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Surfactant-laden film lining an oscillating cap:
problem formulation and weakly nonlinear
analysis
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A surfactant-laden liquid film that lines the inside of an oscillating spherical cap is
considered as a model of lung alveoli. Pulmonary surfactant solubility is described by
Langmuir adsorption kinetics, modified by incorporating the intrinsic compressibility of
the adsorbed monolayer. A novel boundary condition, supported by experimental data and
scaling arguments, is applied at the rim. The condition enforces mass conservation of water
and surfactant by matching the ‘large-scale’ dynamics of the alveolus to ‘small-scale’
equilibrium over mid-alveolar septa of small but finite thickness. Linear and weakly
nonlinear analysis around the conditions in a non-oscillating cap indicates that the
occurrence of shearing motion in the liquid is related to the non-zero film thickness
over the rim, and shearing velocity at the interface is predicted an order-of-magnitude
lower than the velocity of radial oscillation. Marangoni stresses dominate the interfacial
dynamics, but capillary stresses affect significantly the interior flow field. In particular,
they produce spatial modulations in flow rate, surface concentration of surfactant and
wall shear stress, whose length scale varies with Ca−1/3, i.e. is determined by a balance
between capillary and viscous forces. Non-zero adsorption kinetics modifies at first order
only the amplitude and phase of surface concentration, but affects all other variables at
second order. In particular, it sets a steady drift of surfactant away from the alveolus
and towards the rim. Finally, an attempt is made to relate the present predictions to
physiological findings about air flow and particle deposition inside alveoli, and about shear
stress-inflicted damage in diseased lungs.

Key words: pulmonary fluid mechanics, capillary flows, lubrication theory

† Email address for correspondence: bont@mie.uth.gr

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 944 A50-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

52
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:bont@mie.uth.gr
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2022.524&domain=pdf
https://doi.org/10.1017/jfm.2022.524


K. Bouchoris and V. Bontozoglou

1. Introduction

Interfacial flows with insoluble or soluble surfactants are intensely studied in the recent
literature (Manikantan & Squires 2020), and the presence of the surface-active agent
proves to have a decisive role on the stability characteristics and transitions, as well as
on accompanying transport phenomena (Frenkel & Halpern 2002; Blyth & Pozrikidis
2004; Pereira et al. 2007; Craster & Matar 2009; Kalogirou & Papageorgiou 2015;
Katsiavria & Bontozoglou 2020; Hu, Fu & Yang 2020; Constante-Amores et al. 2021;
D’Alessio & Pascal 2021; Samanta 2021). Of fundamental interest in such flows is the
intricate coupling of the dynamics of the surfactant – i.e. surface elasticity and viscosity,
adsorption–desorption kinetics – with the dynamics of the flow field. Quite frequently
in micro-flows, the Reynolds number is very small and flow dynamics is dictated by the
dynamics of the boundaries. Among the wide variety of applications, prominent is the
study of various aspects of lung physiology, where thin, surfactant-laden films coat the
airways and the alveoli (Gaver & Grotberg 1990; Halpern, Jensen & Grotberg 1998; Matar,
Zhang & Craster 2003; Grotberg 2011; Kim et al. 2011; Filoche, Tai & Grotberg 2015;
Muradoglu et al. 2019). In the case of alveoli, which is the focus of the present work, it is
the periodic inflation and deflation of alveolar walls during the breathing cycle that drives
the flow.

Lung alveoli are lined with a thin liquid layer, estimated as 0.1–1 μm thick, depending
on lung inflation and health condition (Bastacky et al. 1995; Wei et al. 2005). The interface
of this layer, which is always in contact with the alveolar gas, is coated by a monolayer
of special surface-active agents that constitute the pulmonary surfactant. The pulmonary
surfactant is a combination of lipids and proteins, which – apart from populating the
adsorbed monolayer – are also suspended in the liquid in the form of aggregates (Zuo
et al. 2008). The surfactant acts to reduce drastically surface tension, making the alveoli
more compliant and minimizing the metabolic work of breathing (Zasadzinski et al. 2001;
Rugonyi, Biswas & Hall 2008; Zhang et al. 2011). In particular, the adsorbed surfactant
monolayer is able to sustain large compressions during contraction, resulting in extremely
low values of surface tension. This behaviour is accompanied by a rapid replenishment of
the monolayer content during expansion, which restricts the increase of surface tension at
the inhalation stage of the breathing cycle (Wüstneck et al. 2001; Parra & Perez-Gil 2015).

The hydrodynamics of the thin liquid layer lining the alveoli has been repeatedly the
topic of investigation during the last decades (Gradon & Podgorski 1989; Podgorski &
Gradon 1993; Espinosa & Kamm 1997; Zelig & Haber 2002; Wei et al. 2003, 2005;
Halpern et al. 2008; Kang et al. 2018). The reason for this interest is that slow convective
motions, which may develop triggered by the radial oscillation of the alveolar wall, are
potentially of importance for lung homeostasis. In particular, it has been proposed that
flow in the liquid lining may help cleanse the alveolus from deposited particles, and
it may provide a potential route for cell–cell signalling. Such convective motions are
also important when it is desired to transport macromolecules towards the alveoli, as
for example in the clinical practices of surfactant replacement therapy and partial liquid
ventilation.

From a different perspective, the interfacial motion of the liquid layer sets the true
boundary condition for the airflow that enters and leaves the alveolus during breathing.
In this respect, it is recalled that studies neglecting the liquid layer showed that chaotic
mixing may occur inside the first alveolar generations, leading to enhanced particle
transport and deposition (Tsuda, Henry & Butler 1995, 2008; Sznitman et al. 2009; Tsuda,
Laine-Pearson & Hydon 2011; Ciloglu 2020). It is of evident interest to consider how is
the prediction of the airflow field modified by the inclusion of the liquid flow.
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Oscillating cup with surfactant lining

Analysis of the dynamics of an oscillating alveolus necessitates also consideration of
its neighbourhood. It is recalled that, in generic lung models, alveoli start to appear
beyond the 15th airway generation (respiratory bronchioles). They are scattered at first
on the bronchiolar epithelium and gradually increase in density, until – beyond the 17th
generation – airway ducts are fully covered by alveoli in close contact with each other
(Weibel 1984; Tsuda et al. 2008). The scattered alveoli are termed ‘type B’ and the densely
packed ‘type A.’

It has been argued in the literature (Wei et al. 2003, 2005) that different boundary
conditions should apply for alveoli of type A and type B. For example, Gradon &
Podgorski (1989) model type B alveoli and pose constant values of film thickness and
surfactant concentration at the rim. To model a type A alveolus, Wei et al. (2003) also fix
the film thickness at the rim but set the local flux equal to zero. Wei et al. (2005) focus on
the strong surface tension limit, as in an alveolus with severe surfactant deficiency. They
assume a film that is thick in the interior (flooded alveolus) but diminishes in thickness at
the rim.

In all cases considered, the liquid layer lining the alveolus is modelled by quasi-steady
Stokes flow, an approach which is justified by the very small velocities involved and
the relatively slow time scale of breathing (Wei et al. 2005; Kang et al. 2018). Two
key mechanisms that may create shearing motion, i.e. velocities parallel to the alveolar
epithelium, are Marangoni (elastic) stresses that result from spatial variation of surface
tension and capillary stresses that result from spatial variation of interfacial curvature.
Although surface tension is drastically lowered during a large part of the breathing cycle,
the relative significance of Marangoni and capillary stresses is subject to discussion (Wei
et al. 2003, 2005; Kang et al. 2018).

Studies in the literature that aim at estimating the pattern and magnitude of shearing flow
may be broadly classified in two categories, in relation to the posited deformation of the
alveolar wall. In the first category, the epithelium is taken for simplicity as flat, with one
end pinned and the other experiencing periodic motion in the tangential direction (Gradon
& Podgorski 1989; Espinosa & Kamm 1997; Wei et al. 2003). Thus, the wall is subjected
to non-uniform stretching, which – by the no-slip boundary condition – introduces directly
a varying tangential velocity along the liquid layer.

In the second category, the alveolus is modelled as a spherical cap subjected to radial
oscillation. In this case, the wall deformation is uniform and thus imparts no tangential
motion to the liquid. The only way to break the radial symmetry is through appropriate
boundary conditions. Thus, the boundary conditions at the rim emerge as a delicate
component of the overall alveolar modelling. Positing constant film thickness or/and
surfactant concentration at the rim (as in some previous works) forces the development
of gradients with the inner interface, because the variation of the wall area during cap
oscillation leads to inverse variation of film thickness and surfactant concentration inside
the alveolus. However, the physical relevance of such boundary conditions is not always
clear.

In the present work, the problem is studied in the spherical geometry and solved in
the Stokes limit, using a lubrication approximation and extending the approach of Kang
et al. (2018). A new boundary condition is formulated for the alveolar rim, by matching
the ‘large-scale’ dynamics of the alveolus to ‘small-scale’ equilibrium over the finite
thickness of the mid-alveolar wall. The complex dynamics of the pulmonary surfactant
is described by a recently developed model (Bouchoris & Bontozoglou 2021), which was
found to predict with quantitative accuracy the surface tension–surface area hysteresis
loops measured independently for various lung surfactant preparations (Saad, Neumann &
Acosta 2010; Xu, Yang & Zuo 2020).
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Figure 1. (a) Sketch of the spherical cap with the main problem parameters and (b) magnification of the rim
(to be discussed in § 2.4). Note that h0(t) = h(θ0, t) and Γ0(t) = Γ (θ0, t).

Small-amplitude oscillations around the equilibrium conditions of the alveolus are
considered. The simplification permits expansion of the equations and boundary
conditions in the oscillation amplitude a, and also allows a somewhat simpler treatment
of the complex dynamics of the pulmonary surfactant. The resulting systems for the linear
and the weakly nonlinear problem are solved by a standard Galerkin finite-element method
and provide estimates of the pattern and size of shearing motions and of the modes of
interaction between the rim and the interior of the alveolus. In particular, the significance
of non-zero film thickness at the rim is demonstrated and the role of Marangoni and
capillary stresses in determining the flow field is interrogated. The role of surfactant
solubility is also investigated.

The paper is organized as follows. Governing equations and boundary conditions are
derived in the lubrication approximation in § 2. In § 3, the equations are scaled and
expanded with reference to the equilibrium conditions of a non-oscillating alveolus, and
the numerical method is formulated. Results are presented and discussed in § 4 and
concluding remarks are made in § 5.

2. Development of governing equations and boundary conditions

2.1. The flow problem
The alveolus is modelled as a spherical cap of periodically varying radius R(t) with an
opening of angle 2θ0, as shown in figure 1(a). The truncated sphere is the most common
model geometry, not only in the older but also in the recent literature (Kolanjiyil &
Kleinstreuer 2019). In particular, it has been argued (Harding & Robinson 2010), based on
SEM images, that the apparent polygonal shape of alveoli is associated with non-uniform
thickness of the wall septa, so that the actual airspace is closer to spherical. Also, there is
evidence that the precise shape of the alveolus does not affect greatly the resulting flow
and transport (Henry & Tsuda 2010).

The liquid layer is considered Newtonian (Grotberg 2011), with constant density ρ and
viscosity μ. Its flow field is assumed to be symmetric in the circumferential direction and
is analysed in a spherical coordinate system (r, θ, φ) located at the centre of the cap. Thus,
the velocity in the liquid film is described as u(x, t) = (ur(r, θ, t), uθ (r, θ, t), 0) and the
air–liquid interface is located at r = rs = R(t) − h(θ, t), where h(θ, t) is the liquid film
thickness and subscript ‘s’ indicates value at the interface.
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Oscillating cup with surfactant lining

Following standard practice in the literature (Podgorski & Gradon 1993; Haber et al.
2000; Zelig & Haber 2002; Wei et al. 2005; Kang et al. 2018), the flow is posited to obey
the continuity and the quasi-steady Stokes equation:

∇ · u = 0, (2.1)

μ∇2u = ∇p, (2.2)

where p is the pressure field and gravitational effects are ruled out from the onset.
During breathing, the alveolus is taken to deform in a self-similar fashion, and thus the

opening angle θ0 remains constant. Following this assumption, Haber et al. (2000) and
Wei et al. (2005) described the motion of the wall as

uw = Ṙ((1 + cos θ cos θ0) ir − sin θ cos θ0 iθ ) = Ṙ ir + Ṙ cos θ0 iz = uw,sym + uw,sb,
(2.3)

where uw,sym represents a spherically symmetric oscillation and uw,sb a time-dependent
solid-body motion along the symmetry axis of the opening. It is presently desirable to
describe the flow in a moving reference frame attached to the centre of the spherical
cap. Such a reference frame is non-inertial, as uw,sb varies with time, and would in
general necessitate the introduction of a fictitious acceleration term, duw,sb/dt, in the
Navier–Stokes equation. However, in the quasi-steady Stokes limit, this term is negligible
and may be omitted. Therefore, from now on, the wall motion is described only by the
symmetric term uw,sym = Ṙ ir.

Equations (2.1) and (2.2) are supplemented by the kinematic and the dynamic boundary
conditions at the air/liquid interface, and by the no-slip condition on the alveolar
wall. Liquid particles at the interface satisfy S(r, θ, t) = r − R(t) + h(θ, t) = 0 and the
kinematic condition, DS/Dt = 0, becomes

∂h
∂t

= Ṙ(t) − ur − uθ

r
∂h
∂θ

. (2.4)

The dynamic condition expresses the balance of forces at the interface and is given by

n · τ = −pairn + σ(∇s · n) n − ∇sσ, (2.5)

where σ is the local value of surface tension, n is the unit normal pointing towards
the liquid, τ = −pI + μ(∇u + ∇uT) is the stress tensor and ∇s = (I − nn) · ∇ is the
gradient along the interface. It is noted that (2.5) does not include rheological stresses,
following experimental evidence (Wüstneck et al. 2005) that, for time scales relevant to
breathing, phenomena can be characterized by only the elasticity modulus (i.e. the effect
of surface viscosity is negligible). Finally, on the alveolar wall, r = R(t), we have

uθ = 0, ur = Ṙ(t) (2.6a,b)

and at θ = π,
∂h
∂θ

∣∣∣∣
θ=π

= 0 (2.7)

because of symmetry.

2.2. Conservation and dynamics of surfactant
Pulmonary surfactant is a mixture of lipids and proteins, which are practically insoluble in
water. This mixture is presently modelled by a single generic surfactant, which mimics the
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dynamic behaviour of the actual preparation (Wüstneck et al. 2005). A monolayer forms
at the interface, with the excess amount residing in the bulk in the form of aggregates (Zuo
et al. 2008; Bykov et al. 2021). The surface concentration of surfactant is described by
the function Γ (θ, t), whose spatial variation along the interface couples the flow and mass
transfer problems through the dynamic boundary condition, (2.5). Thus,

∇sσ = dσ

dΓ
∇sΓ, (2.8)

where surface tension is related to the local surface concentration, σ = σ(Γ ), through the
equation of state of the surfactant, to be developed shortly. The sensitivity of σ to Γ is
expressed by the Gibbs elasticity, E, where

E = − dσ

d ln Γ
= −Γ

dσ

dΓ
. (2.9)

Mass conservation is imposed by the following equation (Stone 1990; Wong,
Rumschitzki & Maldarelli 1996; Pereira & Kalliadasis 2008):

∂Γ

∂t
+ u · ∇θφΓ + Γ (∇s · u) = Ds∇2

s Γ + jb. (2.10)

Equation (2.10) takes into account convection and diffusion along the interface, and mass
exchange, jb, between the interface and the bulk. The latter is assumed to be governed
by a kinetic resistance at the interface (rather than by diffusion), an assumption which
is strongly supported by the literature (Ingenito et al. 1999; Saad et al. 2010). As the
typical surfactant loading is many orders of magnitude higher than the critical micelle
concentration of the monomer, and the effect of bulk diffusion is taken to be negligible,
there is no need for a mass balance in the bulk. Boundary conditions for Γ are applied at
θ = π and θ = θ0. The former is determined by symmetry,

∂Γ

∂θ

∣∣∣∣
θ=π

= 0, (2.11)

but discussion and justification of the latter is postponed until § 2.4.
Surfactant equilibrium is taken to obey a Langmuir isotherm,

KC10 = Γeq

Γ∞,eq − Γeq
, (2.12)

where Γ∞,eq is the surface concentration at interfacial saturation, K is the equilibrium
constant and C10 the critical micelle concentration of the monomer in the bulk. Thus,
mass exchange with the bulk is expressed as follows in terms of an adsorption rate, kads:

jb = kadsC10

[
(Γ∞ − Γ ) − Γ

K C10

]
. (2.13)

A novel feature of the surfactant model is the inclusion of an intrinsic compressibility,
α, of the adsorbed monolayer, as defined and justified by Fainerman, Miller & Kovalchuk
(2002); Kovalchuk et al. (2004, 2005). More specifically, the molar surface area, Ω , is
taken to vary linearly with surface pressure, Π = σ0 − σ , according to the relation

Ω = Ω0(1 − αΠ), (2.14)

where σ0 is the surface tension of pure water and Ω0 is the molar area at zero surface
pressure. This correction is particularly significant for dense monolayers and was recently
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Oscillating cup with surfactant lining

shown to offer quantitative agreement of model dynamics with laboratory measurements
using actual pulmonary preparations (Bouchoris & Bontozoglou 2021).

In terms of Ω , the monolayer coverage, γ , is γ = Γ Ω , and thus the surface
concentration at interfacial saturation, Γ∞, varies with surface pressure, and is given by

Γ∞ = 1
Ω

= 1
Ω0(1 − αΠ)

. (2.15)

Combining Langmuir isotherm, (2.12), with Gibbs theory – which is valid for a Gibbs
dividing surface and an ideal bulk phase – the following equation of state is derived
(Kovalchuk et al. 2004):

ΠΩ0

RT

(
1 − α

Π

2

)
= − ln(1 − γ ), (2.16)

where R is the gas constant and T the absolute temperature. Substituting the equation of
state, (2.16), in the definition of Gibbs elasticity, (2.9), the following result is obtained:

1
E

= Ω0

RT
(1 − αΠ)(1 − γ )

γ
+ α

1 − αΠ
. (2.17)

Equation (2.17) represents two elasticity mechanisms in series, the first of which is
compositional, i.e. related to variations in surface concentration, and the second is
intrinsic, i.e. related to the surface compressibility of the monolayer. Upon saturation
(i.e. γ → 1), the interface retains finite elasticity due to the intrinsic contribution. It is
noted that the application of simple isotherms, such as Frumkin or Langmuir, without the
compressibility correction, gives at close packings unrealistically high values of Gibbs
elasticity, which tend to infinity at saturation (Warszynski, Wantke & Fruhner 1998).

2.3. Lubrication approximation
The equations and boundary conditions of the problem are simplified by invoking a
lubrication approximation (Leal 2007). The mathematical procedure for the spherical
geometry was outlined long ago by Podgorski & Gradon (1993) and was more recently
exposed in detail by Kang et al. (2018). Thus, we present a brief outline and emphasize
only the key points and the final results.

Integrating the equation of continuity in the r-direction, and combining with the
kinematic boundary condition and the wall velocity in the r-direction, the following
evolution equation is derived:

(R − h)2 ∂h
∂t

+ (2Rh − h2)Ṙ + 1
sin θ

∂

∂θ

∫ R

R−h
ruθ sin θ dr = 0. (2.18)

The lubrication form of the Navier–Stokes equations in spherical coordinates is

∂p
∂r

= 0, (2.19)

μ
∂

∂r

(
r2 ∂uθ

∂r

)
= r

∂p
∂θ

, (2.20)

where gravitational effects are neglected (Espinosa & Kamm 1997). Combining (2.19)
with the normal force boundary condition at the interface, and taking into account that
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viscous stresses are negligible in the lubrication approximation (Wei et al. 2005; Kang
et al. 2018), pressure across the film is derived as

p(θ, t) = pair − σ∇s · n = pair − σ

[
2
R

+ 2 h
R2 + 1

R2 sin θ

∂

∂θ

(
sin θ

∂h
∂θ

)]
. (2.21)

Thus, (2.20) is readily integrated in the r-direction and gives

uθ = r
2μ

∂p
∂θ

− C1

r
+ C2. (2.22)

Integration constants C1, C2 are determined by the tangential no-slip condition on the wall
and the tangential force balance on the interface, the latter expressed in the lubrication
approximation as

μ r
∂

∂r

(uθ

r

)
= −1

r
∂σ

∂θ
at r = R(t) − h(θ, t). (2.23)

Thus, again in the lubrication limit,

C1 = − 1
2μ

∂p
∂θ

R2
(

1 − 2h
R

)
− 1

μ

∂σ

∂θ
R
(

1 − 2h
R

)
, (2.24)

C2 = − 1
μ

∂p
∂θ

R
(

1 − h
R

)
− 1

μ

∂σ

∂θ

(
1 − 2h

R

)
. (2.25)

Substituting the above results for uθ in (2.18), performing the integration and taking the
lubrication limit results in the following evolution equation for the liquid film thickness,
which is identical with that derived by Kang et al. (2018):

∂h
∂t

+ 2hṘ
R

− 1
R2 sin θ

∂

∂θ

(
h3 sin θ

3μ

∂p
∂θ

− h2 sin θ

2μ

∂σ

∂θ

)

= ∂h
∂t

+ 2hṘ
R

+ 1
R2 sin θ

∂

∂θ

(
Q
2π

)
= 0, (2.26)

where Q(θ, t) is the volumetric flow rate along the entire φ-circumference at an elevation
z = R cos θ , evaluated in the lubrication limit.

Q(θ, t) = 2πR sin θ

∫ R

R−h
uθ dr. (2.27)

A similar evolution equation is derived for the surface concentration, Γ , of the surfactant
by simplifying (2.10) according to the lubrication approximation. The respective result is

∂Γ

∂t
+ 2Γ Ṙ

R
− 1

R2 sin θ

∂

∂θ

(
Γ h2 sin θ

2μ

∂p
∂θ

− Γ h sin θ

μ

∂σ

∂θ

)
− Ds

R2 sin θ

∂

∂θ

(
sin θ

∂Γ

∂θ

)

= ∂Γ

∂t
+ 2Γ Ṙ

R
+ 1

R2 sin θ

∂

∂θ

(
QΓ

2π

)
= jb, (2.28)

where QΓ (θ, t) is the interfacial flow rate of surfactant along the entire φ-circumference
at an elevation z = R cos θ , evaluated in the lubrication limit.

QΓ (θ, t) = 2πR sin θ

(
usΓ − Ds

R
∂Γ

∂θ

)
(2.29)
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Oscillating cup with surfactant lining

and us is the interfacial water velocity,

us = − 1
2μ

∂p
∂θ

h2

R
+ 1

μ

∂σ

∂θ

h
R

. (2.30)

Equations (2.26) and (2.28) come to their final form by substitution of pressure from
(2.21). This will be undertaken in the following section, after performing a change of
independent variable. However, there is a subtle point related to this substitution, which
was noted by Kang, Nadim & Chugunova (2017) and is worth mentioning. When taking
the derivative of (2.21) with respect to θ , additional terms containing ∂σ/∂θ seem to come
into play. However, these terms are of higher order in the ratio (h/R) than the original
∂σ/∂θ term in (2.26) and (2.28), and are thus negligible in the lubrication approximation.

2.4. Selection of boundary conditions at the alveolar rim
It has already been argued that the boundary conditions imposed at the rim of the spherical
cap have a strong influence on the resulting dynamics. However, it appears that their
physical origin is to some extent uncertain. For example, Gradon & Podgorski (1989)
set constant values of h and Γ in their pioneering work modelling type B alveoli. They
justify their choice by arguing that bronchioles are less extensible than alveoli, because –
as they claim – the former change their surface area in proportion to their diameter and
the latter in proportion to their square. However, it is presently accepted that bronchioles
are equally extensible, because they expand/contract roughly isotropically, i.e. they also
change in length (Darquenne & Paiva 1994; Choi & Kim 2007). In later work, Podgorski
& Gradon (1993) neglect capillary forces and leave only the Marangoni term in their
evolution equation for h. Thus, they apply a condition at the rim only for Γ , one based
on a kind of ‘sketchy’ mass balance. Capillary forces are neglected also by Espinosa &
Kamm (1997), who set the flux of surfactant at the rim equal to zero.

Wei et al. (2003) consider the effect of both Marangoni and capillary forces in their
modelling of a type A alveolus. The conditions they impose are constant film thickness
and zero liquid flux at the rim. Consequently, they employ a matching solution close to
the rim, as the lubrication approximation locally breaks down because of the simultaneous
existence of finite film thickness and zero flow rate. Wei et al. (2005) focus on the strong
surface tension limit, as in an alveolus with severe surfactant deficiency, and thus take the
interface to be spherical. They further assume a film that is thick in the interior (flooded
alveolus) and diminishes in thickness at the rim. They admit however that at the rim,
the film is actually ‘finite but thin’. In our understanding, the condition of constant film
thickness at the rim appears physically questionable, given that the liquid thickness inside
the alveolus changes continuously with time.

Before developing the presently proposed condition, two other interesting approaches
are mentioned. Zelig & Haber (2002) circumvent the direct definition of a boundary
condition for h. Instead, they use information about the average amount of surfactant
expectorated and assume that the resulting mean per alveolus dictates the flow rate exiting
at the alveolar rim. The more recent study of Kang et al. (2018) includes, in the mass
balance, source terms for surfactant production and degradation, however considers a
complete sphere without an opening and a rim.

The present approach treats the rim of the alveolus as a region where liquid and
surfactant may accumulate. Thus, the rate of inflow to (or outflow from) the alveolus is
set equal to the accumulation rate over the rim. This approach is supported by two sets of
microscopic observations. Characterizing microscopic sections by stereology, Vasilescu
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et al. (2012) confirmed that the alveolar entrance rings are formed by strong fibre tracts in
the free edges of the alveolar septa, resulting in rim thickness of a few micrometres.

Second, using low-temperature microscopy of anaesthetized rats, with their lungs
inflated at 80 % of total lung capacity, Bastacky et al. (1995) observed that the liquid
lining of the alveolar epithelium is continuous over faces, ridges and protrusions. In
particular, its area-weighted average thickness is approximately 0.2 μm, and its thickness
over protrusions and mid-alveolar walls is approximately half of that (0.09 μm).

Based on the above characteristics, the alveolar rim (assumed symmetric in the
φ-direction) is taken to have a semi-circular cross-section of radius r0, and to be covered
by a liquid layer of finite and spatially uniform thickness, h0(t), which varies with time
(figure 1b). Similarly, the rim is also characterized by a spatially uniform but time-varying
surfactant concentration, Γ0(t). As r0 � R, the rim shrinks to a line when viewed in the
‘large-scale’ frame of the entire alveolus. Thus, h0(t) and Γ0(t) provide the boundary
values for the system of evolution equations (2.26) and (2.28), i.e. h0(t) ≡ h(θ0, t) and
Γ0 ≡ Γ (θ0, t).

The final assumption, which permits closure of the problem, is that the dynamics of the
layer covering the rim is entirely enslaved to the dynamics of the alveolar cap. Thus, only
mass balances need to be satisfied, and the temporal variation of h0 and Γ0 is dictated by
the respective fluxes from/to the alveolus. The key assumptions in the above approach, i.e.
the magnitude of the equilibrium film thickness at the rim, the spatial uniformity of film
thickness and surfactant concentration over the rim, and the enslaved dynamics, will be
further discussed and justified in § 5.

The mass balance of water at the rim is formulated, taking into account the symmetry
in the φ-direction, and states that the volumetric flow rate towards the rim from adjacent
alveoli equals the time change of water volume over the rim. Thus,

−2Q(θ0, t) = d
dt

[
2πR sin θ0

(
π

(r0 + h0)
2

2
− π

r2
0
2

)]

⇒ −2
∫ R

R−h
uθ dr

∣∣∣∣
θ0

= π(r0 + h0)
dh0

dt
+ πh0

(
r0 + h0

2

)
Ṙ
R

,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.31)

where subscript 0 signifies value at the rim, x = x0. A similar mass balance for the
surfactant, taking into account convection and diffusion along the interface and exchange
by adsorption or desorption with the bulk, leads to the following expression:

−2QΓ (θ0, t) + 2πR sin θ0π(r0 + h0)jb|θ0
= d

dt
[2πR sin θ0π(r0 + h0)Γ0]

⇒ −2
(

usΓ − Ds

R
∂Γ

∂θ

)∣∣∣∣
θ0

+ π(r0 + h0)jb|θ0
= π(r0 + h0)

dΓ0

dt

+πΓ0
dh0

dt
+ πΓ0(r0 + h0)

Ṙ
R

.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.32)

The multiplier two in (2.31) and (2.32) accounts for alveoli of type A, i.e. flux coming
to the rim from both sides of the mid-alveolar wall. Alveoli of type B are not presently
considered, though it may be argued that a similar approach is applicable. The minus sign
indicates flow in the negative θ -direction, i.e. towards the rim.

It is noted that loss terms could readily be incorporated in the boundary conditions,
(2.31) and (2.32), to account for the possibility of water and surfactant entrainment from
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the rims by the airflow along the duct. Such a tentative entrainment mechanism resembles
the suggestion of Zelig & Haber (2002) and is in accord with recent findings that identify
surfactant from the deep lung in the exhaled breath of human subjects (Oldham & Moss
2019). However, unlike the approach of Zelig & Haber (2002), with the above boundary
conditions, the flow of water and surfactant at the alveolar rim is not restricted by the
entrainment rate.

3. Scaling, expansion around equilibrium and numerical solution

3.1. The final equations and the equilibrium solution
The problem is now described by (2.21), (2.26) and (2.28), subject to the aforementioned
boundary conditions. However, following Kang et al. (2017, 2018), it is more convenient
to reformulate the system in terms of the new independent variable x = − cos θ . Thus,
pressure is expressed as

p(x, t) = pair − 2σ

R
− σ

R2

[
2h + ∂

∂x

(
(1 − x2)

∂h
∂x

)]
. (3.1)

Transforming (2.26) and (2.28) in terms of x, and substituting pressure from (3.1), the
following final form of the evolution equations is obtained:

∂h
∂t

+ 2hṘ
R

+ 1
3μR4

∂

∂x

(
σh3(1 − x2)

∂

∂x
(2h + g)

)

+ 1
2μR2

∂

∂x

(
h2(1 − x2)

dσ

dΓ

∂Γ

∂x

)
= 0 (3.2)

and

∂Γ

∂t
+ 2Γ Ṙ

R
+ 1

2μR4
∂

∂x

(
Γ h2(1 − x2) σ

∂

∂x
(2h + g)

)

+ 1
μR2

∂

∂x

(
Γ h(1 − x2)

dσ

dΓ

∂Γ

∂x

)
= Ds

R2
∂

∂x

(
(1 − x2)

∂Γ

∂x

)
+ jb, (3.3)

where Ds and μ are assumed constant, and we have defined

g(x, t) = ∂

∂x

(
(1 − x2)

∂h
∂x

)
. (3.4)

The use of function g is not only intended to make the equations more compact, but is
also necessary for the finite-element solution of the problem, as the definition of the new
function g(x, t) eliminates the higher than second-order derivatives in h.

A reference frame for the present problem is the equilibrium film thickness, H(x), in
a non-oscillating spherical cap of constant radius R̄. Equilibrium requires that ∂σ/∂x =
∂p/∂x = 0, i.e. the surfactant is equi-distributed and the interface is a perfect spherical
cap, say of radius Rs. If the uniform capillary pressure is termed p̄, (3.1) gives

2H + ∂

∂x

(
(1 − x2)

∂H
∂x

)
= pair − p̄

σ
R̄2 − 2R̄ = 2R̄

(
R̄
Rs

− 1
)

= 2K. (3.5)

Equation (3.5) has the trivial linear solution, H(x) = κx + λ, with κ = (H0 − K)/x0 and
λ = K in terms of the constant 2K and the film thickness H0 = H(x0) at the rim of the cap
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(x0 = − cos θ0). Term H0 is a key parameter for the problem, and its magnitude will be
estimated from direct experimental evidence (Bastacky et al. 1995; Xu et al. 2020).

Parameter K is determined from the total volume of liquid in the cap, which in the
lubrication limit is

Vwater = 2π

∫ π

θ0

∫ R

R−h
r2 sin θ dr dθ ≈ 2πR2

∫ π

θ0

h(θ) sin θ dθ = 2πR2
∫ 1

x0

h(x) dx.

(3.6)
Equivalently, a convenient input is the mean liquid film thickness, H̄, which is related to
the liquid volume by the expression

Vwater = 2πR2 (1 − x0) H̄. (3.7)

For a given total volume of water, a simple mass balance shows that the equilibrium film
thickness, H(x), varies inversely with the square of the cap radius. Thus, it is verified by
inspection that the function

h(x, t) = H(x)
R̄2

R2(t)
, (3.8)

together with a spatially uniform surface concentration of surfactant, satisfies (3.2) for
arbitrary oscillation pattern, R(t). When jb ≡ 0, the surface concentration has a similar
form, Γ (x, t) = Γ̄ [R̄/R(t)]2, but when jb /= 0, it is a more complicated function of time
(Manikantan & Squires 2020). The above solution corresponds to a purely axial motion,
i.e. with no gradients in the θ -direction. However, the boundary conditions (2.31)–(2.32)
are not satisfied, except for the special case h(x0, t) = 0. This behaviour is a first indication
of the significance of the finite liquid film thickness at the rim in triggering tangential
motion.

3.2. Scaling and dimensionless numbers
The characteristic scales used to non-dimensionalize the problem variables are mainly
taken from the equilibrium conditions. Thus, we consider a motionless alveolar cap of
radius R̄, coated by a liquid film whose mean thickness is H̄. With these choices, the
lubrication parameter is formally defined as

ε = H̄
R̄

. (3.9)

The liquid is loaded by surfactant aggregates and equilibrates with an adsorbed monolayer
of surface concentration Γeq, which results in surface tension σeq and surface elasticity
Eeq = −(dσ/d ln Γ )|Γ =Γeq . Finally, the characteristic time is the breathing period, T .

With the above scales, the following dimensionless variables are defined: h∗ =
h/H̄, H∗ = H/H̄, R∗ = R/R̄, t∗ = t/T , Γ ∗ = Γ/Γeq, σ ∗ = σ/σeq, E∗ = E/Eeq, p∗ =
p R̄2/(σeqH̄), j∗b = jbT/Γeq and g∗ = g/H̄. Substituting the dimensionless variables, and
also taking into account the definition of surface elasticity, (2.9), the system (3.2)–(3.3) is
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transformed as follows:
∂h∗

∂t∗
+ 2h∗Ṙ∗

R∗ + 1
R∗

∂Fh

∂x
= 0 (3.10)

and
∂Γ ∗

∂t∗
+ 2Γ ∗Ṙ∗

R∗ + 1
R∗

∂FΓ

∂x
− j∗b = 0, (3.11)

where

Fh = Q∗

R∗ = ε3 Ca−1

3R∗3 σ ∗h∗3(1 − x2)
∂

∂x
(2h∗ + g∗) − ε

Ma
2R∗ h∗2(1 − x2)

E∗

Γ ∗
∂Γ ∗

∂x
, (3.12)

FΓ = Q∗
Γ

R∗ = ε3 Ca−1

2R∗3 Γ ∗σ ∗h∗2(1 − x2)
∂

∂x
(2h∗ + g∗)

−ε
Ma
R∗ Γ ∗h∗(1 − x2)

E∗

Γ ∗
∂Γ ∗

∂x
− Pe−1

s

R∗ (1 − x2)
∂Γ ∗

∂x
(3.13)

and

j∗b = St
[
(Γ ∗

∞ − Γ ∗) − Γ ∗

KC10

]
. (3.14)

Terms Q∗, Q∗
Γ are respectively the dimensionless volumetric water and interfacial

surfactant flow rates, scaled by Q̄ = 2πR̄2H̄/T and Q̄Γ = 2πR̄2Γeq/T .
The dimensionless numbers that appear in the above equations are

Ca−1 = σeq

μ(R̄/T)
, Ma = Eeq

μ(R̄/T)
, Pe−1

s = DsT
R̄2

, St = T
1/(kadsC10)

, (3.15a–d)

which are the inverse capillary number, Ca−1, that compares capillary to viscous stresses,
the Marangoni number, Ma, that compares elastic to viscous stresses, the inverse Péclet
number, Pe−1

s , that compares surface diffusion to surface convection, and a Stanton
number, St, that compares characteristic times of breathing and surfactant adsorption
(Manikantan & Squires 2020). The ratio of alveolar radius to breathing period that appears
in these dimensionless numbers defines the characteristic velocity scale Ū = R̄/T .

With the above scaling and function definitions, the boundary conditions at the rim,
(2.31) and (2.32), take the following dimensionless form:

−2Fh|x0 =
√

1 − x2
0 π

[(
r∗

0 + εh∗
0
) dh∗

0
dt∗

+ h∗
0

(
r∗

0 + ε
h∗

0
2

)
Ṙ∗

R∗

]
, (3.16)

−2FΓ |x0 =
√

1 − x2
0 π

[
(r∗

0 + εh∗
0)

(
dΓ ∗

0
dt∗

− j∗b0

)
+ εΓ ∗

0
dh∗

0
dt∗

+ Γ ∗
0 (r∗

0 + εh∗
0)

Ṙ∗

R∗

]
,

(3.17)

where subscript 0 signifies value at the rim, x = x0, and r∗
0 = r0/R̄ is the dimensionless

radius of curvature of the rim. It is also noted that the symmetry boundary conditions
at θ = π are trivially satisfied in the present frame, provided the derivatives ∂h/∂x and
∂Γ/∂x are finite at x = 1. Thus, (3.10) and (3.11), together with the above boundary
conditions, (3.16), (3.17) and the model of surfactant dynamics (§ 2.2), provide the full
description of the problem.
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3.3. Expansion around equilibrium
The remainder of the paper focuses on the study of small-amplitude oscillations around
equilibrium. This approach permits expansion of the above equations and boundary
conditions, and is believed to provide solid results on the relative magnitude of tangential
and radial motions, and on the modes of interaction between the interior and the rim of the
alveolus. The full formulation of the problem that was developed in the previous sections
will be used in the future, to investigate nonlinear phenomena under realistic breathing
patterns.

The alveolar radius is considered to undergo small-amplitude oscillations

R∗(t∗) = 1 + a Re[ei 2πt∗] (3.18)

with a � 1. The dimensionless film thickness, h∗, its function g∗ and the surface
concentration of surfactant, Γ ∗, are expanded as follows, to capture linear and weakly
nonlinear effects,

h∗(x, t∗) = H∗(x) + a Re[h1(x) ei 2πt∗] + a2
(

Re[h2(x) ei 4πt∗] + hS(x)
)

,

g∗(x, t∗) = G∗(x) + a Re[g1(x) ei 2πt∗] + a2
(

Re[g2(x) ei 4πt∗] + gS(x)
)

,

Γ ∗(x, t∗) = 1 + a Re[Γ1(x) ei 2πt∗] + a2
(

Re[Γ2(x) ei 4πt∗] + ΓS(x)
)

,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.19)

with the above expressions calculated as Re[zei φ] = (zei φ + z̄e−i φ)/2. By indices 1, 2, S
is denoted the amplitude of each parameter in the respective order of approximation.
Steady terms are included at second order to balance the ‘steady streaming’ resulting from
products of first-order contributions. As a generic example, given two complex functions
z1(x), w1(x),

Re[z1ei 2πt∗] · Re[w1ei 2πt∗] = 1
2

Re[z1w1ei 4πt∗] + 1
2

Re[z1w̄1]. (3.20)

Term G∗, the equilibrium value of function g∗(x, t∗), is eliminated by application of the
equilibrium balance, (3.5), and the dimensionless fluxes, Fh, FΓ , are expanded as

Fh = a Re[Fh1ei 2πt∗] + a2
(

Re[Fh2ei 4πt∗] + FhS

)
, (3.21)

FΓ = a Re[FΓ 1ei 2πt∗] + a2
(

Re[FΓ 2ei 4πt∗] + FΓ S

)
, (3.22)

where Fhi, FΓ i, i = 1, 2, S, are functions of x, given in terms of hi, gi, Γi in Appendix A.
The dimensionless mass exchange with the bulk, j∗b, is also expanded as follows:

j∗b = St1
(

a Re[Γ1 ei 2πt∗] + a2Re[Γ2 ei 4πt∗] + a2ΓS

)
+a2 1

4
St Γ ∗

∞,Γ Γ

(
Re[Γ 2

1 ei 4πt∗] + Γ1Γ̄1

)
, (3.23)

where St1 is

St1 = St
(

Γ ∗
∞,Γ − 1 − 1

KC10

)
(3.24)
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with

Γ ∗
∞,Γ = dΓ ∗∞

dΓ ∗

∣∣∣∣
eq

, Γ ∗
∞,Γ Γ = d2Γ ∗∞

dΓ ∗2

∣∣∣∣
eq

. (3.25a,b)

It is noted that the surface concentration at close packing is not constant but is a function
of surface pressure, and hence the derivatives in (3.23) and (3.24).

The following orders of the evolution equations result by straightforward substitution
of the above into (3.10) and (3.11) and neglect of higher than second-order terms. Primes
denote derivatives with respect to x and, as shown below, terms F′

h1, F′
Γ 1 that appear in

the second-order and steady equations are replaced by the respective first-order result.

2πih1 + F′
h1 + 4πiH∗ = 0, (3.26)

2πiΓ1 + F′
Γ 1 − St1Γ1 + 4πi = 0, (3.27)

4πih2 + 2πih1 − 2πiH∗ + F′
h2 − 1

2
F′

h1 = 0

⇒ 4πih2 + 3πih1 + F′
h2 = 0, (3.28)

4πiΓ2 + 2πiΓ1 − 2πi + F′
Γ 2 − 1

2
F′

Γ 1 − St1Γ2 − St
4

Γ ∗
∞,Γ Γ Γ 2

1 = 0

⇒ 4πiΓ2 + 3πiΓ1 + F′
Γ 2 − St1

(
Γ2 + 1

2
Γ1

)
− St

4
Γ ∗

∞,Γ Γ Γ 2
1 = 0, (3.29)

Re
[
2πih̄1

]+ F′
hS − 1

2
Re
[
F′

h1
] = 0 ⇒ F′

hS + π Im [h1] = 0, (3.30)

Re
(
2πiΓ̄1

)+ F′
Γ S − 1

2
Re
[
F′

Γ 1
]− St1ΓS − St

4
Γ ∗

∞,Γ Γ Re
[
Γ1Γ̄1

] = 0

⇒ F′
Γ S + π Im [Γ1] − St1

(
ΓS + 1

2
Re [Γ1]

)
− St

4
Γ ∗

∞,Γ Γ

(
Γ1Γ̄1

) = 0. (3.31)

The system is completed by the expansions of g

(
(1 − x2)h′

i

)′ − gi = 0 i = 1, 2, S (3.32)

and by the boundary conditions at x = x0. The latter are evaluated by expanding the
right-hand side of (3.16), (3.17), and the respective coefficients Fhi|x0, FΓ i|x0, i = 1, 2, S
are given in Appendix A.

3.4. Steady streaming of water and surfactant
The weakly nonlinear problem was formulated taking into consideration the possibility of
steady streaming, with the inclusion of time-independent terms identified throughout the
text by the subscript ‘S.’ It will now be shown that steady streaming of water is always
identically zero, as is also the steady streaming of insoluble surfactant. The exceptional
(and important) case of a soluble surfactant is singled out, and will be considered further.
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First, the dimensionless volumetric flow rate of water, Q∗ = R∗Fh, is calculated as
follows:

Q∗ = a Re[Fh1 ei 2πt∗] + a2Re
[(

Fh2 + 1
2

Fh1

)
ei 4πt∗

]
+ a2

(
FhS + 1

2
Re[Fh1]

)
.

(3.33)
Straightforward combination of (3.26), (3.30) shows that (F′

hS + 1
2 Re[F′

h1]) = 0. Also, the
boundary conditions, (A7), (A9), indicate that (FhS + 1

2 Re[Fh1])|x0 = 0. Thus, the steady
flow of water is identically zero, i.e.

QS = FhS + 1
2

Re[Fh1] = 0. (3.34)

An expansion for the flow rate of surfactant, Q∗
Γ = R∗FΓ , leads to the similar result

Q∗
Γ = a Re[FΓ 1 ei 2πt∗] + a2Re

[(
FΓ 2 + 1

2
FΓ 1

)
ei 4πt∗

]
+ a2

(
FΓ S + 1

2
Re[FΓ 1]

)
(3.35)

and combination of (3.27), (3.31) gives

Q′
Γ S = F′

Γ S + 1
2

Re[F′
Γ 1] = St1 (ΓS + Re[Γ1]) + 1

4
St Γ ∗

∞,Γ Γ (Γ1Γ̄1). (3.36)

Also, the boundary conditions, (A10), (A12) lead to the result

(
FΓ S + 1

2
Re[FΓ 1]

)∣∣∣∣
x0

=
√

1 − x2
0 π

[
1
2

(
r∗

0 + εH∗
0
) {

St1

(
ΓS + 1

2
Re[Γ1]

)

+1
4

St Γ ∗
∞,Γ Γ (Γ1Γ̄1)

}
+ 1

4
ε St1 Re[Γ1h̄1]

]
. (3.37)

Thus, it is evident that, for an insoluble surfactant (St = St1 = 0), steady streaming along
the interface is also identically zero. This, however, is not necessarily the case with a
soluble surfactant, and the calculation of QΓ S for a representative value of kads /= 0 will
be undertaken in § 4.4.

3.5. Numerical solution
The linear and weakly nonlinear periodic problems, consisting of (3.26)–(3.29) and subject
to the boundary conditions (3.16)–(3.17), are discretized and solved by a standard Galerkin
finite-element method, where the unknowns hi, Γi and gi are approximated by Lagrangian
basis functions φk(x). Applying integration by parts, the following weak forms of the
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governing equations are derived, where primes denote derivatives of functions of x:

2πi
∫ 1

x0

h1φk dx + [Fh1 φk]1
x0

−
∫ 1

x0

Fh1 φ′
k dx + 4πi

∫ 1

x0

H∗φk dx = 0, (3.38)

2πi
∫ 1

x0

Γ1φk dx + [FΓ 1 φk]1
x0

−
∫ 1

x0

FΓ 1 φ′
k dx − St1

∫ 1

x0

Γ1φk dx + 4πi
∫ 1

x0

φk dx = 0,

(3.39)∫ 1

x0

(1 − x2)h′
1φ

′
k dx +

∫ 1

x0

g1φk dx −
[
(1 − x2)h′

1φk

]1

x0
= 0, (3.40)

4πi
∫ 1

x0

h2φk dx + [Fh2 φk]1
x0

−
∫ 1

x0

Fh2 φ′
k dx + 3πi

∫ 1

x0

h1φk dx = 0, (3.41)

4πi
∫ 1

x0

Γ2φk dx + [FΓ 2 φk]1
x0

−
∫ 1

x0

FΓ 2 φ′
k dx + 3πi

∫ 1

x0

Γ1φk dx

−St1

∫ 1

x0

Γ2φk dx − 1
2

St1

∫ 1

x0

Γ1φk dx − 1
4

StΓ ∗
∞,Γ Γ

∫ 1

x0

Γ 2
1 φk dx = 0, (3.42)

∫ 1

x0

(1 − x2)h′
2φ

′
k dx +

∫ 1

x0

g2φk dx −
[
(1 − x2)h′

2φk

]1

x0
= 0. (3.43)

The integrated terms in (3.38)–(3.43) are equal to zero at x = 1 and are evaluated from the
(natural) boundary conditions at x = x0. The computational domain is discretized with 160
elements in all the computations presented in this paper. Numerical accuracy was checked
by doubling and halving the number of elements, and also by clustering nodes close to x0,
where the solution changes faster.

According to the findings of § 3.4, in the case of an insoluble surfactant, the above
equations contain all the dynamics of the flow (while the steady terms, hS, ΓS, only
provide order O(a2) corrections to the mean film thickness and surfactant concentration).
However, in the case of a soluble surfactant, we need ΓS to calculate the interfacial flow
rate of the surfactant, QΓ S. To this end, the following weak form of (3.31) is employed:

[FΓ S φk]1
x0

−
∫ 1

x0

FΓ Sφ
′
k dx − St1

∫ 1

x0

ΓSφk dx + π

∫ 1

x0

Im[Γ1]φk dx

−1
2

St1

∫ 1

x0

Re[Γ1]φk dx − 1
4

StΓ ∗
∞,Γ Γ

∫ ∗

x0

(
Γ1Γ̄1

)
φk dx = 0. (3.44)

Also, instead of combining it with (3.30) or its weak form, we invoke (3.34), which,
when substituted in (3.44), renders the latter a function of only ΓS and the already-known
amplitudes of the first- and second-order harmonics.

4. Results and discussion

4.1. Parameter values and dimensionless estimates
The equilibrium alveolar radius is taken as R̄ = 100 μm, following recent morphometric
studies (Ochs et al. 2004; Vasilescu et al. 2012), which indicate that the size of a single
human alveolus varies little around this mean, and it is mainly the number of alveoli that
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accounts for different lung volumes. The above studies also confirm that the free edges of
the alveolar septa that form the entrance rings are thicker than the rest of the alveolar walls,
as they are reinforced by strong fibre tracts. (In fully alveolated airways, these structures
essentially define the airway duct.) Thus, the radius of curvature of the alveolar rim is taken
as r0 = 2 μm. Also, all the results to be presented next are for breathing period T = 3 s.

The liquid layer has the properties of pure water at the physiological temperature,
T = 37 ◦C, i.e. density ρ = 993 kg m−3 and dynamic viscosity μ = 0.00069 Pa s. Also,
the surface tension of pure water, which is required in the definition of surface pressure
Π , is σo = 70 mN m−1. According to the literature (Wüstneck et al. 2005; Parra &
Perez-Gil 2015), the pulmonary surfactant has an equilibrium surface tension in the range
22 − 24 mN m−1, which is roughly constant irrespective of bulk loading and air humidity.
Thus, we presently set σeq = 23 mN m−1. Also, the surface coverage at zero surface
pressure is taken as Ωo = 3.0 × 105 mol m−2, according to Bouchoris & Bontozoglou
(2021) who extrapolated the data of Zuo et al. (2016), and the surface diffusivity is taken
as Ds = 10−9 m2 s−1 (Wei et al. 2003, 2005). The equilibrium elasticity, Eeq, may be
predicted by the above data using (2.9). Both this prediction and experimental data (Acosta
et al. 2007; Saad et al. 2010, 2012) give values in the range 100 � E < 200 mN m−1.

Estimates for the parameters of surfactant kinetics are provided by Bouchoris &
Bontozoglou (2021), who fit their model to the dynamic data of Saad et al. (2010).
Representative values for bovine lipid extract surfactant (BLES) at bulk concentration C =
0.5 mg ml−1 are KC10 = 120, α = 5.2 m N−1 and kadsC10 = 13 s−1 in contact with humid
air (RH = 100 %) and kadsC10 = 0 s−1 in contact with dry air (RH < 20 %). Indeed, it has
been shown in the literature that air humidity affects adsorption kinetics, though not the
equilibrium surface tension (Zuo et al. 2005). The BLES preparation in contact with dry
air, which behaves as essentially insoluble, provides a simpler basis for understanding the
flow dynamics. Thus, the results to be presented from this point on refer to it, i.e. are for
kadsC10 = 0 s−1. Surfactant solubility introduces hysteresis effects and is considered in a
separate section (§ 4.4) at the end of the paper using the aforementioned value kadsC10 =
13 s−1 which corresponds to humid air and bulk concentration C = 0.5 mg ml−1.

Given the above parameter estimates, it is pertinent to consider the time scales of the
problem. The main dimensionless numbers, Ca−1, Ma, Pe−1

s and St, as they explicitly
appear in the formulation, may be perceived as the following ratios of characteristic times:

Ca−1 = T
μR̄/σeq

, Ma = T
μR̄/Eeq

, Pe−1
s = T

R̄2/Ds
, St = T

1/(kadsC10)
. (4.1a–d)

Terms tcap = μR̄/σeq ≈ 3 × 10−6 s and telast = μR̄/Eeq ≈ 5 × 10−7 s are respectively
the characteristic times for establishment of flow due to capillary and Marangoni
(elastic) forcing (Manikantan & Squires 2020). Terms tdiff = R̄2/Ds ≈ 10 s and tads =
1/(kadsC10) ≈ 8 × 10−2 s are respectively the times for diffusion and adsorption effects
to become significant.

It is observed that the capillary and elastic time scales are many orders of magnitude
shorter than the characteristic oscillation time, T , and thus the assumption of quasi-steady
Stokes flow, (2.2), is fully justified. Also, St ≈ 40 and thus kinetic effects cannot be
ruled out. In contrast, surface diffusion is very slow and is expected to be negligible in
comparison to surface convection.
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4.2. Equilibrium film thickness at the rim and the onset of shearing flow
A key input to the problem is the equilibrium liquid film thickness, H(x), for a
non-oscillating cap. This was shown in § 3.1 to be a linear function of variable x, and
is presently determined by two equilibrium parameters, the mean film thickness, H̄, and
the film thickness, H0, at the rim of the cap. Reliable estimates of these parameters
are provided by the experimental study of Bastacky et al. (1995). These authors used
low-temperature microscopy to freeze the watery layer inside and around the alveoli of
anaesthetized rats, and measured an area-weighted average thickness of ≈ 0.2 μm and
a thickness over protrusions and mid-alveolar walls of ≈ 0.09 μm. Taking into account
that the rat lungs were inflated to approximately 80 % of their total lung capacity (TLC),
and assuming that the alveolar radius scales with the cubic root of the inhaled volume
and the film thickness is inversely proportional to the square of the radius, we derive
the estimates H̄ ≈ 0.3 μm and H0 ≈ 0.14 μm for a lung at equilibrium. Apart from the
parametric investigation of the effect of varying H0, to be undertaken next, the values
H̄ = 0.3 μm and H0 = 0.14 μm are kept constant for the rest of the study. The validity
of the selected value of H0 is further supported in § 5, by discussing and interpreting
additional experimental evidence (Xu et al. 2020).

It is recalled first that if H0 is set equal to zero, the problem has the trivial solution
given by (3.8), which corresponds to pure axial flow with uniform surfactant distribution.
Expanding to second order in the oscillation amplitude, this trivial solution results in the
film thickness distribution

h∗(x, t) = H∗(x)
(

1 − 2a Re[ei2πt∗] + 3
2

a2 Re[ei4πt∗] + 3
2

a2
)

, (4.2)

with the first-order perturbation 180◦ out-of-phase with the wall oscillation and the
second-order perturbation in-phase with the wall oscillation. More generally, in the
frame of harmonic analysis, the spatial and temporal variation of all the variables of the
problem may be described by the respective magnitudes and phases of their perturbation
amplitudes. Taking the liquid film thickness as an example, we define the magnitudes,
|hi(x)|, and phases, ωi(x), of the thickness perturbation as follows:

h∗ = H∗ + a Re[h1ei2πt∗] + a2 Re[h2ei4πt∗] + a2 hS

= H∗ + a|h1(x)| cos(2πt∗ + ω1(x)) + a2|h2(x)| cos(4πt∗ + ω2(x)) + a2 hS, (4.3)

where

|hi| =
√

[Re(hi)]2 + [Im(hi)]2, tan ωi = Im(hi)

Re(hi)
. (4.4a,b)

Because liquid film thickness and surfactant surface concentration are to leading order
180◦ out-of-phase with the wall oscillation, the branch-cut in the definition of ωi(x) is
taken at 270◦, i.e. ωi(x) ∈ [−90◦, 270◦).

To compare the numerical analysis with the asymptotic behaviour for H0 = 0, a liquid
film of mean thickness H̄ = 0.3 μm lined with insoluble surfactant is considered, and
the problem is solved for the cases H0 = 0.01, 0.05, 0.10 and 0.14 μm. The results of
the computation are depicted in figure 2. Figure 2(a) shows the amplitudes of the two
harmonics and indicates that, when H0 → 0, the solution approaches the aforementioned
axial flow. More specifically, |hi| become linear functions of x, with |hi(x0)| → 0,
|h1(1)| → 4 and |h2(1)| → 3. Noting that when H0 = 0, H∗(1) = 2, it becomes evident
that the magnitudes of the two harmonics approach the limits |h1(x)| → 2H∗(x) and
|h2(x)| → (3/2)H∗(x), respectively, in agreement with (4.2).
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Figure 2. (a) Magnitude of the first and second harmonic of the film thickness perturbation (continuous and
dashed lines, respectively). (b) Phase of the first harmonic. Results are given for four different values of
equilibrium film thickness at the rim, H0 = 0.01 μm (black), 0.05 μm (green), 0.1 μm (blue) and 0.14 μm
(red).

As shown in figure 2(a), an overshoot in the perturbation amplitude of the film is
observed in the neighbourhood of the rim when H0 is non-zero. This overshoot gradually
extends toward the interior with increasing H0, and appears to affect a significant part of
the cap at the physiologically relevant film thickness H0 = 0.14 μm. Figure 2(b) shows
that the perturbation film thickness is roughly 180◦ out-of-phase with the wall oscillation
(note that the y-axis ranges from 178◦ to 184◦). However, significant variation in phase is
observed close to the rim. The main characteristic of this variation is that its amplitude
remains roughly constant with decreasing H0, but its length scales with H0 and thus
shrinks as H0 → 0.

The characteristics of shearing motion are investigated next. The film thickness at the
rim is taken as H0 = 0.14 μm, and this will be the standard value for the rest of the study.
To obtain a first feeling for the flow, we focus at the rim (x = x0) and compare in figure 3
the temporal variation of the local perturbations in film thickness, surfactant concentration,
surface velocity and volumetric flow rate to the temporal variation of the alveolar radius.
Figure 3(a) shows the linear prediction, i.e. the first term in the expansions normalized
by the amplitude a. It is noted that liquid film thickness and surface concentration of
surfactant are 180◦ out-of-phase with the wall oscillation, whereas interfacial velocity
and volumetric flow rate are further 90◦ out-of-phase. Thus, shearing motion at the
rim attains maximum values when Γ ∗ varies the fastest and become zero when Γ ∗ is
stationary (at the crest and the trough). Figure 3(b) demonstrates the weakly nonlinear
effects by including both order a and a2 terms. The second-order terms are evaluated with
an exaggerated value a = 0.2 to make visible the differences with the linear prediction.
It is noted that the oscillations of film thickness and surfactant concentration at the rim
remain anti-symmetric with respect to R(t), but exhibit steeper crests and flatter troughs.
The surface velocity and the volumetric flow increase slightly in amplitude and steepen in
time, i.e. the minimum moves forward in phase and the maximum backwards.

The above behaviour argues in favour of a flow mechanism that is triggered by gradients
of surface concentration of surfactant between the interior and the rim. However, the
amplitude of Γ ∗(x0) in figure 3(a) – which is equal to 2 in the linear limit – implies
an inverse proportionality to R2 and thus to the interfacial area (see (3.8)). Consequently,
gradients of Γ ∗ are expected to be very small, given that the inverse dependence on surface
area points to a spatially uniform concentration.
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Figure 3. Temporal variation of the cap radius (black dashed line), compared with the temporal variation
at the rim (x = x0) of the perturbations in film thickness (blue), surfactant concentration (bold green), (5×)
surface velocity (red) and (5×) volumetric flow rate (black). (a) Linear prediction normalized by the oscillation
amplitude a. (b) Inclusion of second-order effects with a = 0.2. The dashed, bold, green line in panel (a) shows
the temporal variation of surfactant concentration for a soluble surfactant (kadsC10 = 13 s−1), to be discussed
in § 4.4.
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Figure 4. Spatial variation of the two harmonics of [Γ ∗(x, t∗) − Γ ∗(1, t∗)] for dimensionless times t∗ = 0
(red), 0.125 (blue), 0.25 (green) and 0.375 (black). (a) First-order and (b) second-order contribution.

This expectation is confirmed by figure 4, which depicts the spatial variation of the
harmonics of [Γ ∗(x, t∗) − Γ ∗(1, t∗)] at four time instants during one half of a cycle. This
term has been chosen so that all curves collapse at x = 1 (which corresponds to the apex
of the spherical cap), and thus variations along x become visible. Figure 4(a) shows the
linear prediction and figure 4(b) the periodic second-order contribution. Indeed, maximum
deviation amplitudes are of the order of 10−5. The spatial gradients at x = x0 indicate the
driving force for Marangoni flow (and exchange of surfactant) between the rim and the
interior. However, the modulations of Γ ∗ observed deeper inside the cap – which lead
to an oscillatory spatial gradient both at first and second order – are puzzling, and their
explanation is deferred until the next section.

It is pertinent at this point to raise an argument of criticism for boundary conditions at
the rim of the form Γ = constant. The present approach, which invokes a mass balance as
boundary condition, indicates that Marangoni flows occur by very small gradients of Γ .
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Figure 5. (a) First-order (red) and second-order (blue) amplitude of u∗
s along the interface, and the steady,

second-order term (black). (b) Spatial variation of the Marangoni (blue) and the capillary (red) components of
Re[us1ei2πt∗ ] at dimensionless times t∗ = 0 (continuous lines) and 0.75 (dashed lines).

In retrospect, this appears reasonable, given that the Marangoni number is very large,
and thus the product Ma(∂Γ/∂x) generates an order-one effect. In contrast, setting Γ =
constant at the rim would create an order-one gradient (∂Γ/∂x) and thus a large transfer
rate of surfactant. In other words, the edge should act as a very large source of surfactant
during half of the cycle and as an equally large sink during the other half. In this respect,
a boundary condition of the form Γ = constant appears as physically questionable.

4.3. The velocity field and the role of capillary pressure
A closer investigation of the flow field is undertaken next. Starting with the surface
velocity, the following expansion is derived, where amplitudes us1, us2 and usS are given
in Appendix A:

u∗
s (x, t∗) = a Re[us1ei2πt∗] + a2

(
Re[us2ei4πt∗] + usS

)
. (4.5)

Figure 5(a) depicts the amplitudes us1 (red), us2 (blue) and usS (black line) at each location
along the interface. First, it is observed that the steady term is everywhere practically zero
(actually, it is of the order O(10−4). This result is set in perspective with the findings of
§ 3.4, where it was proven that the steady term of the volumetric flow rate is identically
zero. However, in the case of surface velocity, the result is only approximate. It is further
noted from figure 5(a) that the first- and second-order amplitudes are highest at the rim and
decrease smoothly towards the interior. However, they still remain significant for a major
part of the alveolar interface. The above indicate that the interfacial velocity is roughly an
order of magnitude slower than the axial velocity of the wall (u∗

w = dR∗/dt∗ ∼ π).
Setting figures 5(a) and 4 in perspective, it is noted that the smooth decrease of surface

velocity with x is not in accord with the oscillatory spatial gradient of the surfactant
concentration observed in figure 4. To explain this discrepancy, the capillary and the
Marangoni contribution to the surface velocity (the two terms of the expression for us1
in Appendix A) are considered separately, and their magnitude is depicted in figure 5(b)
for two time instants. It is observed that the capillary contribution induces significant
tangential velocities, but these are roughly cancelled by equal and opposite Marangoni
contributions. Thus, a kind of inverse Marangoni flow is instantaneously established
(Manikantan & Squires 2020), which results in the smooth variation of surface velocity
observed in figure 5.
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Figure 6. First-order (red) and second-order (blue) amplitude of Q∗ as a function of position x. Black dashed
lines show the same amplitudes for σ = 0 N m−1. The green line shows the second-order amplitude for a
soluble surfactant (kadsC10 = 13 s), to be discussed in § 4.4.

The above information supports the following overall mechanism. The surface
concentration of surfactant in the interior of the cap varies inversely with the periodic
wall inflation and deflation, creating gradients with the concentration at the rim. These
gradients give rise to Marangoni flows, which lead, in turn, to changes in film thickness that
result in variations of curvature along the film. The ensuing gradients in capillary pressure
tend to drive additional flow. However, and this is the key point, telast � tcap, i.e. the time
scale for establishment of Marangoni flows is an order of magnitude shorter than that for
the establishment of capillary flows. As a result, fine-tuning of surfactant concentration
at the interface instantly cancels capillary flow on the surface. This fine-tuning of Γ

manifests in the modulations observed in figure 4. Incidentally, this behaviour also explains
the near-zero magnitude of the steady, second-order term of the surface velocity, usS,
which results from the elimination on the surface of any capillary contribution. Indeed,
decreasing drastically the elasticity leads to a non-zero distribution of steady surface
velocity.

However, Marangoni (elastic) forces affect rapidly only the interface. Deeper inside
the liquid layer, velocity variations are transported by the action of viscosity, and thus
it is plausible that both Marangoni and capillary driving forces have an effect. A first
step to interrogate this possibility is by examination of the volumetric flow rate, Q∗. The
amplitudes of the first- and second-order contribution to Q∗ are depicted in figure 6 as red
(|Q1|) and blue lines (|Q2|), respectively. Strong spatial oscillations in the flow rate are
evident, which point to a significant contribution of capillary forces. The role of surface
tension is confirmed by repeating the calculation for σ = 0 (black dashed lines), and
observing that the oscillations disappear at both orders. The distinct effect of capillary
pressure on the overall flow, depicted in figure 6, is contrasted with the behaviour of the
surface velocity. Indeed, the data in figure 5 remain unaffected when the standard value
σ = 0.023 N m−1 is substituted by σ = 0 N m−1.

The above interpretation of the interplay between elastic and capillary forces is further
strengthened by quantifying the spatial length scale of the capillarity-induced modulations.
To this end, the first-order amplitude of the volumetric flow rate, |Q1(x)|, is plotted in
figure 7(a) for the following values of surface tension: σ = 10−1, 0.023, 10−2, 10−3
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Figure 7. (a) Variation of |Q1| with x for surface tension σ = 10−1 (green), 0.023 (red), 10−2 (blue), 10−3

(black) and 10−4 N m−1 (dashed black). (b) Dependence of the capillary length, L∗, on surface tension (circles)
and a line of slope (1/3).

and 10−4N m−1. For each curve, the x-values at the crest and the trough of the spatial
modulation are noted, and the dimensionless capillary length, L∗, is defined as the
respective arclength, L = R̄(θtr − θcr), divided by the mean cap radius, R̄, i.e. L∗ =
L/R̄ = cos−1(−xtr) − cos−1(−xcr). The values of L∗ are plotted versus σ as circles in
figure 7(b), and it is evident that the length shrinks with the decrease in surface tension.
The dependence of L∗ on σ may be predicted by considering the balance between capillary
and viscous forces in the θ -component of the Navier–Stokes equation (2.20), which leads
to the following scaling (Kalliadasis, Bielarz & Homsy 2000; Kalliadasis & Homsy 2001;
Bontozoglou & Serifi 2008):

μ
∂

∂r

(
r2 ∂uθ

∂r

)
= r

∂p
∂θ

⇒ μ
Ū
H̄2

∼ σ
H̄
L3 ⇒ L

H̄
∼ Ca−1/3 ∼ σ 1/3. (4.6)

The line in figure 7(b) has slope 1/3, and confirms the agreement between the observed
and the predicted dependence.

The aforementioned, oscillatory in x, variation of the volumetric flow rate, Q∗, indicates
that velocity profiles may not be monotonic and that the shear stress on the wall and
along the interface may change sign along x. To consider the flow field in more detail,
the instantaneous tangential velocity, uθ (r, x, t), is calculated from (2.22), using the values
of constants C1 and C2 from (2.24) and (2.25). The result in the lubrication approximation
is as follows:

uθ (r, x, t) = 1
2μ

∂p
∂θ

(R − r)2

R
− 1

μ

∂p
∂θ

h
R

(R − r) + 1
μ

∂σ

∂θ

(R − r)
R

. (4.7)

Taking the linear limit, the following expression is derived for the amplitude of velocity
perturbation at first order in terms of δ∗ = (1 − r∗)/ε, where δ∗ ∈ [0, H∗],

uθ1(r∗, x) =
√

1 − x2
[
ε3Ca−1

2
δ∗(2H∗ − δ∗)(2h′

1 + g′
1) − εMaδ∗Γ ′

1

]
. (4.8)

The shear stress at the wall is calculated in the lubrication approximation as

τw = μ

[
r

∂

∂r

(uθ

r

)
+ 1

r
∂ur

∂θ

]
r=R

= μ
∂uθ

∂r

∣∣∣∣
r=R

= h
R

∂p
∂θ

− 1
R

∂σ

∂θ
(4.9)
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and is expressed in non-dimensional form as follows:

τ ∗
w = τw

(μŪ/R̄)
= a Re[τw1 ei 2πt∗] + a2 Re[τw2 ei 4πt∗ + τwS] (4.10)

with the amplitudes given in Appendix A.
Computations using the above expressions offer additional information on the

characteristics of the flow. The velocity distribution is considered first, which can be better
visualized by a contour map. Thus, figure 8(a,c,e,g,i) shows iso-contours of the tangential
velocity Re[uθ1(δ

∗/H∗, x, t∗) ei 2πt∗] during half of the oscillation cycle (t∗ = 0–0.5). The
x-axis is x ∈ [x0, 1] and the y-axis is δ∗/H∗ = (R − r)/H ∈ [0, 1]. figure 8(b,d, f,h,j) are
magnifications close to the rim. It is noted that the second half of the oscillation cycle is
anti-symmetric with respect to the first, i.e. velocities have the same distribution but with
opposite sign. Figure 8(a–j), in particular the magnifications, demonstrate that the velocity
profile close to the alveolar opening involves fluid motion towards the rim at the top layer
of the film and away from the rim at the bottom layer.

Next, the wall shear stress is considered, and the amplitudes are plotted in figure 9(a).
It is observed that the first harmonic (red line) and the second harmonic (blue line)
peak at roughly the same location, x ≈ −0.8. It is also notable that a steady stress
distribution develops at second order, which is independent of surfactant solubility, and
whose magnitude is shown in figure 9(a) by a dashed black line. It is further observed
that the total steady force by the flow on the epithelium (the integral under the dashed
black line) is not zero. This should come as no surprise. What should be – and is indeed –
identically zero is the total steady force on the mass of water, i.e. the sum of the force by
the epithelium and the force due to Marangoni stresses along the interface.

To appreciate the temporal variation of the wall shear stress figure 9(b) shows the spatial
distribution of order O(a), Re[τw1 ei 2πt∗], at five time instants in the first half of the
oscillation cycle, t∗ ∈ [0, 0.5]. It is observed from figure 9(b) that the wall shear stress
changes direction at a point moving in time back and forth in the region x ∈ [−0.8, −0.6].
Taking into account that positive stress signifies force pointing towards the rim and
negative stress force pointing away from the rim, and recalling that the first half of the cycle
corresponds to exhalation, it is concluded that fluid motion close to the wall is towards this
stagnation region during exhalation and away from it during inhalation.

4.4. The role of surfactant solubility
Results presented up to this point refer to an insoluble surfactant (kadsC10 = 0 s−1). The
effect of solubility will now be given some preliminary consideration by repeating the
calculations for the value kadsC10 = 13 s−1, which corresponds to BLES surfactant at bulk
concentration C = 0.5 mg ml−1, in contact with humid air (RH = 100 %).

An important first outcome is that all variables remain unaffected at leading order, with
the exception of Γ ∗(x, t). The first-order temporal variation of surfactant concentration
at the rim (Re[Γ1ei2πt∗]) is shown in figure 3 by a green dashed line, and is observed to
decrease in amplitude and move forward in phase (maxima and minima occur earlier). This
trend (which is representative of the behaviour of surfactant concentration everywhere
inside the spherical cap, given that the phase and magnitude of Γ are practically uniform
in x) may be understood as follows. During alveolar contraction, the surface concentration
increases beyond equilibrium and surfactant is desorbed at an increasing rate. Thus, the
maximum is reduced compared to the insoluble case and it appears earlier. The opposite
phenomenon occurs during alveolar expansion, when the concentration decreases below
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Figure 8. Iso-contours of tangential velocity, Re[uθ1(δ
∗/H∗, x, t∗) ei 2πt∗ ], for t∗ = 0 (a,b), t∗ = 0.125 (c,d),

t∗ = 0.25 (e, f ), t∗ = 0.3755 (g,h) and t∗ = 0.5 (i,j). The x-axis is x = −cos(θ) and the y-axis δ∗/H∗. Figures
(b,d, f,h,j) are magnifications of those on the left close to the rim.
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Figure 9. (a) First-order (red), second-order (blue) and steady (dashed black) amplitude of the dimensionless
wall shear stress. The green line shows the second-order amplitude for a soluble surfactant (kadsC10 = 13 s−1),
to be discussed in § 4.4. (b) Spatial distribution of wall shear stress at first order, Re[τw1 ei 2πt∗ ], for time t∗ = 0
(black), 0.125 (red), 0.25 (blue), 0.375 (green) and 0.5 (magenta).

equilibrium and surfactant is increasingly adsorbed, leading again to the earlier appearance
of a weaker minimum.

The first-order shift of surfactant concentration with solubility interacts with the
first-order perturbation in film thickness, and changes appear in all variables at second
order. In particular, the second-order contribution to the volumetric flow rate increases
significantly, as shown by the green line in figure 6. Also, the second-order contribution
to the wall shear stress, shown by the green line in figure 9(a), exhibits a decrease
in magnitude and deeper penetration inside the alveolus. In contrast, the second-order
variation of the interfacial velocity is very small, and would not be visible in figure 5. Thus,
it is confirmed once again that Marangoni stresses dominate the interfacial dynamics, but
cannot eliminate the effect of the other forces in the interior flow.

However, the most important second-order effect of surfactant solubility is that it sets
a constant drift of surfactant molecules towards the rim, because the term QΓ S is now
non-zero and negative. More specifically, it has the form QΓ S(x) = QΓ S0(1 − x)/(1 − x0),
where QΓ S0 < 0 is the flow rate of surfactant leaving the alveolus. In particular, for
kadsC10 = 13 s−1, QΓ S0 = −0.051. This result stems from the addition of surfactant flux
along the entire circumference, starting from zero at the apex and gradually increasing
towards the rim. The linear form is a result of the surface concentration being spatially
uniform (according to figure 4, gradients are of the order 10−5), rendering gradual
contributions proportional to the local alveolus surface area.

It is stressed that the interfacial flux of surfactant is not a result of mean surface flow
(the steady component, a2usS(x), of u∗ is always identically zero). It is rather an effect of
the shift in phase of the temporal variation of Γ ∗, which results in a non-zero mean of the
product u∗Γ ∗. This may become evident by a closer look at figure 3, which indicates that
the above product is identically zero for the insoluble surfactant (continuous green and red
lines) and negative for the soluble surfactant (dashed green and continuous red lines).

4.5. Physiological implications
Having acquired a satisfactory understanding of the flow field inside the liquid layer lining
the alveolus, we speculate on the potential role of this flow field in various physiological
processes. The possibility of modification of the airflow pattern inside the alveolus is
considered first. Computations neglecting the liquid layer (i.e. setting zero air velocity
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on the wall) have predicted the occurrence of chaotic mixing, as a result of the coupling
of axial flow due to expansion/contraction with recirculation due to shear imposed by
the airflow in the alveolar duct (Tsuda et al. 1995, 2008; Henry & Tsuda 2010). Strong
recirculation is essential to this mechanism and, as a result, chaotic mixing is predicted to
occur in the proximal alveolated generations.

It is recalled from figure 5 that the interfacial velocity of the liquid layer is symmetric
around the axis of the alveolus and is directed towards the interior during inhalation and
towards the alveolar opening during exhalation. Its dimensional amplitude, as estimated by
linear theory, is us ≈ 0.25a(R̄/T). Therefore, it is 25 times slower than the radial velocity
of the wall, which has amplitude 2πa(R̄/T) and is characteristic of the airflow entering
the alveolus during inhalation. As demonstrated by the original simulations (Tsuda et al.
1995), the air enters from the distal end of the alveolar opening and drives the recirculation
eddy that is displaced towards the proximal end of the opening.

During inhalation, the direction of air recirculation close to the rim, predicted with
the neglect of the liquid film, is opposite to the local direction of interfacial flow of the
liquid layer, predicted with the neglect of air flow. The two views may be reconciled by
considering that the viscosity of air is much lower than that of the liquid. As a result,
(i) shear by the airflow will change very little the presently predicted flow field in the
liquid and (ii) the true interfacial velocity of air will be roughly equal to the liquid velocity
presently computed neglecting airflow. It is concluded from the above that the liquid layer
may modify significantly the pattern of air flow and the air/liquid interaction deserves
further consideration.

A second issue involves the deposition of particles inside the alveolus and, in particular,
the potential role of the liquid layer dynamics on their spatial distribution. As it has
been repeatedly observed and predicted (Zeltner et al. 1991; Haber et al. 2000; Kumar
et al. 2009; Tsuda, Henry & Butler 2013), particles deposit preferentially close to the
alveolar entrance rings. It is accepted that the airflow determines the initial deposition
trend, because the particle-laden air stream passes first very close to the proximal tip
of the alveolar opening, before entering the alveolus from the distal end of the opening
(Henry & Tsuda 2010). However, the fate of particles that touch the liquid layer will also
be influenced by liquid flow dynamics. In particular, the presently predicted formation of
a stagnation region at x ∈ (−0.8, −0.6) i.e. at 10◦ − 20◦ radial distance from the opening,
where the wall shear changes direction, may have a contribution in the accumulation of
deposited particles close to the opening.

More generally, hydrophobic nanoparticles will be affected mostly by the surface
velocity, and thus will be sucked towards the interior during alveolar inflation (see
figure 5). However, hydrophilic nanoparticles will enter the liquid layer more easily, and
will experience the entire flow field. Macromolecules secreted from the epithelium and
cell–cell signalling molecules will be predominantly influenced by the wall shear stress.
Larger particles, with aerodynamic diameter of a few μm, will be only partly immersed
in the liquid layer, but their dissolution rate (a critical parameter for pharmaceutical
applications) will be affected by the liquid flow field.

Another consideration concerns the predicted magnitude of shear stress imposed on
the alveolar wall by the liquid flow. According to physiological findings (Ridge et al.
2005; Ghadiali & Gaver 2008; Sivaramakrishnan et al. 2008), long-term exposure of
alveolar epithelial cells to excessive shear stress can cause damage by deforming the
cytoskeleton (the network of protein filaments and microtubules that maintains cell shape
and intracellular organization) and also by triggering the production of inflammatory
mediators. An indicative threshold for the onset of shear stress-inflicted damage is
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τw,max = 1.5 Pa (Chen et al. 2015). To obtain order-of-magnitude estimates from the
present study, the value of the linearization parameter is set equal to a = 0.1. Then,
maximum shear stress is predicted as τw ≈ 300a(μ/T) ≈ 0.007 Pa, a value two orders
of magnitude lower than the threshold for damage, which is a reasonable safety margin for
a healthy lung.

A rough estimate for conditions in a diseased lung (due, for example, to bronchitis,
bronchial asthma or cystic fibrosis) may be provided by taking the viscosity of the liquid
layer as two orders of magnitude higher than normal (Chen et al. 2015). Maximum
shear stress computed under these conditions is τw ≈ 200a(μ/T) ≈ 0.45 Pa. This value,
which is of the same order as the threshold limit, is applied repeatedly during each
breathing cycle. Thus, the possibility of damage by a cumulative effect seems plausible.
It is also notable that the predicted location of damage, i.e. close to the alveolar inlet, is
consistent with pulmonary emphysema, a condition characterized by abnormal, permanent
enlargement of air spaces distal to the terminal bronchioles, resulting from the gradual
destruction of intra-alveolar walls (Kohlhäufl et al. 1999).

Last but not least, the predicted constant drift of surfactant from the alveolus is
of particular interest, in relation to recent techniques for probing exhaled air for
micro-droplets originating from distal lung areas (Shmyrov et al. 2021). It has been
hypothesized that these droplets form during reopening of the small airways after their
closure at exhalation down to residual volume (Almstrand et al. 2010; Grotberg 2011).
Airway-lining fluid is known to contain surfactant molecules, whose analysis indicates that
they most probably originate from the alveoli, where they are actually produced (Bernhard
et al. 1997). Thus, the presently predicted drift provides a new mechanism for transport of
surfactant from the alveoli to the airways.

5. Concluding remarks

An oscillating spherical cap, lined internally with a surfactant-laden liquid film, is
considered as a model of the dynamics of a single alveolus. The flow in the liquid
film is analysed in the quasi-steady Stokes limit by a lubrication approximation, and the
free-surface boundary conditions are imposed on the interface. The problem is studied
by weakly nonlinear analysis around the equilibrium conditions in a non-oscillating cap.
In the case of soluble surfactant, the adsorption to the liquid–air interface is assumed to
be kinetically limited, and is described according to Langmuir kinetics, modified by the
inclusion of the intrinsic compressibility of the adsorbed monolayer. This modification is
significant for dense monolayers and was shown to model successfully the behaviour of
actual lung surfactants (Bouchoris & Bontozoglou 2021).

It is argued that the boundary conditions imposed at the rim of the spherical cap are
critical for correct modelling, as the flow and transport phenomena are actually driven by
gradients between the rim and the interior of the alveolus. A novel boundary condition
is presently applied, which enforces mass conservation of water and surfactant over the
alveolar rim. The validity of this condition rests on the assumptions that (i) the liquid film
is continuous over the rim and has a finite equilibrium thickness, (ii) the film thickness
and surfactant concentration over the rim are spatially uniform and vary only in time and
(iii) the dynamics of the rim is enslaved to that of the alveolus. These assumptions are
presently reconsidered in the light of the findings of the paper, and are further supported
by recent experimental findings and scaling arguments.

The existence of a continuous liquid layer over the sharp rim with a rather high
equilibrium thickness, H0 = 0.14 μm, is supported by the data of Bastacky et al. (1995),
but merits further discussion, given that a stagnant film is expected to drain away from
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a sharp rim due to capillarity. Therefore, the continuity of the liquid layer may only be
understood as the result of the action of repulsive disjoining pressure. Though disjoining
pressure probably determines H0, its role in the dynamics may be safely neglected, because
its characteristic time scale is very small, even compared to the breathing frequency (Oron,
Davis & Bankoff 1997; Zelig & Haber 2002).

Equilibrium films resulting from the action of repulsive disjoining pressure are typically
thinner, i.e. of the order of nanometres or few tens of nanometres. However, things may
be different for the pulmonary surfactant because of the existence of aggregates dispersed
in the interior of the film. It is recalled that as the pulmonary surfactant is practically
insoluble, its excess resides in the bulk in the form of vesicle aggregates (Zuo et al.
2008; Bykov et al. 2021). Thus, the electrostatic and/or steric interactions that create the
repulsive forces are not only between the substrate and the surface layer, but also between
these two surfaces and the vesicles trapped in between.

The above view is supported by the recent experiment of Xu et al. (2020), who
investigated by atomic force microscopy (AFM) in situ Langmuir–Blodgett films of
pulmonary surfactant preparations, i.e. structures trapped on a mica substrate moved from
the interior of the liquid towards the interface. Though intended for a different purpose, this
experiment mimics the creation of an equilibrium film because it forces a substrate against
the adsorbed layer. The AFM images showed protrusions of height 100 − 120 nm, which
were attributed to trapped aggregates. When the sub-surface aggregates were removed (by
repeated replacement–washing of the sub-surface liquid volume), the protrusions were in
the range 20 − 30 nm, attributed to the adsorbed layer. These data support an equilibrium
film thickness in the range 100 − 150 nm, in striking agreement with the estimate extracted
from the measurements of Bastacky et al. (1995).

The second assumption in the derivation of the boundary conditions at the alveolar
opening is that the film thickness and surfactant concentration are spatially uniform
over the rim and only vary in time. This is justified by considering that the fluxes
leaving the alveolus and entering the rim are matched, and therefore the gradients
(∂h/∂x)rim, (∂h/∂x)alv and (∂Γ/∂x)rim, (∂Γ/∂x)alv are of the same order. However,
(∂/∂x)rim ∼ Δrim/r0 and (∂/∂x)alv ∼ Δalv/R. Thus, the variation of film thickness and
surface concentration over the rim scales as r0/R with the variation in the alveolus, and
may be neglected in the limit r0 � R.

The last – and probably most critical – assumption in the derivation of the boundary
conditions is that the dynamics of the rim is enslaved to that of the alveolus. To confirm
this assumption, it is necessary to estimate the characteristic time of reaction of the film
covering the rim, when disturbed from equilibrium, and to compare this to the time scale of
the fastest process driving the flow. Our investigation demonstrated that the periodic wall
oscillation leads to an inverse variation of surfactant concentration inside the alveolus,
and thus creates gradients with the concentration at the rim. These gradients give rise
to Marangoni stresses that drive the flows. The characteristic time for establishment of
flow due to Marangoni forcing was previously estimated in (3.15a–d) as telast = μR̄/Eeq ≈
5 × 10−7 s.

The characteristic response time to disturbances of the liquid film over the rim may be
estimated by adopting an expression for the disjoining pressure. Using Π(h0) = A/(6πh3

0)
(Oron et al. 1997), and taking advantage of the equilibrium condition with the capillary
pressure, A/(6πH3

0) = σ/(r0 + H0), leads to the estimate

tdrain = μπ2(r0 + H0)

8σ

(
r0

H0

)2

≈ 5 × 10−4 s. (5.1)
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It is concluded that Marangoni forcing is three orders of magnitude faster than capillary
drainage, rendering the latter insignificant and enslaving the dynamics of the rim to the
dynamics of the alveolar oscillation.

Continuing with the results of the study, it is recalled that a key finding is the relation
between the intensity of shearing motion in the liquid layer and the thickness H0 of the film
over the rim of the alveolar opening. In particular, the amplitude of the interfacial velocity
decreases monotonically from a maximum at the rim to zero at the symmetry axis, and, for
the physiologically relevant value H0 ≈ 0.14 μm, is roughly an order of magnitude lower
than the amplitude of the wall motion in the radial direction.

A complex interplay between Marangoni and capillary stresses is revealed. The former
dominate the interfacial dynamics, but the latter may not be neglected because they affect
significantly the interior flow field. As a result of capillary stresses, spatial modulations
appear in the surface concentration of surfactant, the volumetric flow rate of the film and
the wall shear stress. The length scale of these modulations varies with Ca−1/3, and is
predicted by a balance of capillary and viscous forces. Adsorption kinetic effects of soluble
surfactants are shown to modify the amplitude and phase of surface concentration Γ at first
order, and to affect the other variables at second order. Most important, a constant drift of
surfactant towards the rim is predicted at second order.

It is speculated that the above behaviour of flow variables is potentially of significance
to physiological processes. In particular, the interfacial liquid velocity may modify the air
recirculation inside the alveolus, and the spatially non-uniform flow field inside the liquid
layer may affect the preferential deposition of inhaled particles. Also, the maximum values
of wall shear stress predicted for a healthy and a diseased lung appear reasonable when
compared to the experimentally determined stress levels that inflict damage to epithelial
cells. Finally, the predicted drift of surfactant towards the rim provides a mechanism for
the observed appearance of alveolar surfactant along the small airways.

The preliminary results for non-zero adsorption kinetics highlight the importance of
nonlinear coupling between flow dynamics and surfactant solubility. In this respect,
it is interesting to recall from the literature (Lipp et al. 1998; Krueger & Gaver
2000; Schief et al. 2003; Lee 2008) that, at large compressions – representative of
physiological conditions during deep exhalation – the surfactant monolayer collapses
forming protrusions that extend in various directions, while surface tension remains
constant at a minimum value σ ≈ 0.002 − 0.010 N m−1. These protrusions are continuous
with the interfacial layer and act as reservoirs for rapid replenishment of the monolayer
during re-expansion. The behaviour of an alveolus under such conditions is evidently
beyond the power of the present, weakly nonlinear approach, and calls for a numerical
solution of the fully nonlinear problem.
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Appendix A

This appendix summarizes the expressions for the main variables of interest in terms of
the primary unknowns hi, gi, Γi, i = 1, 2, as derived by expanding up to second order in
the oscillation amplitude a. In particular, the dimensionless fluxes Fh, FΓ are expanded in
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(3.22) in terms of the following components:

Fh1 = ε3Ca−1

3
H∗3(1 − x2)(2h′

1 + g′
1) − εMa

2
H∗2(1 − x2)Γ ′

1, (A1)

Fh2 = ε3Ca−1

3
H∗3(1 − x2)(2h′

2 + g′
2) − εMa

2
H∗2(1 − x2)Γ ′

2

+ε3Ca−1

6
(1 − x2)

(
3H∗2h1 + H∗3σ ∗

Γ Γ1 − 3H∗3
)

(2h′
1 + g′

1)

−εMa
4

(1 − x2)
(
−H∗2Γ1 + H∗2E∗

Γ Γ1 + 2H∗h1 − H∗2
)

Γ ′
1, (A2)

FhS = ε3Ca−1

3
H∗3(1 − x2)(2h′

S + g′
S) − εMa

2
H∗2(1 − x2)Γ ′

S

+ε3Ca−1

6
(1 − x2)Re

[(
3H∗2h̄1 + H∗3σ ∗

Γ Γ̄1 − 3H∗3
)

(2h′
1 + g′

1)
]

−εMa
4

(1 − x2)Re
[(

−H∗2Γ̄1 + H∗2E∗
Γ Γ̄1 + 2H∗h̄1 − H∗2

)
Γ ′

1

]
, (A3)

FΓ 1 = ε3Ca−1

2
H∗2(1 − x2)(2h′

1 + g′
1) − εMaH∗(1 − x2)Γ ′

1 − Pe−1
s (1 − x2)Γ ′

1, (A4)

FΓ 2 = ε3Ca−1

2
H∗2(1 − x2)(2h′

2 + g′
2) − εMaH∗(1 − x2)Γ ′

2 − Pe−1
s (1 − x2)Γ ′

2

+ε3Ca−1

4
(1 − x2)

(
2H∗h1 + H∗2σ ∗

Γ Γ1 + H∗2Γ1 − 3H∗2
)

(2h′
1 + g′

1)

−εMa
2

(1 − x2)
(
H∗E∗

Γ Γ1 + h1 − H∗)Γ ′
1 + 1

2
Pe−1

s (1 − x2)Γ ′
1, (A5)

FΓ S = ε3Ca−1

2
H∗2(1 − x2)(2h′

S + g′
S) − εMaH∗(1 − x2)Γ ′

S − Pe−1
s (1 − x2)Γ ′

S

+ε3Ca−1

4
(1 − x2)Re

[(
2H∗h̄1 + H∗2σ ∗

Γ Γ̄1 + H∗2Γ̄1 − 3H∗2
)

(2h′
1 + g′

1)
]

−εMa
2

(1 − x2)Re
[(

H∗E∗
Γ Γ̄1 + h̄1 − H∗)Γ ′

1
]+ 1

2
Pe−1

s (1 − x2)Re(Γ ′
1). (A6)

Expansion of the boundary conditions results in the following first- and second-order
expressions, where symbols like hi0 signify amplitude i evaluated at x = x0:

−Fh1|x0 =
√

1 − x2
0 (iπ2)

[
(r∗

0 + εH∗
0) h10 + H∗

0

(
r∗

0 + ε
H∗

0
2

)]
, (A7)

−Fh2|x0 =
√

1 − x2
0 (iπ2)

[
(r∗

0 + εH∗
0) 2h20 + 1

2
εh2

10 + 1
2
(r∗

0 + εH∗
0) h10

− 1
2

H∗
0

(
r∗

0 + ε
H∗

0
2

)]
, (A8)
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−FhS|x0 =
√

1 − x2
0

(
π2

2

)
(r∗

0 + εH∗
0) Re

[
i h̄1
]
, (A9)

−FΓ 1|x0 =
√

1 − x2
0 π

[
(r∗

0 + εH∗
0)

(
iπ − St1

2

)
Γ10 + iπεh10 + iπ(r∗

0 + εH∗
0)

]
,

(A10)

−FΓ 2|x0 =
√

1 − x2
0 π

[
(r∗

0 + εH∗
0)

(
2iπ − St1

2

)
Γ20 − St

8
(r∗

0 + εH∗
0) Γ ∗

∞,Γ Γ Γ 2
10

+
(

iπ − St1
4

)
εh10Γ10 + iπε

(
2h20 + h10

2

)
− 1

2
iπ(r∗

0 + εH∗
0)(1 − Γ10)

]
, (A11)

−FΓ S|x0 =
√

1 − x2
0 π

[
−1

2
(r∗

0 + εH∗
0)

(
St1ΓS + 1

4
St Γ ∗

∞,Γ Γ

(
Γ1Γ̄1

)+ πRe[iΓ1]
)

− 1
4
εSt1Re[Γ1h̄1] + 1

2
πεRe[ih̄1]

]
. (A12)

The surface velocity and the volumetric flow rate of the liquid film are expanded in
terms of the following amplitudes, with the steady term at second order being identically
zero for the volumetric flow rate.

us1 =
√

1 − x2
[
ε3Ca−1

2
H∗2(2h′

1 + g′
1) − εMaH∗Γ ′

1

]
, (A13)

us2 =
√

1 − x2
[
ε3Ca−1

2

(
H∗2(2h′

2 + g′
2)

+1
2

(
−3H∗2 + 2H∗h1 + H∗2Γ1 σ ∗

Γ

)
(2h′

1 + g′
1)

)

−εMa
(

H∗Γ ′
2 + 1

2

(−H∗ + h1 − H∗Γ1 + H∗Γ1 E∗
Γ

)
Γ ′

1

)]
, (A14)

usS =
√

1 − x2
{

ε3Ca−1

2

(
H∗2(2h′

S + g′
S)

+1
2

Re
[(

−3H∗2 + 2H∗h̄1 + H∗2Γ̄1 σ ∗
Γ

)
(2h′

1 + g′
1)
])

−εMa
(

H∗Γ ′
S + 1

2
Re
[(−H∗ + h̄1 − H∗Γ̄1 + H∗Γ̄1 E∗

Γ

)
Γ ′

1
])}

, (A15)

Q1 = (1 − x2)

[
ε3Ca−1

3
H∗3(2h′

1 + g′
1) − εMa

2
H∗2Γ ′

1

]
, (A16)

Q2 = (1 − x2)

[
ε3Ca−1

3

(
H∗3(2h′

2 + g′
2)

+1
2

(
3H∗2h1 + H∗3Γ1 σ ∗

Γ − 2H∗3
)

(2h′
1 + g′

1)

)

− εMa
2

(
H∗2Γ ′

2 + 1
2

(
2H∗h1 − H∗2Γ1 + H∗2Γ1 E∗

Γ

)
Γ ′

1

)]
. (A17)
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The wall shear stress is expanded in terms of the following amplitudes:

τw1 =
√

1 − x2
[
−ε2Ca−1H∗(2h′

1 + g′
1) + MaΓ ′

1

]
, (A18)

τw2 =
√

1 − x2
[
−ε2Ca−1

(
H∗(2h′

2 + g′
2) + 1

2

(
h1 + H∗Γ1 σ ∗

Γ − 3H∗) (2h′
1 + g′

1)

)

+Ma
(

Γ ′
2 + 1

2

(−Γ1 + Γ1 E∗
Γ − 1

)
Γ ′

1

)]
, (A19)

τwS =
√

1 − x2
[
−ε2Ca−1

(
H∗(2h′

S + g′
S) + 1

2
Re
[(

h̄1 + H∗Γ̄1 σ ∗
Γ − 3H∗) (2h′

1 + g′
1)
])

+Ma
(

Γ ′
S + 1

2
Re
[(−Γ̄1 + Γ̄1 E∗

Γ − 1
)
Γ ′

1
])]

. (A20)

Finally, the terms σ ∗
Γ , E∗

Γ , Γ ∗
∞,Γ and Γ ∗

∞,Γ Γ that appear in the above equations and
represent derivatives evaluated at Γeq, are calculated from the following expressions:

σ ∗
Γ = dσ ∗

dΓ ∗

∣∣∣∣
eq

= −Eeq

σeq
, (A21)

E∗
Γ = dE∗

dΓ ∗

∣∣∣∣
eq

= Eeq

RT Γeq
− αΩ0

RT E2
eq −

(
αEeq

1 − αΠeq

)2

, (A22)

Γ ∗
∞,Γ = dΓ ∗∞

dΓ ∗

∣∣∣∣
eq

= α

(1 − αΠeq)2
Eeq

Ω0Γeq
, (A23)

Γ ∗
∞,Γ Γ = d2Γ ∗∞

dΓ ∗2

∣∣∣∣
eq

= αEeqΓ∞,eq

[
2Γ ∗

∞,Γ + Γ∞,eq

Γeq

(
E∗

Γ − 1
)]

. (A24)
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