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A COMMUTATIVITY THEOREM FOR 
DIVISION RINGS 

BY 

A N T H O N Y R I C H O U X 

ABSTRACT. Let D be a division ring with center Z. Suppose for all 
x e D , there exists a monic polynomial, fx(t), with integer coeffi
cients such that fx(x)eZ. Then D is commutative. 

Throughout this note, J is the ring of rational integers, Q is the field of 
rational numbers, and D is a division ring with center Z. A polynomial in J[f] 
is said to be monic (co-monic) if its highest (lowest) non-zero coefficient is one. 

In [1, Theorem 2] Herstein showed that if D satisfies 

(1) for all xeD, there exists a co-monic fx(t)eJ[t] such that fx(x)eZ, 

then D is a field. In this note, we show that if D satisfies 

(2) for all xeD, there exists a monic fx(t)eJ[t] such that fx(x)eZ, 

then D is a field. This answers in the affirmative a question posed by Chacron 
[2]. 

LEMMA 1. Let E^Zbe a Euclidian domain containing infinitely many primes 
{PiK°=i- Let xeD. Suppose for each integer i> 1, there exists qt(t) = X"=i ckjt1 e 
E[t] such that 

(i) for all j > 2, pt\ aip but pt )( atl and 
(ii) qt(x)eZ. 

Then if {deg(qi)K°=1 is bounded, then xeZ. 

Proof. Since {deg(qi)}°°=1 is bounded, there is an integer n > l such that for 
infinitely many integers i > l , deg(qi) = n. Let n be the least integer > 1 with 
the property that there exists infinitely many primes {pi}?=1^E and for each 
integer i > l , there exists a polynomial qt(t) = Y!l=i atJ] ^E[t] such that 
dcg(qi) = n and q£(t) satisfies (i) and (ii). If n = 1, we are obviously done. 
Suppose n > 1. For each integer i > 1, let ft(t) = oLlnqt(t)-atnqt(t). Then ft(t)e 
E[tl f(x)eZ and deg(/ i)<n. Also if ft(t) = l ^ ft/', then for / > 2 , 
Pt | «LnOy-«;,„«lfJ. = ftj. Now if Pi I Pi,i = a i , n a u - a i t n a M , then since ft | at,n 

and ft /f aiU pt | a x n . Since only finitely many primes can divide aln, we have 
infinitely many f's satisfying (i) and (ii), contradicting the minimality of n. Thus 
n = 1 and we are done. 
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Note that a division ring of non-zero characteristic which satisfies (2) also 
satisfies (1) and is hence, by Herstein's Theorem, a field. We thus, throughout 
the remainder of this note, assume D is a division ring of characteristic zero 
which satisfies (2). 

LEMMA 2. If xeD is transcendental over Q, then xeZ. 

Proof. Let f(t) = r + an_1f
n~1 + - • - + axt-\-a where the c^'s are integers, 

aeZ, and f(x) = 0. By hypothesis a is transcendental over Q. So E = Q[a] is a 
Euclidean domain contained in Z and containing infinitely many primes 
{Pi)T=\- F ° r e a c n integer i > l , there exists a polynomial qi(t) = 
tni + ft,ni_1t

ni_1 + - • • + ft1reJ[r] such that ^[pj-^PiX + lXleZ. Let 

n. 

j = 0 

Note that 

fei(0 = (pit + l)n'+pij3£.ni_1(pit+l)'H-1 + - • • + p r 1 f t , i ( p ^ D 

and from this equation it is quite easy to see that for / ^ 2 , pf | yu. Also, 

7u = nd* + K - l)ft.„I_1pf+ ' ' ' + 1 8 , ^ . 

Hence, p* | y u , but, since ^ is a unit in E, pf )( ytl. Let 
n. 

hi(t) = hi(0-7i.o= I 7i/ ' 
J = l 

and let q i(0 = pr1^i(0- Then qi(t)eE[t] satisfies both (i) and (ii) of lemma 1. 
Thus for each integer i > l , there exists a polynomial 

qt(t)=t 7 i / eJB[r ] 
i = i 

of minimal degree which satisfies both (i) and (ii) of Lemma 1. We will show 
{deg(qi)}r=i is bounded. Recall that 

f(t) = tn + an_1t
n~1 + - • • + a1r + a e E [ f ] 

and /(x) = 0. Suppose deg(qi) = nf > n = deg(/). Let hi(t) = qi(t)-fantt
n*-nf(t). 

Then ht(t)eE[t] and ht(t) satisfies both (i) and (ii). But deg(hi)<ni contradict
ing the minimality of deg(^)- Thus {degfa^Kli is bounded. By Lemma 1, we 
are done. 

COROLLARY 1. If D is not a field, then D is algebraic over Q. 

Proof. Pick xeD-Z. Then for all c e Z, ex e D - Z and so by Lemma 2, ex 
is algebraic over Q. For any ceZ, since both x and ex are algebraic over Q, c 
is algebraic over Q. Thus Z is algebraic over Q. Since D is algebraic over Z 
and Z is algebraic over Q, D is algebraic over Q. 
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THEOREM. D is a field. 

Proof. We may assume, by Corollary 1, that D is algebraic over Q. We will 
show D satisfies (1) and so, by Herstein's Theorem, is a field. Let xeD. Let 
q(t) = ant

n + - - - + a1t + a0e J[t] such that a 0 # 0 and q(x) = 0. Let h(t) = 
—anf

n_1 — • • • — a2t — a1. Then h(t)eJ[t] and a0 = xh(x). Pick 

f(t) = r + /3m_1r~1 + - • • + p1t+p0e J[t] 

such that f(aô2x)eZ. Let 

/ (0 = agm/(aô2t) = r + a§ |3 r n_1r-1 + - • • + « r " 1 ) P i t . 

Then f(x)(=Z and 

/(x) = xm + a g f t ^ x " 1 - 1 + • • • + ag ( m - 1 ^ 1 x 

= xm + |3m_1xm+1[h(x)]2 + - • • + |31x2m-1[h(x)]2(m-1). 

Thus f(x) = p(x) for some co-monic p(t)eJ[t]. 
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