M has (B). Let F ⊆ C(K) be
a bounded 1-≺-chain. The fact that M has (B) implies that there are only countably
many distinct ∼M-equivalence classes. By assertion (1), every such equivalence class
of F is countable, so it follows that F itself must be countable. Finally, for assertion
(3), if M is empty, then ∼M has just one equivalence class, so F is countable and
scattered. �

We conclude this section by remarking that the converse of Theorem 3.5(2) is false.
The long line L is locally connected, so L has (B). Meanwhile, [0, ω1] ⊆ L, [0, ω1]
does not have (B) and every point of the dense remainder L\[0, ω1] has a local base of
connected sets relative to L.

4. Further observations

The class of spaces having (B) lacks good permanence properties and, in particular,
a closed subset of space that has (B) need not have (B). Indeed, the above example of
the long line illustrates this. For another example, take any compact Hausdorff space
M not having (B), apply Corollary 3.6 and observe the natural embedding of M into
BC(M)∗ via the Dirac delta functionals.

Nonetheless, it is easy to see that if K is a compact space that has (B), M is compact
and π : K −→ M is a continuous surjection, then M has (B) too. This follows from the
fact that f 7→ f ◦ π is an isometry of C(M) into C(K) that respects the lattice structure.

Moreover, we have the following result.

Example 4.1. The property (B) is not preserved under Banach-space isomorphisms of
C(K)-spaces.

Proof. Let B = BC(βN)∗ be the dual unit ball of C(βN), which is isometrically
isomorphic to `∞. It has (B) by Corollary 3.6. By the Banach–Mazur theorem, C(βN)
embeds into C(B) isometrically. On the other hand, C(βN) is injective and isomorphic
to its Cartesian square. We are now in a position to apply the Pełczyński decomposition
method in order to conclude that there exists an isomorphism

C(B) � C(B) ⊕∞ C(βN).

On the other hand, the Banach spaces C(B) ⊕∞ C(βN) and C(Bt βN) are isometrically
isomorphic (here t denotes disjoint union). Because βN fails (B), B t βN fails
it too. �

Finally, we return to the structure of the left ideal of operators on C(K) having (B).
In [6, Question 4.3], the authors ask whether this ideal is always two-sided, regardless
of whether K has (B) or not. We can use the spaces of Example 4.1 to answer this
question.

Example 4.2. The set of operators on C(B t βN) satisfying (B) is not a right ideal.
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Proof. Let S : C(B) −→ C(B t βN) be a Banach-space isomorphism. As the Banach
spaces C(B t βN) and C(B) ⊕∞ C(βN) are isometrically isomorphic, we may extend S
to an operator T : C(B t βN) −→ C(B t βN) by setting T equal to 0 on C(βN). Note
that T has (B) because S , as an operator from C(B), has (B). It remains to notice that
TS −1 = IC(BtβN) fails (B). �
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